Function.cpp 56.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
//===- Function.cpp - Implement the Global object classes -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Function class for the IR library.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Function.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/IntrinsicsBPF.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/IR/IntrinsicsMips.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/IR/IntrinsicsS390.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/IntrinsicsXCore.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <string>

using namespace llvm;
using ProfileCount = Function::ProfileCount;

// Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class llvm::SymbolTableListTraits<BasicBlock>;

//===----------------------------------------------------------------------===//
// Argument Implementation
//===----------------------------------------------------------------------===//

Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
    : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
  setName(Name);
}

void Argument::setParent(Function *parent) {
  Parent = parent;
}

bool Argument::hasNonNullAttr() const {
  if (!getType()->isPointerTy()) return false;
  if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
    return true;
  else if (getDereferenceableBytes() > 0 &&
           !NullPointerIsDefined(getParent(),
                                 getType()->getPointerAddressSpace()))
    return true;
  return false;
}

bool Argument::hasByValAttr() const {
  if (!getType()->isPointerTy()) return false;
  return hasAttribute(Attribute::ByVal);
}

bool Argument::hasSwiftSelfAttr() const {
  return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
}

bool Argument::hasSwiftErrorAttr() const {
  return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
}

bool Argument::hasInAllocaAttr() const {
  if (!getType()->isPointerTy()) return false;
  return hasAttribute(Attribute::InAlloca);
}

bool Argument::hasByValOrInAllocaAttr() const {
  if (!getType()->isPointerTy()) return false;
  AttributeList Attrs = getParent()->getAttributes();
  return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
         Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
}

unsigned Argument::getParamAlignment() const {
  assert(getType()->isPointerTy() && "Only pointers have alignments");
  return getParent()->getParamAlignment(getArgNo());
}

MaybeAlign Argument::getParamAlign() const {
  assert(getType()->isPointerTy() && "Only pointers have alignments");
  return getParent()->getParamAlign(getArgNo());
}

Type *Argument::getParamByValType() const {
  assert(getType()->isPointerTy() && "Only pointers have byval types");
  return getParent()->getParamByValType(getArgNo());
}

uint64_t Argument::getDereferenceableBytes() const {
  assert(getType()->isPointerTy() &&
         "Only pointers have dereferenceable bytes");
  return getParent()->getParamDereferenceableBytes(getArgNo());
}

uint64_t Argument::getDereferenceableOrNullBytes() const {
  assert(getType()->isPointerTy() &&
         "Only pointers have dereferenceable bytes");
  return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
}

bool Argument::hasNestAttr() const {
  if (!getType()->isPointerTy()) return false;
  return hasAttribute(Attribute::Nest);
}

bool Argument::hasNoAliasAttr() const {
  if (!getType()->isPointerTy()) return false;
  return hasAttribute(Attribute::NoAlias);
}

bool Argument::hasNoCaptureAttr() const {
  if (!getType()->isPointerTy()) return false;
  return hasAttribute(Attribute::NoCapture);
}

bool Argument::hasStructRetAttr() const {
  if (!getType()->isPointerTy()) return false;
  return hasAttribute(Attribute::StructRet);
}

bool Argument::hasInRegAttr() const {
  return hasAttribute(Attribute::InReg);
}

bool Argument::hasReturnedAttr() const {
  return hasAttribute(Attribute::Returned);
}

bool Argument::hasZExtAttr() const {
  return hasAttribute(Attribute::ZExt);
}

bool Argument::hasSExtAttr() const {
  return hasAttribute(Attribute::SExt);
}

bool Argument::onlyReadsMemory() const {
  AttributeList Attrs = getParent()->getAttributes();
  return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
         Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
}

void Argument::addAttrs(AttrBuilder &B) {
  AttributeList AL = getParent()->getAttributes();
  AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
  getParent()->setAttributes(AL);
}

void Argument::addAttr(Attribute::AttrKind Kind) {
  getParent()->addParamAttr(getArgNo(), Kind);
}

void Argument::addAttr(Attribute Attr) {
  getParent()->addParamAttr(getArgNo(), Attr);
}

void Argument::removeAttr(Attribute::AttrKind Kind) {
  getParent()->removeParamAttr(getArgNo(), Kind);
}

bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
  return getParent()->hasParamAttribute(getArgNo(), Kind);
}

Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
  return getParent()->getParamAttribute(getArgNo(), Kind);
}

//===----------------------------------------------------------------------===//
// Helper Methods in Function
//===----------------------------------------------------------------------===//

LLVMContext &Function::getContext() const {
  return getType()->getContext();
}

unsigned Function::getInstructionCount() const {
  unsigned NumInstrs = 0;
  for (const BasicBlock &BB : BasicBlocks)
    NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
                               BB.instructionsWithoutDebug().end());
  return NumInstrs;
}

Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
                           const Twine &N, Module &M) {
  return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
}

void Function::removeFromParent() {
  getParent()->getFunctionList().remove(getIterator());
}

void Function::eraseFromParent() {
  getParent()->getFunctionList().erase(getIterator());
}

//===----------------------------------------------------------------------===//
// Function Implementation
//===----------------------------------------------------------------------===//

static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
  // If AS == -1 and we are passed a valid module pointer we place the function
  // in the program address space. Otherwise we default to AS0.
  if (AddrSpace == static_cast<unsigned>(-1))
    return M ? M->getDataLayout().getProgramAddressSpace() : 0;
  return AddrSpace;
}

Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
                   const Twine &name, Module *ParentModule)
    : GlobalObject(Ty, Value::FunctionVal,
                   OperandTraits<Function>::op_begin(this), 0, Linkage, name,
                   computeAddrSpace(AddrSpace, ParentModule)),
      NumArgs(Ty->getNumParams()) {
  assert(FunctionType::isValidReturnType(getReturnType()) &&
         "invalid return type");
  setGlobalObjectSubClassData(0);

  // We only need a symbol table for a function if the context keeps value names
  if (!getContext().shouldDiscardValueNames())
    SymTab = std::make_unique<ValueSymbolTable>();

  // If the function has arguments, mark them as lazily built.
  if (Ty->getNumParams())
    setValueSubclassData(1);   // Set the "has lazy arguments" bit.

  if (ParentModule)
    ParentModule->getFunctionList().push_back(this);

  HasLLVMReservedName = getName().startswith("llvm.");
  // Ensure intrinsics have the right parameter attributes.
  // Note, the IntID field will have been set in Value::setName if this function
  // name is a valid intrinsic ID.
  if (IntID)
    setAttributes(Intrinsic::getAttributes(getContext(), IntID));
}

Function::~Function() {
  dropAllReferences();    // After this it is safe to delete instructions.

  // Delete all of the method arguments and unlink from symbol table...
  if (Arguments)
    clearArguments();

  // Remove the function from the on-the-side GC table.
  clearGC();
}

void Function::BuildLazyArguments() const {
  // Create the arguments vector, all arguments start out unnamed.
  auto *FT = getFunctionType();
  if (NumArgs > 0) {
    Arguments = std::allocator<Argument>().allocate(NumArgs);
    for (unsigned i = 0, e = NumArgs; i != e; ++i) {
      Type *ArgTy = FT->getParamType(i);
      assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
      new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
    }
  }

  // Clear the lazy arguments bit.
  unsigned SDC = getSubclassDataFromValue();
  SDC &= ~(1 << 0);
  const_cast<Function*>(this)->setValueSubclassData(SDC);
  assert(!hasLazyArguments());
}

static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
  return MutableArrayRef<Argument>(Args, Count);
}

void Function::clearArguments() {
  for (Argument &A : makeArgArray(Arguments, NumArgs)) {
    A.setName("");
    A.~Argument();
  }
  std::allocator<Argument>().deallocate(Arguments, NumArgs);
  Arguments = nullptr;
}

void Function::stealArgumentListFrom(Function &Src) {
  assert(isDeclaration() && "Expected no references to current arguments");

  // Drop the current arguments, if any, and set the lazy argument bit.
  if (!hasLazyArguments()) {
    assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
                        [](const Argument &A) { return A.use_empty(); }) &&
           "Expected arguments to be unused in declaration");
    clearArguments();
    setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
  }

  // Nothing to steal if Src has lazy arguments.
  if (Src.hasLazyArguments())
    return;

  // Steal arguments from Src, and fix the lazy argument bits.
  assert(arg_size() == Src.arg_size());
  Arguments = Src.Arguments;
  Src.Arguments = nullptr;
  for (Argument &A : makeArgArray(Arguments, NumArgs)) {
    // FIXME: This does the work of transferNodesFromList inefficiently.
    SmallString<128> Name;
    if (A.hasName())
      Name = A.getName();
    if (!Name.empty())
      A.setName("");
    A.setParent(this);
    if (!Name.empty())
      A.setName(Name);
  }

  setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
  assert(!hasLazyArguments());
  Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
}

// dropAllReferences() - This function causes all the subinstructions to "let
// go" of all references that they are maintaining.  This allows one to
// 'delete' a whole class at a time, even though there may be circular
// references... first all references are dropped, and all use counts go to
// zero.  Then everything is deleted for real.  Note that no operations are
// valid on an object that has "dropped all references", except operator
// delete.
//
void Function::dropAllReferences() {
  setIsMaterializable(false);

  for (BasicBlock &BB : *this)
    BB.dropAllReferences();

  // Delete all basic blocks. They are now unused, except possibly by
  // blockaddresses, but BasicBlock's destructor takes care of those.
  while (!BasicBlocks.empty())
    BasicBlocks.begin()->eraseFromParent();

  // Drop uses of any optional data (real or placeholder).
  if (getNumOperands()) {
    User::dropAllReferences();
    setNumHungOffUseOperands(0);
    setValueSubclassData(getSubclassDataFromValue() & ~0xe);
  }

