ompt-tsan.cpp 30.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
/*
 * ompt-tsan.cpp -- Archer runtime library, TSan annotations for Archer
 */
  
  //===----------------------------------------------------------------------===//
  //
  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  // See https://llvm.org/LICENSE.txt for details.
  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  //
  //===----------------------------------------------------------------------===//


#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif

#include <atomic>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <inttypes.h>
#include <iostream>
#include <mutex>
#include <sstream>
#include <stack>
#include <list>
#include <string>
#include <iostream>
#include <unordered_map>
#include <vector>

#if (defined __APPLE__ && defined __MACH__)
#include <dlfcn.h>
#endif

#include <sys/resource.h>
#include "omp-tools.h"

static int runOnTsan;
static int hasReductionCallback;

class ArcherFlags {
public:
#if (LLVM_VERSION) >= 40
  int flush_shadow;
#endif
  int print_max_rss;
  int verbose;
  int enabled;

  ArcherFlags(const char *env)
      :
#if (LLVM_VERSION) >= 40
        flush_shadow(0),
#endif
        print_max_rss(0), verbose(0), enabled(1) {
    if (env) {
      std::vector<std::string> tokens;
      std::string token;
      std::string str(env);
      std::istringstream iss(str);
      while (std::getline(iss, token, ' '))
        tokens.push_back(token);

      for (std::vector<std::string>::iterator it = tokens.begin();
           it != tokens.end(); ++it) {
#if (LLVM_VERSION) >= 40
        if (sscanf(it->c_str(), "flush_shadow=%d", &flush_shadow))
          continue;
#endif
        if (sscanf(it->c_str(), "print_max_rss=%d", &print_max_rss))
          continue;
        if (sscanf(it->c_str(), "verbose=%d", &verbose))
          continue;
        if (sscanf(it->c_str(), "enable=%d", &enabled))
          continue;
        std::cerr << "Illegal values for ARCHER_OPTIONS variable: " << token
                  << std::endl;
      }
    }
  }
};

class TsanFlags {
public:
  int ignore_noninstrumented_modules;

  TsanFlags(const char *env) : ignore_noninstrumented_modules(0) {
    if (env) {
      std::vector<std::string> tokens;
      std::string token;
      std::string str(env);
      std::istringstream iss(str);
      while (std::getline(iss, token, ' '))
        tokens.push_back(token);

      for (std::vector<std::string>::iterator it = tokens.begin();
           it != tokens.end(); ++it) {
        // we are interested in ignore_noninstrumented_modules to print a
        // warning
        if (sscanf(it->c_str(), "ignore_noninstrumented_modules=%d",
                   &ignore_noninstrumented_modules))
          continue;
      }
    }
  }
};

#if (LLVM_VERSION) >= 40
extern "C" {
int __attribute__((weak)) __archer_get_omp_status();
void __attribute__((weak)) __tsan_flush_memory() {}
}
#endif
ArcherFlags *archer_flags;

// The following definitions are pasted from "llvm/Support/Compiler.h" to allow
// the code
// to be compiled with other compilers like gcc:

#ifndef TsanHappensBefore
// Thread Sanitizer is a tool that finds races in code.
// See http://code.google.com/p/data-race-test/wiki/DynamicAnnotations .
// tsan detects these exact functions by name.
extern "C" {
#if (defined __APPLE__ && defined __MACH__)
static void AnnotateHappensAfter(const char *file, int line,
                                 const volatile void *cv) {
  void (*fptr)(const char *, int, const volatile void *);

  fptr = (void (*)(const char *, int, const volatile void *))dlsym(
      RTLD_DEFAULT, "AnnotateHappensAfter");
  (*fptr)(file, line, cv);
}
static void AnnotateHappensBefore(const char *file, int line,
                                  const volatile void *cv) {
  void (*fptr)(const char *, int, const volatile void *);

  fptr = (void (*)(const char *, int, const volatile void *))dlsym(
      RTLD_DEFAULT, "AnnotateHappensBefore");
  (*fptr)(file, line, cv);
}
static void AnnotateIgnoreWritesBegin(const char *file, int line) {
  void (*fptr)(const char *, int);