  // Metadata is stored in a side-table.
  clearMetadata();
}

void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
  AttributeList PAL = getAttributes();
  PAL = PAL.addAttribute(getContext(), i, Kind);
  setAttributes(PAL);
}

void Function::addAttribute(unsigned i, Attribute Attr) {
  AttributeList PAL = getAttributes();
  PAL = PAL.addAttribute(getContext(), i, Attr);
  setAttributes(PAL);
}

void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
  AttributeList PAL = getAttributes();
  PAL = PAL.addAttributes(getContext(), i, Attrs);
  setAttributes(PAL);
}

void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
  AttributeList PAL = getAttributes();
  PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
  setAttributes(PAL);
}

void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
  AttributeList PAL = getAttributes();
  PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
  setAttributes(PAL);
}

void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
  AttributeList PAL = getAttributes();
  PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
  setAttributes(PAL);
}

void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
  AttributeList PAL = getAttributes();
  PAL = PAL.removeAttribute(getContext(), i, Kind);
  setAttributes(PAL);
}

void Function::removeAttribute(unsigned i, StringRef Kind) {
  AttributeList PAL = getAttributes();
  PAL = PAL.removeAttribute(getContext(), i, Kind);
  setAttributes(PAL);
}

void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
  AttributeList PAL = getAttributes();
  PAL = PAL.removeAttributes(getContext(), i, Attrs);
  setAttributes(PAL);
}

void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
  AttributeList PAL = getAttributes();
  PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
  setAttributes(PAL);
}

void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
  AttributeList PAL = getAttributes();
  PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
  setAttributes(PAL);
}

void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
  AttributeList PAL = getAttributes();
  PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
  setAttributes(PAL);
}

void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
  AttributeList PAL = getAttributes();
  PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
  setAttributes(PAL);
}

void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
  AttributeList PAL = getAttributes();
  PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
  setAttributes(PAL);
}

void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
  AttributeList PAL = getAttributes();
  PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
  setAttributes(PAL);
}

void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
                                                 uint64_t Bytes) {
  AttributeList PAL = getAttributes();
  PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
  setAttributes(PAL);
}

const std::string &Function::getGC() const {
  assert(hasGC() && "Function has no collector");
  return getContext().getGC(*this);
}

void Function::setGC(std::string Str) {
  setValueSubclassDataBit(14, !Str.empty());
  getContext().setGC(*this, std::move(Str));
}

void Function::clearGC() {
  if (!hasGC())
    return;
  getContext().deleteGC(*this);
  setValueSubclassDataBit(14, false);
}

/// Copy all additional attributes (those not needed to create a Function) from
/// the Function Src to this one.
void Function::copyAttributesFrom(const Function *Src) {
  GlobalObject::copyAttributesFrom(Src);
  setCallingConv(Src->getCallingConv());
  setAttributes(Src->getAttributes());
  if (Src->hasGC())
    setGC(Src->getGC());
  else
    clearGC();
  if (Src->hasPersonalityFn())
    setPersonalityFn(Src->getPersonalityFn());
  if (Src->hasPrefixData())
    setPrefixData(Src->getPrefixData());
  if (Src->hasPrologueData())
    setPrologueData(Src->getPrologueData());
}

/// Table of string intrinsic names indexed by enum value.
static const char * const IntrinsicNameTable[] = {
  "not_intrinsic",
#define GET_INTRINSIC_NAME_TABLE
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_NAME_TABLE
};

/// Table of per-target intrinsic name tables.
#define GET_INTRINSIC_TARGET_DATA
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_TARGET_DATA

/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
/// target as \c Name, or the generic table if \c Name is not target specific.
///
/// Returns the relevant slice of \c IntrinsicNameTable
static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
  assert(Name.startswith("llvm."));

  ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
  // Drop "llvm." and take the first dotted component. That will be the target
  // if this is target specific.
  StringRef Target = Name.drop_front(5).split('.').first;
  auto It = partition_point(
      Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
  // We've either found the target or just fall back to the generic set, which
  // is always first.
  const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
  return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
}

/// This does the actual lookup of an intrinsic ID which
/// matches the given function name.
Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
  ArrayRef<const char *> NameTable = findTargetSubtable(Name);
  int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
  if (Idx == -1)
    return Intrinsic::not_intrinsic;

  // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
  // an index into a sub-table.
  int Adjust = NameTable.data() - IntrinsicNameTable;
  Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);

  // If the intrinsic is not overloaded, require an exact match. If it is
  // overloaded, require either exact or prefix match.
  const auto MatchSize = strlen(NameTable[Idx]);
  assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
  bool IsExactMatch = Name.size() == MatchSize;
  return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
                                                     : Intrinsic::not_intrinsic;
}

void Function::recalculateIntrinsicID() {
  StringRef Name = getName();
  if (!Name.startswith("llvm.")) {
    HasLLVMReservedName = false;
    IntID = Intrinsic::not_intrinsic;
    return;
  }
  HasLLVMReservedName = true;
  IntID = lookupIntrinsicID(Name);
}

/// Returns a stable mangling for the type specified for use in the name
/// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
/// of named types is simply their name.  Manglings for unnamed types consist
/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
/// combined with the mangling of their component types.  A vararg function
/// type will have a suffix of 'vararg'.  Since function types can contain
/// other function types, we close a function type mangling with suffix 'f'
/// which can't be confused with it's prefix.  This ensures we don't have
/// collisions between two unrelated function types. Otherwise, you might
/// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
///
static std::string getMangledTypeStr(Type* Ty) {
  std::string Result;
  if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
    Result += "p" + utostr(PTyp->getAddressSpace()) +
      getMangledTypeStr(PTyp->getElementType());
  } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
    Result += "a" + utostr(ATyp->getNumElements()) +
      getMangledTypeStr(ATyp->getElementType());
  } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
    if (!STyp->isLiteral()) {
      Result += "s_";
      Result += STyp->getName();
    } else {
      Result += "sl_";
      for (auto Elem : STyp->elements())
        Result += getMangledTypeStr(Elem);
    }
    // Ensure nested structs are distinguishable.
    Result += "s";
  } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
    Result += "f_" + getMangledTypeStr(FT->getReturnType());
    for (size_t i = 0; i < FT->getNumParams(); i++)
      Result += getMangledTypeStr(FT->getParamType(i));
    if (FT->isVarArg())
      Result += "vararg";
    // Ensure nested function types are distinguishable.
    Result += "f";
  } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
    if (VTy->isScalable())
      Result += "nx";
    Result += "v" + utostr(VTy->getVectorNumElements()) +
      getMangledTypeStr(VTy->getVectorElementType());
  } else if (Ty) {
    switch (Ty->getTypeID()) {
    default: llvm_unreachable("Unhandled type");
    case Type::VoidTyID:      Result += "isVoid";   break;
    case Type::MetadataTyID:  Result += "Metadata"; break;
    case Type::HalfTyID:      Result += "f16";      break;
    case Type::FloatTyID:     Result += "f32";      break;
    case Type::DoubleTyID:    Result += "f64";      break;
    case Type::X86_FP80TyID:  Result += "f80";      break;
    case Type::FP128TyID:     Result += "f128";     break;
    case Type::PPC_FP128TyID: Result += "ppcf128";  break;
    case Type::X86_MMXTyID:   Result += "x86mmx";   break;
    case Type::IntegerTyID:
      Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
      break;
    }
  }
  return Result;
}

StringRef Intrinsic::getName(ID id) {
  assert(id < num_intrinsics && "Invalid intrinsic ID!");
  assert(!Intrinsic::isOverloaded(id) &&
         "This version of getName does not support overloading");
  return IntrinsicNameTable[id];
}

std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
  assert(id < num_intrinsics && "Invalid intrinsic ID!");
  std::string Result(IntrinsicNameTable[id]);
  for (Type *Ty : Tys) {
    Result += "." + getMangledTypeStr(Ty);
  }
  return Result;
}

/// IIT_Info - These are enumerators that describe the entries returned by the
/// getIntrinsicInfoTableEntries function.
///
/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
enum IIT_Info {
  // Common values should be encoded with 0-15.
  IIT_Done = 0,
  IIT_I1   = 1,
  IIT_I8   = 2,
  IIT_I16  = 3,
  IIT_I32  = 4,
  IIT_I64  = 5,
  IIT_F16  = 6,
  IIT_F32  = 7,
  IIT_F64  = 8,
  IIT_V2   = 9,
  IIT_V4   = 10,
  IIT_V8   = 11,
  IIT_V16  = 12,
  IIT_V32  = 13,
  IIT_PTR  = 14,
  IIT_ARG  = 15,

  // Values from 16+ are only encodable with the inefficient encoding.
  IIT_V64  = 16,
  IIT_MMX  = 17,
  IIT_TOKEN = 18,
  IIT_METADATA = 19,
  IIT_EMPTYSTRUCT = 20,
  IIT_STRUCT2 = 21,
  IIT_STRUCT3 = 22,
  IIT_STRUCT4 = 23,
  IIT_STRUCT5 = 24,
  IIT_EXTEND_ARG = 25,
  IIT_TRUNC_ARG = 26,
  IIT_ANYPTR = 27,
  IIT_V1   = 28,
  IIT_VARARG = 29,
  IIT_HALF_VEC_ARG = 30,
  IIT_SAME_VEC_WIDTH_ARG = 31,
  IIT_PTR_TO_ARG = 32,
  IIT_PTR_TO_ELT = 33,
  IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
  IIT_I128 = 35,
  IIT_V512 = 36,
  IIT_V1024 = 37,
  IIT_STRUCT6 = 38,
  IIT_STRUCT7 = 39,
  IIT_STRUCT8 = 40,
  IIT_F128 = 41,
  IIT_VEC_ELEMENT = 42,
  IIT_SCALABLE_VEC = 43,
  IIT_SUBDIVIDE2_ARG = 44,
  IIT_SUBDIVIDE4_ARG = 45,
  IIT_VEC_OF_BITCASTS_TO_INT = 46
};

static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
                      SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
  using namespace Intrinsic;

  IIT_Info Info = IIT_Info(Infos[NextElt++]);
  unsigned StructElts = 2;

  switch (Info) {
  case IIT_Done:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
    return;
  case IIT_VARARG:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
    return;
  case IIT_MMX:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
    return;
  case IIT_TOKEN:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
    return;
  case IIT_METADATA:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
    return;
  case IIT_F16:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
    return;
  case IIT_F32:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
    return;
  case IIT_F64:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
    return;
  case IIT_F128:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
    return;
  case IIT_I1:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
    return;
  case IIT_I8:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
    return;
  case IIT_I16:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
    return;
  case IIT_I32:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
    return;
  case IIT_I64:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
    return;
  case IIT_I128:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
    return;
  case IIT_V1:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V2:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V4:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V8:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V16:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V32:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V64:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V512:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V1024:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_PTR:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
                                             Infos[NextElt++]));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  }
  case IIT_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
    return;
  }
  case IIT_EXTEND_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
                                             ArgInfo));
    return;
  }
  case IIT_TRUNC_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
                                             ArgInfo));
    return;
  }
  case IIT_HALF_VEC_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
                                             ArgInfo));
    return;
  }
  case IIT_SAME_VEC_WIDTH_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
                                             ArgInfo));
    return;
  }
  case IIT_PTR_TO_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
                                             ArgInfo));
    return;
  }
  case IIT_PTR_TO_ELT: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
    return;
  }
  case IIT_VEC_OF_ANYPTRS_TO_ELT: {
    unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(
        IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
    return;
  }
  case IIT_EMPTYSTRUCT:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
    return;
  case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
  case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
  case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
  case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
  case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
  case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
  case IIT_STRUCT2: {
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));