  fptr = (void (*)(const char *, int))dlsym(RTLD_DEFAULT,
                                            "AnnotateIgnoreWritesBegin");
  (*fptr)(file, line);
}
static void AnnotateIgnoreWritesEnd(const char *file, int line) {
  void (*fptr)(const char *, int);

  fptr = (void (*)(const char *, int))dlsym(RTLD_DEFAULT,
                                            "AnnotateIgnoreWritesEnd");
  (*fptr)(file, line);
}
static void AnnotateNewMemory(const char *file, int line,
                              const volatile void *cv, size_t size) {
  void (*fptr)(const char *, int, const volatile void *, size_t);

  fptr = (void (*)(const char *, int, const volatile void *, size_t))dlsym(
      RTLD_DEFAULT, "AnnotateNewMemory");
  (*fptr)(file, line, cv, size);
}
static int RunningOnValgrind() {
  int (*fptr)();

  fptr = (int (*)())dlsym(RTLD_DEFAULT, "RunningOnValgrind");
  if (fptr && fptr != RunningOnValgrind)
    runOnTsan = 0;
  return 0;
}
#else
void __attribute__((weak))
AnnotateHappensAfter(const char *file, int line, const volatile void *cv) {}
void __attribute__((weak))
AnnotateHappensBefore(const char *file, int line, const volatile void *cv) {}
void __attribute__((weak))
AnnotateIgnoreWritesBegin(const char *file, int line) {}
void __attribute__((weak)) AnnotateIgnoreWritesEnd(const char *file, int line) {
}
void __attribute__((weak))
AnnotateNewMemory(const char *file, int line, const volatile void *cv,
                  size_t size) {}
int __attribute__((weak)) RunningOnValgrind() {
  runOnTsan = 0;
  return 0;
}
void __attribute__((weak)) __tsan_func_entry(const void *call_pc) {}
void __attribute__((weak)) __tsan_func_exit(void) {}
#endif
}

// This marker is used to define a happens-before arc. The race detector will
// infer an arc from the begin to the end when they share the same pointer
// argument.
#define TsanHappensBefore(cv) AnnotateHappensBefore(__FILE__, __LINE__, cv)

// This marker defines the destination of a happens-before arc.
#define TsanHappensAfter(cv) AnnotateHappensAfter(__FILE__, __LINE__, cv)

// Ignore any races on writes between here and the next TsanIgnoreWritesEnd.
#define TsanIgnoreWritesBegin() AnnotateIgnoreWritesBegin(__FILE__, __LINE__)

// Resume checking for racy writes.
#define TsanIgnoreWritesEnd() AnnotateIgnoreWritesEnd(__FILE__, __LINE__)

// We don't really delete the clock for now
#define TsanDeleteClock(cv)

// newMemory
#define TsanNewMemory(addr, size)                                              \
  AnnotateNewMemory(__FILE__, __LINE__, addr, size)
#define TsanFreeMemory(addr, size)                                             \
  AnnotateNewMemory(__FILE__, __LINE__, addr, size)
#endif

// Function entry/exit
#define TsanFuncEntry(pc) __tsan_func_entry(pc)
#define TsanFuncExit() __tsan_func_exit()

/// Required OMPT inquiry functions.
static ompt_get_parallel_info_t ompt_get_parallel_info;
static ompt_get_thread_data_t ompt_get_thread_data;

typedef uint64_t ompt_tsan_clockid;

static uint64_t my_next_id() {
  static uint64_t ID = 0;
  uint64_t ret = __sync_fetch_and_add(&ID, 1);
  return ret;
}