    for (unsigned i = 0; i != StructElts; ++i)
      DecodeIITType(NextElt, Infos, OutputTable);
    return;
  }
  case IIT_SUBDIVIDE2_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
                                             ArgInfo));
    return;
  }
  case IIT_SUBDIVIDE4_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
                                             ArgInfo));
    return;
  }
  case IIT_VEC_ELEMENT: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
                                             ArgInfo));
    return;
  }
  case IIT_SCALABLE_VEC: {
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument,
                                             0));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  }
  case IIT_VEC_OF_BITCASTS_TO_INT: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
                                             ArgInfo));
    return;
  }
  }
  llvm_unreachable("unhandled");
}

#define GET_INTRINSIC_GENERATOR_GLOBAL
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_GENERATOR_GLOBAL

void Intrinsic::getIntrinsicInfoTableEntries(ID id,
                                             SmallVectorImpl<IITDescriptor> &T){
  // Check to see if the intrinsic's type was expressible by the table.
  unsigned TableVal = IIT_Table[id-1];

  // Decode the TableVal into an array of IITValues.
  SmallVector<unsigned char, 8> IITValues;
  ArrayRef<unsigned char> IITEntries;
  unsigned NextElt = 0;
  if ((TableVal >> 31) != 0) {
    // This is an offset into the IIT_LongEncodingTable.
    IITEntries = IIT_LongEncodingTable;

    // Strip sentinel bit.
    NextElt = (TableVal << 1) >> 1;
  } else {
    // Decode the TableVal into an array of IITValues.  If the entry was encoded
    // into a single word in the table itself, decode it now.
    do {
      IITValues.push_back(TableVal & 0xF);
      TableVal >>= 4;
    } while (TableVal);

    IITEntries = IITValues;
    NextElt = 0;
  }

  // Okay, decode the table into the output vector of IITDescriptors.
  DecodeIITType(NextElt, IITEntries, T);
  while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
    DecodeIITType(NextElt, IITEntries, T);
}

static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
                             ArrayRef<Type*> Tys, LLVMContext &Context) {
  using namespace Intrinsic;

  IITDescriptor D = Infos.front();
  Infos = Infos.slice(1);

  switch (D.Kind) {
  case IITDescriptor::Void: return Type::getVoidTy(Context);
  case IITDescriptor::VarArg: return Type::getVoidTy(Context);
  case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
  case IITDescriptor::Token: return Type::getTokenTy(Context);
  case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
  case IITDescriptor::Half: return Type::getHalfTy(Context);
  case IITDescriptor::Float: return Type::getFloatTy(Context);
  case IITDescriptor::Double: return Type::getDoubleTy(Context);
  case IITDescriptor::Quad: return Type::getFP128Ty(Context);

  case IITDescriptor::Integer:
    return IntegerType::get(Context, D.Integer_Width);
  case IITDescriptor::Vector:
    return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
  case IITDescriptor::Pointer:
    return PointerType::get(DecodeFixedType(Infos, Tys, Context),
                            D.Pointer_AddressSpace);
  case IITDescriptor::Struct: {
    SmallVector<Type *, 8> Elts;
    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
      Elts.push_back(DecodeFixedType(Infos, Tys, Context));
    return StructType::get(Context, Elts);
  }
  case IITDescriptor::Argument:
    return Tys[D.getArgumentNumber()];
  case IITDescriptor::ExtendArgument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
      return VectorType::getExtendedElementVectorType(VTy);

    return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
  }
  case IITDescriptor::TruncArgument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
      return VectorType::getTruncatedElementVectorType(VTy);

    IntegerType *ITy = cast<IntegerType>(Ty);
    assert(ITy->getBitWidth() % 2 == 0);
    return IntegerType::get(Context, ITy->getBitWidth() / 2);
  }
  case IITDescriptor::Subdivide2Argument:
  case IITDescriptor::Subdivide4Argument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    VectorType *VTy = dyn_cast<VectorType>(Ty);
    assert(VTy && "Expected an argument of Vector Type");
    int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
    return VectorType::getSubdividedVectorType(VTy, SubDivs);
  }
  case IITDescriptor::HalfVecArgument:
    return VectorType::getHalfElementsVectorType(cast<VectorType>(
                                                  Tys[D.getArgumentNumber()]));
  case IITDescriptor::SameVecWidthArgument: {
    Type *EltTy = DecodeFixedType(Infos, Tys, Context);
    Type *Ty = Tys[D.getArgumentNumber()];
    if (auto *VTy = dyn_cast<VectorType>(Ty))
      return VectorType::get(EltTy, VTy->getElementCount());
    return EltTy;
  }
  case IITDescriptor::PtrToArgument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    return PointerType::getUnqual(Ty);
  }
  case IITDescriptor::PtrToElt: {
    Type *Ty = Tys[D.getArgumentNumber()];
    VectorType *VTy = dyn_cast<VectorType>(Ty);
    if (!VTy)
      llvm_unreachable("Expected an argument of Vector Type");
    Type *EltTy = VTy->getVectorElementType();
    return PointerType::getUnqual(EltTy);
  }
  case IITDescriptor::VecElementArgument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
      return VTy->getElementType();
    llvm_unreachable("Expected an argument of Vector Type");
  }
  case IITDescriptor::VecOfBitcastsToInt: {
    Type *Ty = Tys[D.getArgumentNumber()];
    VectorType *VTy = dyn_cast<VectorType>(Ty);
    assert(VTy && "Expected an argument of Vector Type");
    return VectorType::getInteger(VTy);
  }
  case IITDescriptor::VecOfAnyPtrsToElt:
    // Return the overloaded type (which determines the pointers address space)
    return Tys[D.getOverloadArgNumber()];
  case IITDescriptor::ScalableVecArgument: {
    Type *Ty = DecodeFixedType(Infos, Tys, Context);
    return VectorType::get(Ty->getVectorElementType(),
                           { Ty->getVectorNumElements(), true });
  }
  }
  llvm_unreachable("unhandled");
}