// Data structure to provide a threadsafe pool of reusable objects.
// DataPool<Type of objects, Size of blockalloc>
template <typename T, int N> struct DataPool {
  std::mutex DPMutex;
  std::stack<T *> DataPointer;
  std::list<void *> memory;
  int total;

  void newDatas() {
    // prefix the Data with a pointer to 'this', allows to return memory to
    // 'this',
    // without explicitly knowing the source.
    //
    // To reduce lock contention, we use thread local DataPools, but Data
    // objects move to other threads.
    // The strategy is to get objects from local pool. Only if the object moved
    // to another
    // thread, we might see a penalty on release (returnData).
    // For "single producer" pattern, a single thread creates tasks, these are
    // executed by other threads.
    // The master will have a high demand on TaskData, so return after use.
    struct pooldata {
      DataPool<T, N> *dp;
      T data;
    };
    // We alloc without initialize the memory. We cannot call constructors.
    // Therfore use malloc!
    pooldata *datas = (pooldata *)malloc(sizeof(pooldata) * N);
    memory.push_back(datas);
    for (int i = 0; i < N; i++) {
      datas[i].dp = this;
      DataPointer.push(&(datas[i].data));
    }
    total += N;
  }

  T *getData() {
    T *ret;
    DPMutex.lock();
    if (DataPointer.empty())
      newDatas();
    ret = DataPointer.top();
    DataPointer.pop();
    DPMutex.unlock();
    return ret;
  }

  void returnData(T *data) {
    DPMutex.lock();
    DataPointer.push(data);
    DPMutex.unlock();
  }

  void getDatas(int n, T **datas) {
    DPMutex.lock();
    for (int i = 0; i < n; i++) {
      if (DataPointer.empty())
        newDatas();
      datas[i] = DataPointer.top();
      DataPointer.pop();
    }
    DPMutex.unlock();
  }

  void returnDatas(int n, T **datas) {
    DPMutex.lock();
    for (int i = 0; i < n; i++) {
      DataPointer.push(datas[i]);
    }
    DPMutex.unlock();
  }

  DataPool() : DPMutex(), DataPointer(), total(0) {}

  ~DataPool() {
    // we assume all memory is returned when the thread finished / destructor is
    // called
    for (auto i : memory)
      if (i)
        free(i);
  }
};

// This function takes care to return the data to the originating DataPool
// A pointer to the originating DataPool is stored just before the actual data.
template <typename T, int N> static void retData(void *data) {
  ((DataPool<T, N> **)data)[-1]->returnData((T *)data);
}

struct ParallelData;
__thread DataPool<ParallelData, 4> *pdp;

/// Data structure to store additional information for parallel regions.
struct ParallelData {

  // Parallel fork is just another barrier, use Barrier[1]

  /// Two addresses for relationships with barriers.
  ompt_tsan_clockid Barrier[2];

  const void *codePtr;

  void *GetParallelPtr() { return &(Barrier[1]); }

  void *GetBarrierPtr(unsigned Index) { return &(Barrier[Index]); }

  ParallelData(const void *codeptr) : codePtr(codeptr) {}
  ~ParallelData() {
    TsanDeleteClock(&(Barrier[0]));
    TsanDeleteClock(&(Barrier[1]));
  }
  // overload new/delete to use DataPool for memory management.
  void *operator new(size_t size) { return pdp->getData(); }
  void operator delete(void *p, size_t) { retData<ParallelData, 4>(p); }
};

static inline ParallelData *ToParallelData(ompt_data_t *parallel_data) {
  return reinterpret_cast<ParallelData *>(parallel_data->ptr);
}

struct Taskgroup;
__thread DataPool<Taskgroup, 4> *tgp;

/// Data structure to support stacking of taskgroups and allow synchronization.
struct Taskgroup {
  /// Its address is used for relationships of the taskgroup's task set.
  ompt_tsan_clockid Ptr;

  /// Reference to the parent taskgroup.
  Taskgroup *Parent;

  Taskgroup(Taskgroup *Parent) : Parent(Parent) {}
  ~Taskgroup() { TsanDeleteClock(&Ptr); }

  void *GetPtr() { return &Ptr; }
  // overload new/delete to use DataPool for memory management.
  void *operator new(size_t size) { return tgp->getData(); }
  void operator delete(void *p, size_t) { retData<Taskgroup, 4>(p); }
};

struct TaskData;
__thread DataPool<TaskData, 4> *tdp;

/// Data structure to store additional information for tasks.
struct TaskData {
  /// Its address is used for relationships of this task.
  ompt_tsan_clockid Task;

  /// Child tasks use its address to declare a relationship to a taskwait in
  /// this task.
  ompt_tsan_clockid Taskwait;

  /// Whether this task is currently executing a barrier.
  bool InBarrier;

  /// Whether this task is an included task.
  bool Included;

  /// Index of which barrier to use next.
  char BarrierIndex;

  /// Count how often this structure has been put into child tasks + 1.
  std::atomic_int RefCount;

  /// Reference to the parent that created this task.
  TaskData *Parent;

  /// Reference to the implicit task in the stack above this task.
  TaskData *ImplicitTask;

  /// Reference to the team of this task.
  ParallelData *Team;

  /// Reference to the current taskgroup that this task either belongs to or
  /// that it just created.
  Taskgroup *TaskGroup;

  /// Dependency information for this task.
  ompt_dependence_t *Dependencies;

  /// Number of dependency entries.
  unsigned DependencyCount;

  void *PrivateData;
  size_t PrivateDataSize;

  int execution;
  int freed;

  TaskData(TaskData *Parent)
      : InBarrier(false), Included(false), BarrierIndex(0), RefCount(1),
        Parent(Parent), ImplicitTask(nullptr), Team(Parent->Team),
        TaskGroup(nullptr), DependencyCount(0), execution(0), freed(0) {
    if (Parent != nullptr) {
      Parent->RefCount++;
      // Copy over pointer to taskgroup. This task may set up its own stack
      // but for now belongs to its parent's taskgroup.
      TaskGroup = Parent->TaskGroup;
    }
  }

  TaskData(ParallelData *Team = nullptr)
      : InBarrier(false), Included(false), BarrierIndex(0), RefCount(1),
        Parent(nullptr), ImplicitTask(this), Team(Team), TaskGroup(nullptr),
        DependencyCount(0), execution(1), freed(0) {}

  ~TaskData() {
    TsanDeleteClock(&Task);
    TsanDeleteClock(&Taskwait);
  }

  void *GetTaskPtr() { return &Task; }

  void *GetTaskwaitPtr() { return &Taskwait; }
  // overload new/delete to use DataPool for memory management.
  void *operator new(size_t size) { return tdp->getData(); }
  void operator delete(void *p, size_t) { retData<TaskData, 4>(p); }
};

static inline TaskData *ToTaskData(ompt_data_t *task_data) {
  return reinterpret_cast<TaskData *>(task_data->ptr);
}

static inline void *ToInAddr(void *OutAddr) {
  // FIXME: This will give false negatives when a second variable lays directly
  //        behind a variable that only has a width of 1 byte.
  //        Another approach would be to "negate" the address or to flip the
  //        first bit...
  return reinterpret_cast<char *>(OutAddr) + 1;
}

/// Store a mutex for each wait_id to resolve race condition with callbacks.
std::unordered_map<ompt_wait_id_t, std::mutex> Locks;
std::mutex LocksMutex;

static void ompt_tsan_thread_begin(ompt_thread_t thread_type,
                                   ompt_data_t *thread_data) {
  pdp = new DataPool<ParallelData, 4>;
  TsanNewMemory(pdp, sizeof(pdp));
  tgp = new DataPool<Taskgroup, 4>;
  TsanNewMemory(tgp, sizeof(tgp));
  tdp = new DataPool<TaskData, 4>;
  TsanNewMemory(tdp, sizeof(tdp));
  thread_data->value = my_next_id();
}

static void ompt_tsan_thread_end(ompt_data_t *thread_data) {
  delete pdp;
  delete tgp;
  delete tdp;
}

/// OMPT event callbacks for handling parallel regions.

static void ompt_tsan_parallel_begin(ompt_data_t *parent_task_data,
                                     const ompt_frame_t *parent_task_frame,
                                     ompt_data_t *parallel_data,
                                     uint32_t requested_team_size,
                                     int flag,
                                     const void *codeptr_ra) {
  ParallelData *Data = new ParallelData(codeptr_ra);
  parallel_data->ptr = Data;