FunctionType *Intrinsic::getType(LLVMContext &Context,
                                 ID id, ArrayRef<Type*> Tys) {
  SmallVector<IITDescriptor, 8> Table;
  getIntrinsicInfoTableEntries(id, Table);

  ArrayRef<IITDescriptor> TableRef = Table;
  Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);

  SmallVector<Type*, 8> ArgTys;
  while (!TableRef.empty())
    ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));

  // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
  // If we see void type as the type of the last argument, it is vararg intrinsic
  if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
    ArgTys.pop_back();
    return FunctionType::get(ResultTy, ArgTys, true);
  }
  return FunctionType::get(ResultTy, ArgTys, false);
}

bool Intrinsic::isOverloaded(ID id) {
#define GET_INTRINSIC_OVERLOAD_TABLE
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_OVERLOAD_TABLE
}

bool Intrinsic::isLeaf(ID id) {
  switch (id) {
  default:
    return true;

  case Intrinsic::experimental_gc_statepoint:
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    return false;
  }
}

/// This defines the "Intrinsic::getAttributes(ID id)" method.
#define GET_INTRINSIC_ATTRIBUTES
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_ATTRIBUTES

Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
  // There can never be multiple globals with the same name of different types,
  // because intrinsics must be a specific type.
  return cast<Function>(
      M->getOrInsertFunction(getName(id, Tys),
                             getType(M->getContext(), id, Tys))
          .getCallee());
}

// This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN

// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN

using DeferredIntrinsicMatchPair =
    std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;

static bool matchIntrinsicType(
    Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
    SmallVectorImpl<Type *> &ArgTys,
    SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
    bool IsDeferredCheck) {
  using namespace Intrinsic;

  // If we ran out of descriptors, there are too many arguments.
  if (Infos.empty()) return true;

  // Do this before slicing off the 'front' part
  auto InfosRef = Infos;
  auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
    DeferredChecks.emplace_back(T, InfosRef);
    return false;
  };

  IITDescriptor D = Infos.front();
  Infos = Infos.slice(1);

  switch (D.Kind) {
    case IITDescriptor::Void: return !Ty->isVoidTy();
    case IITDescriptor::VarArg: return true;
    case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
    case IITDescriptor::Token: return !Ty->isTokenTy();
    case IITDescriptor::Metadata: return !Ty->isMetadataTy();
    case IITDescriptor::Half: return !Ty->isHalfTy();
    case IITDescriptor::Float: return !Ty->isFloatTy();
    case IITDescriptor::Double: return !Ty->isDoubleTy();
    case IITDescriptor::Quad: return !Ty->isFP128Ty();
    case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
    case IITDescriptor::Vector: {
      VectorType *VT = dyn_cast<VectorType>(Ty);
      return !VT || VT->getNumElements() != D.Vector_Width ||
             matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
                                DeferredChecks, IsDeferredCheck);
    }
    case IITDescriptor::Pointer: {
      PointerType *PT = dyn_cast<PointerType>(Ty);
      return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
             matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
                                DeferredChecks, IsDeferredCheck);
    }

    case IITDescriptor::Struct: {
      StructType *ST = dyn_cast<StructType>(Ty);
      if (!ST || ST->getNumElements() != D.Struct_NumElements)
        return true;

      for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
        if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
                               DeferredChecks, IsDeferredCheck))
          return true;
      return false;
    }

    case IITDescriptor::Argument:
      // If this is the second occurrence of an argument,
      // verify that the later instance matches the previous instance.
      if (D.getArgumentNumber() < ArgTys.size())
        return Ty != ArgTys[D.getArgumentNumber()];

      if (D.getArgumentNumber() > ArgTys.size() ||
          D.getArgumentKind() == IITDescriptor::AK_MatchType)
        return IsDeferredCheck || DeferCheck(Ty);

      assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
             "Table consistency error");
      ArgTys.push_back(Ty);

      switch (D.getArgumentKind()) {
        case IITDescriptor::AK_Any:        return false; // Success
        case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
        case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
        case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
        case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
        default:                           break;
      }
      llvm_unreachable("all argument kinds not covered");

    case IITDescriptor::ExtendArgument: {
      // If this is a forward reference, defer the check for later.
      if (D.getArgumentNumber() >= ArgTys.size())
        return IsDeferredCheck || DeferCheck(Ty);