  TsanHappensBefore(Data->GetParallelPtr());
}

static void ompt_tsan_parallel_end(ompt_data_t *parallel_data,
                                   ompt_data_t *task_data,
                                   int flag,
                                   const void *codeptr_ra) {
  ParallelData *Data = ToParallelData(parallel_data);
  TsanHappensAfter(Data->GetBarrierPtr(0));
  TsanHappensAfter(Data->GetBarrierPtr(1));

  delete Data;

#if (LLVM_VERSION >= 40)
  if (&__archer_get_omp_status) {
    if (__archer_get_omp_status() == 0 && archer_flags->flush_shadow)
      __tsan_flush_memory();
  }
#endif

}

static void ompt_tsan_implicit_task(ompt_scope_endpoint_t endpoint,
                                    ompt_data_t *parallel_data,
                                    ompt_data_t *task_data,
                                    unsigned int team_size,
                                    unsigned int thread_num,
                                    int type) {
  switch (endpoint) {
  case ompt_scope_begin:
    if (type & ompt_task_initial) {
      parallel_data->ptr = new ParallelData(nullptr);
    }
    task_data->ptr = new TaskData(ToParallelData(parallel_data));
    TsanHappensAfter(ToParallelData(parallel_data)->GetParallelPtr());
    TsanFuncEntry(ToParallelData(parallel_data)->codePtr);
    break;
  case ompt_scope_end:
    TaskData *Data = ToTaskData(task_data);
    assert(Data->freed == 0 && "Implicit task end should only be called once!");
    Data->freed = 1;
    assert(Data->RefCount == 1 &&
           "All tasks should have finished at the implicit barrier!");
    delete Data;
    TsanFuncExit();
    break;
  }
}

static void ompt_tsan_sync_region(ompt_sync_region_t kind,
                                  ompt_scope_endpoint_t endpoint,
                                  ompt_data_t *parallel_data,
                                  ompt_data_t *task_data,
                                  const void *codeptr_ra) {
  TaskData *Data = ToTaskData(task_data);
  switch (endpoint) {
  case ompt_scope_begin:
    TsanFuncEntry(codeptr_ra);
    switch (kind) {
      case ompt_sync_region_barrier_implementation:
      case ompt_sync_region_barrier_implicit:
      case ompt_sync_region_barrier_explicit:
      case ompt_sync_region_barrier: {
        char BarrierIndex = Data->BarrierIndex;
        TsanHappensBefore(Data->Team->GetBarrierPtr(BarrierIndex));

        if (hasReductionCallback < ompt_set_always) {
          // We ignore writes inside the barrier. These would either occur during
          // 1. reductions performed by the runtime which are guaranteed to be
          // race-free.
          // 2. execution of another task.
          // For the latter case we will re-enable tracking in task_switch.
          Data->InBarrier = true;
          TsanIgnoreWritesBegin();
        }

        break;
      }

      case ompt_sync_region_taskwait:
        break;

      case ompt_sync_region_taskgroup:
        Data->TaskGroup = new Taskgroup(Data->TaskGroup);
        break;

      default:
        break;
    }
    break;
  case ompt_scope_end:
    TsanFuncExit();
    switch (kind) {
      case ompt_sync_region_barrier_implementation:
      case ompt_sync_region_barrier_implicit:
      case ompt_sync_region_barrier_explicit:
      case ompt_sync_region_barrier: {
        if (hasReductionCallback < ompt_set_always) {
          // We want to track writes after the barrier again.
          Data->InBarrier = false;
          TsanIgnoreWritesEnd();
        }

        char BarrierIndex = Data->BarrierIndex;
        // Barrier will end after it has been entered by all threads.
        if (parallel_data)
          TsanHappensAfter(Data->Team->GetBarrierPtr(BarrierIndex));

        // It is not guaranteed that all threads have exited this barrier before
        // we enter the next one. So we will use a different address.
        // We are however guaranteed that this current barrier is finished
        // by the time we exit the next one. So we can then reuse the first
        // address.
        Data->BarrierIndex = (BarrierIndex + 1) % 2;
        break;
      }

      case ompt_sync_region_taskwait: {
        if (Data->execution > 1)
          TsanHappensAfter(Data->GetTaskwaitPtr());
        break;
      }

      case ompt_sync_region_taskgroup: {
        assert(Data->TaskGroup != nullptr &&
               "Should have at least one taskgroup!");