      Type *NewTy = ArgTys[D.getArgumentNumber()];
      if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
        NewTy = VectorType::getExtendedElementVectorType(VTy);
      else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
        NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
      else
        return true;

      return Ty != NewTy;
    }
    case IITDescriptor::TruncArgument: {
      // If this is a forward reference, defer the check for later.
      if (D.getArgumentNumber() >= ArgTys.size())
        return IsDeferredCheck || DeferCheck(Ty);

      Type *NewTy = ArgTys[D.getArgumentNumber()];
      if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
        NewTy = VectorType::getTruncatedElementVectorType(VTy);
      else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
        NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
      else
        return true;

      return Ty != NewTy;
    }
    case IITDescriptor::HalfVecArgument:
      // If this is a forward reference, defer the check for later.
      if (D.getArgumentNumber() >= ArgTys.size())
        return IsDeferredCheck || DeferCheck(Ty);
      return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
             VectorType::getHalfElementsVectorType(
                     cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
    case IITDescriptor::SameVecWidthArgument: {
      if (D.getArgumentNumber() >= ArgTys.size()) {
        // Defer check and subsequent check for the vector element type.
        Infos = Infos.slice(1);
        return IsDeferredCheck || DeferCheck(Ty);
      }
      auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
      auto *ThisArgType = dyn_cast<VectorType>(Ty);
      // Both must be vectors of the same number of elements or neither.
      if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
        return true;
      Type *EltTy = Ty;
      if (ThisArgType) {
        if (ReferenceType->getElementCount() !=
            ThisArgType->getElementCount())
          return true;
        EltTy = ThisArgType->getVectorElementType();
      }
      return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
                                IsDeferredCheck);
    }
    case IITDescriptor::PtrToArgument: {
      if (D.getArgumentNumber() >= ArgTys.size())
        return IsDeferredCheck || DeferCheck(Ty);
      Type * ReferenceType = ArgTys[D.getArgumentNumber()];
      PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
      return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
    }
    case IITDescriptor::PtrToElt: {
      if (D.getArgumentNumber() >= ArgTys.size())
        return IsDeferredCheck || DeferCheck(Ty);
      VectorType * ReferenceType =
        dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
      PointerType *ThisArgType = dyn_cast<PointerType>(Ty);

      return (!ThisArgType || !ReferenceType ||
              ThisArgType->getElementType() != ReferenceType->getElementType());
    }
    case IITDescriptor::VecOfAnyPtrsToElt: {
      unsigned RefArgNumber = D.getRefArgNumber();
      if (RefArgNumber >= ArgTys.size()) {
        if (IsDeferredCheck)
          return true;
        // If forward referencing, already add the pointer-vector type and
        // defer the checks for later.
        ArgTys.push_back(Ty);
        return DeferCheck(Ty);
      }

      if (!IsDeferredCheck){
        assert(D.getOverloadArgNumber() == ArgTys.size() &&
               "Table consistency error");
        ArgTys.push_back(Ty);
      }

      // Verify the overloaded type "matches" the Ref type.
      // i.e. Ty is a vector with the same width as Ref.
      // Composed of pointers to the same element type as Ref.
      VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
      VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
      if (!ThisArgVecTy || !ReferenceType ||
          (ReferenceType->getVectorNumElements() !=
           ThisArgVecTy->getVectorNumElements()))
        return true;
      PointerType *ThisArgEltTy =
              dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
      if (!ThisArgEltTy)
        return true;
      return ThisArgEltTy->getElementType() !=
             ReferenceType->getVectorElementType();
    }
    case IITDescriptor::VecElementArgument: {
      if (D.getArgumentNumber() >= ArgTys.size())
        return IsDeferredCheck ? true : DeferCheck(Ty);
      auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
      return !ReferenceType || Ty != ReferenceType->getElementType();
    }
    case IITDescriptor::Subdivide2Argument:
    case IITDescriptor::Subdivide4Argument: {
      // If this is a forward reference, defer the check for later.
      if (D.getArgumentNumber() >= ArgTys.size())
        return IsDeferredCheck || DeferCheck(Ty);

      Type *NewTy = ArgTys[D.getArgumentNumber()];
      if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
        int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
        NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
        return Ty != NewTy;
      }
      return true;
    }
    case IITDescriptor::ScalableVecArgument: {
      VectorType *VTy = dyn_cast<VectorType>(Ty);
      if (!VTy || !VTy->isScalable())
        return true;
      return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks,
                                IsDeferredCheck);
    }
    case IITDescriptor::VecOfBitcastsToInt: {
      if (D.getArgumentNumber() >= ArgTys.size())
        return IsDeferredCheck || DeferCheck(Ty);
      auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
      auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
      if (!ThisArgVecTy || !ReferenceType)
        return true;
      return ThisArgVecTy != VectorType::getInteger(ReferenceType);
    }
  }
  llvm_unreachable("unhandled");
}