        TsanHappensAfter(Data->TaskGroup->GetPtr());

        // Delete this allocated taskgroup, all descendent task are finished by
        // now.
        Taskgroup *Parent = Data->TaskGroup->Parent;
        delete Data->TaskGroup;
        Data->TaskGroup = Parent;
        break;
      }

      default:
        break;
    }
    break;
  }
}

static void ompt_tsan_reduction(ompt_sync_region_t kind,
                                ompt_scope_endpoint_t endpoint,
                                ompt_data_t *parallel_data,
                                ompt_data_t *task_data,
                                const void *codeptr_ra) {
  switch (endpoint) {
  case ompt_scope_begin:
    switch (kind) {
      case ompt_sync_region_reduction:
        TsanIgnoreWritesBegin();
        break;
      default:
        break;
    }
    break;
  case ompt_scope_end:
    switch (kind) {
      case ompt_sync_region_reduction:
        TsanIgnoreWritesEnd();
        break;
      default:
        break;
    }
    break;
  }
}

/// OMPT event callbacks for handling tasks.

static void ompt_tsan_task_create(
    ompt_data_t *parent_task_data, /* id of parent task            */
    const ompt_frame_t *parent_frame, /* frame data for parent task   */
    ompt_data_t *new_task_data, /* id of created task           */
    int type, int has_dependences,
    const void *codeptr_ra) /* pointer to outlined function */
{
  TaskData *Data;
  assert(new_task_data->ptr == NULL &&
         "Task data should be initialized to NULL");
  if (type & ompt_task_initial) {
    ompt_data_t *parallel_data;
    int team_size = 1;
    ompt_get_parallel_info(0, &parallel_data, &team_size);
    ParallelData *PData = new ParallelData(nullptr);
    parallel_data->ptr = PData;

    Data = new TaskData(PData);
    new_task_data->ptr = Data;
  } else if (type & ompt_task_undeferred) {
    Data = new TaskData(ToTaskData(parent_task_data));
    new_task_data->ptr = Data;
    Data->Included = true;
  } else if (type & ompt_task_explicit || type & ompt_task_target) {
    Data = new TaskData(ToTaskData(parent_task_data));
    new_task_data->ptr = Data;

    // Use the newly created address. We cannot use a single address from the
    // parent because that would declare wrong relationships with other
    // sibling tasks that may be created before this task is started!
    TsanHappensBefore(Data->GetTaskPtr());
    ToTaskData(parent_task_data)->execution++;
  }
}

static void ompt_tsan_task_schedule(ompt_data_t *first_task_data,
                                    ompt_task_status_t prior_task_status,
                                    ompt_data_t *second_task_data) {
  TaskData *FromTask = ToTaskData(first_task_data);
  TaskData *ToTask = ToTaskData(second_task_data);

  if (ToTask->Included && prior_task_status != ompt_task_complete)
    return; // No further synchronization for begin included tasks
  if (FromTask->Included && prior_task_status == ompt_task_complete) {
    // Just delete the task:
    while (FromTask != nullptr && --FromTask->RefCount == 0) {
      TaskData *Parent = FromTask->Parent;
      if (FromTask->DependencyCount > 0) {
        delete[] FromTask->Dependencies;
      }
      delete FromTask;
      FromTask = Parent;
    }
    return;
  }

  if (ToTask->execution == 0) {
    ToTask->execution++;
    // 1. Task will begin execution after it has been created.
    TsanHappensAfter(ToTask->GetTaskPtr());
    for (unsigned i = 0; i < ToTask->DependencyCount; i++) {
      ompt_dependence_t *Dependency = &ToTask->Dependencies[i];

      TsanHappensAfter(Dependency->variable.ptr);
      // in and inout dependencies are also blocked by prior in dependencies!
      if (Dependency->dependence_type == ompt_dependence_type_out || Dependency->dependence_type == ompt_dependence_type_inout) {
        TsanHappensAfter(ToInAddr(Dependency->variable.ptr));
      }
    }
  } else {
    // 2. Task will resume after it has been switched away.
    TsanHappensAfter(ToTask->GetTaskPtr());
  }

  if (prior_task_status != ompt_task_complete) {
    ToTask->ImplicitTask = FromTask->ImplicitTask;
    assert(ToTask->ImplicitTask != NULL &&
           "A task belongs to a team and has an implicit task on the stack");
  }

  // Task may be resumed at a later point in time.
  TsanHappensBefore(FromTask->GetTaskPtr());

  if (hasReductionCallback < ompt_set_always && FromTask->InBarrier) {
    // We want to ignore writes in the runtime code during barriers,
    // but not when executing tasks with user code!
    TsanIgnoreWritesEnd();
  }

  if (prior_task_status == ompt_task_complete) { // task finished

    // Task will finish before a barrier in the surrounding parallel region ...
    ParallelData *PData = FromTask->Team;
    TsanHappensBefore(
        PData->GetBarrierPtr(FromTask->ImplicitTask->BarrierIndex));

    // ... and before an eventual taskwait by the parent thread.
    TsanHappensBefore(FromTask->Parent->GetTaskwaitPtr());

    if (FromTask->TaskGroup != nullptr) {
      // This task is part of a taskgroup, so it will finish before the
      // corresponding taskgroup_end.
      TsanHappensBefore(FromTask->TaskGroup->GetPtr());
    }
    for (unsigned i = 0; i < FromTask->DependencyCount; i++) {
      ompt_dependence_t *Dependency = &FromTask->Dependencies[i];

      // in dependencies block following inout and out dependencies!
      TsanHappensBefore(ToInAddr(Dependency->variable.ptr));
      if (Dependency->dependence_type == ompt_dependence_type_out || Dependency->dependence_type == ompt_dependence_type_inout) {
        TsanHappensBefore(Dependency->variable.ptr);
      }
    }
    while (FromTask != nullptr && --FromTask->RefCount == 0) {
      TaskData *Parent = FromTask->Parent;
      if (FromTask->DependencyCount > 0) {
        delete[] FromTask->Dependencies;
      }
      delete FromTask;
      FromTask = Parent;
    }
  }
  if (hasReductionCallback < ompt_set_always && ToTask->InBarrier) {
    // We re-enter runtime code which currently performs a barrier.
    TsanIgnoreWritesBegin();
  }
}

static void ompt_tsan_dependences(ompt_data_t *task_data,
                                  const ompt_dependence_t *deps,
                                  int ndeps) {
  if (ndeps > 0) {
    // Copy the data to use it in task_switch and task_end.
    TaskData *Data = ToTaskData(task_data);
    Data->Dependencies = new ompt_dependence_t[ndeps];
    std::memcpy(Data->Dependencies, deps,
                sizeof(ompt_dependence_t) * ndeps);
    Data->DependencyCount = ndeps;

    // This callback is executed before this task is first started.
    TsanHappensBefore(Data->GetTaskPtr());
  }
}

/// OMPT event callbacks for handling locking.
static void ompt_tsan_mutex_acquired(ompt_mutex_t kind,
                                     ompt_wait_id_t wait_id,
                                     const void *codeptr_ra) {

  // Acquire our own lock to make sure that
  // 1. the previous release has finished.
  // 2. the next acquire doesn't start before we have finished our release.
    LocksMutex.lock();
    std::mutex &Lock = Locks[wait_id];
    LocksMutex.unlock();

    Lock.lock();
    TsanHappensAfter(&Lock);
}

static void ompt_tsan_mutex_released(ompt_mutex_t kind,
                                     ompt_wait_id_t wait_id,
                                     const void *codeptr_ra) {
    LocksMutex.lock();
    std::mutex &Lock = Locks[wait_id];
    LocksMutex.unlock();
    TsanHappensBefore(&Lock);

    Lock.unlock();
}

// callback , signature , variable to store result , required support level
#define SET_OPTIONAL_CALLBACK_T(event, type, result, level)                             \
  do {                                                                                  \
    ompt_callback_##type##_t tsan_##event = &ompt_tsan_##event;                         \
    result = ompt_set_callback(ompt_callback_##event,                                   \
                                (ompt_callback_t)tsan_##event);                         \
    if (result < level)                                                                 \
      printf("Registered callback '" #event "' is not supported at " #level " (%i)\n",  \
             result);                                                                   \
  } while (0)

#define SET_CALLBACK_T(event, type)                              \
  do {                                                           \
    int res;                                                     \
    SET_OPTIONAL_CALLBACK_T(event, type, res, ompt_set_always);  \
  } while (0)

#define SET_CALLBACK(event) SET_CALLBACK_T(event, event)

static int ompt_tsan_initialize(ompt_function_lookup_t lookup,
                                int device_num,
                                ompt_data_t *tool_data) {
  const char *options = getenv("TSAN_OPTIONS");
  TsanFlags tsan_flags(options);

  ompt_set_callback_t ompt_set_callback =
      (ompt_set_callback_t)lookup("ompt_set_callback");
  if (ompt_set_callback == NULL) {
    std::cerr << "Could not set callback, exiting..." << std::endl;
    std::exit(1);
  }
  ompt_get_parallel_info =
      (ompt_get_parallel_info_t)lookup("ompt_get_parallel_info");
  ompt_get_thread_data = (ompt_get_thread_data_t)lookup("ompt_get_thread_data");

  if (ompt_get_parallel_info == NULL) {
    fprintf(stderr, "Could not get inquiry function 'ompt_get_parallel_info', "
                    "exiting...\n");
    exit(1);
  }

  SET_CALLBACK(thread_begin);
  SET_CALLBACK(thread_end);
  SET_CALLBACK(parallel_begin);
  SET_CALLBACK(implicit_task);
  SET_CALLBACK(sync_region);
  SET_CALLBACK(parallel_end);

  SET_CALLBACK(task_create);
  SET_CALLBACK(task_schedule);
  SET_CALLBACK(dependences);

  SET_CALLBACK_T(mutex_acquired, mutex);
  SET_CALLBACK_T(mutex_released, mutex);
  SET_OPTIONAL_CALLBACK_T(reduction, sync_region, hasReductionCallback, ompt_set_never);

  if (!tsan_flags.ignore_noninstrumented_modules)
    fprintf(
        stderr,
        "Warning: please export TSAN_OPTIONS='ignore_noninstrumented_modules=1' "
        "to avoid false positive reports from the OpenMP runtime.!\n");
  return 1; // success
}

static void ompt_tsan_finalize(ompt_data_t *tool_data) {
  if (archer_flags->print_max_rss) {
    struct rusage end;
    getrusage(RUSAGE_SELF, &end);
    printf("MAX RSS[KBytes] during execution: %ld\n", end.ru_maxrss);
  }

  if (archer_flags)
    delete archer_flags;
}

extern "C"
ompt_start_tool_result_t *ompt_start_tool(unsigned int omp_version,
                                          const char *runtime_version) {
  const char *options = getenv("ARCHER_OPTIONS");
  archer_flags = new ArcherFlags(options);
  if (!archer_flags->enabled)
  {
    if (archer_flags->verbose)
      std::cout << "Archer disabled, stopping operation"
                << std::endl;
    delete archer_flags;
    return NULL;
  }
  
  static ompt_start_tool_result_t ompt_start_tool_result = {
      &ompt_tsan_initialize, &ompt_tsan_finalize, {0}};
  runOnTsan=1;
  RunningOnValgrind();
  if (!runOnTsan) // if we are not running on TSAN, give a different tool the
    // chance to be loaded
  {
    if (archer_flags->verbose)
      std::cout << "Archer detected OpenMP application without TSan "
                   "stopping operation"
                << std::endl;
    delete archer_flags;
    return NULL;
  }

  if (archer_flags->verbose)
    std::cout << "Archer detected OpenMP application with TSan, supplying "
                 "OpenMP synchronization semantics"
              << std::endl;
  return &ompt_start_tool_result;
}