Intrinsic::MatchIntrinsicTypesResult
Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
                                   SmallVectorImpl<Type *> &ArgTys) {
  SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
  if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
                         false))
    return MatchIntrinsicTypes_NoMatchRet;

  unsigned NumDeferredReturnChecks = DeferredChecks.size();

  for (auto Ty : FTy->params())
    if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
      return MatchIntrinsicTypes_NoMatchArg;

  for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
    DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
    if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
                           true))
      return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
                                         : MatchIntrinsicTypes_NoMatchArg;
  }

  return MatchIntrinsicTypes_Match;
}

bool
Intrinsic::matchIntrinsicVarArg(bool isVarArg,
                                ArrayRef<Intrinsic::IITDescriptor> &Infos) {
  // If there are no descriptors left, then it can't be a vararg.
  if (Infos.empty())
    return isVarArg;

  // There should be only one descriptor remaining at this point.
  if (Infos.size() != 1)
    return true;

  // Check and verify the descriptor.
  IITDescriptor D = Infos.front();
  Infos = Infos.slice(1);
  if (D.Kind == IITDescriptor::VarArg)
    return !isVarArg;

  return true;
}

Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
  Intrinsic::ID ID = F->getIntrinsicID();
  if (!ID)
    return None;

  FunctionType *FTy = F->getFunctionType();
  // Accumulate an array of overloaded types for the given intrinsic
  SmallVector<Type *, 4> ArgTys;
  {
    SmallVector<Intrinsic::IITDescriptor, 8> Table;
    getIntrinsicInfoTableEntries(ID, Table);
    ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;

    if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
      return None;
    if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
      return None;
  }

  StringRef Name = F->getName();
  if (Name == Intrinsic::getName(ID, ArgTys))
    return None;

  auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
  NewDecl->setCallingConv(F->getCallingConv());
  assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
  return NewDecl;
}

/// hasAddressTaken - returns true if there are any uses of this function
/// other than direct calls or invokes to it.
bool Function::hasAddressTaken(const User* *PutOffender) const {
  for (const Use &U : uses()) {
    const User *FU = U.getUser();
    if (isa<BlockAddress>(FU))
      continue;
    const auto *Call = dyn_cast<CallBase>(FU);
    if (!Call) {
      if (PutOffender)
        *PutOffender = FU;
      return true;
    }
    if (!Call->isCallee(&U)) {
      if (PutOffender)
        *PutOffender = FU;
      return true;
    }
  }
  return false;
}

bool Function::isDefTriviallyDead() const {
  // Check the linkage
  if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
      !hasAvailableExternallyLinkage())
    return false;

  // Check if the function is used by anything other than a blockaddress.
  for (const User *U : users())
    if (!isa<BlockAddress>(U))
      return false;

  return true;
}

/// callsFunctionThatReturnsTwice - Return true if the function has a call to
/// setjmp or other function that gcc recognizes as "returning twice".
bool Function::callsFunctionThatReturnsTwice() const {
  for (const Instruction &I : instructions(this))
    if (const auto *Call = dyn_cast<CallBase>(&I))
      if (Call->hasFnAttr(Attribute::ReturnsTwice))
        return true;

  return false;
}

Constant *Function::getPersonalityFn() const {
  assert(hasPersonalityFn() && getNumOperands());
  return cast<Constant>(Op<0>());
}

void Function::setPersonalityFn(Constant *Fn) {
  setHungoffOperand<0>(Fn);
  setValueSubclassDataBit(3, Fn != nullptr);
}

Constant *Function::getPrefixData() const {
  assert(hasPrefixData() && getNumOperands());
  return cast<Constant>(Op<1>());
}

void Function::setPrefixData(Constant *PrefixData) {
  setHungoffOperand<1>(PrefixData);
  setValueSubclassDataBit(1, PrefixData != nullptr);
}

Constant *Function::getPrologueData() const {
  assert(hasPrologueData() && getNumOperands());
  return cast<Constant>(Op<2>());
}

void Function::setPrologueData(Constant *PrologueData) {
  setHungoffOperand<2>(PrologueData);
  setValueSubclassDataBit(2, PrologueData != nullptr);
}

void Function::allocHungoffUselist() {
  // If we've already allocated a uselist, stop here.
  if (getNumOperands())
    return;

  allocHungoffUses(3, /*IsPhi=*/ false);
  setNumHungOffUseOperands(3);

  // Initialize the uselist with placeholder operands to allow traversal.
  auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
  Op<0>().set(CPN);
  Op<1>().set(CPN);
  Op<2>().set(CPN);
}

template <int Idx>
void Function::setHungoffOperand(Constant *C) {
  if (C) {
    allocHungoffUselist();
    Op<Idx>().set(C);
  } else if (getNumOperands()) {
    Op<Idx>().set(
        ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
  }
}

void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
  assert(Bit < 16 && "SubclassData contains only 16 bits");
  if (On)
    setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
  else
    setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
}

void Function::setEntryCount(ProfileCount Count,
                             const DenseSet<GlobalValue::GUID> *S) {
  assert(Count.hasValue());
#if !defined(NDEBUG)
  auto PrevCount = getEntryCount();
  assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
#endif

  auto ImportGUIDs = getImportGUIDs();
  if (S == nullptr && ImportGUIDs.size())
    S = &ImportGUIDs;

  MDBuilder MDB(getContext());
  setMetadata(
      LLVMContext::MD_prof,
      MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
}

void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
                             const DenseSet<GlobalValue::GUID> *Imports) {
  setEntryCount(ProfileCount(Count, Type), Imports);
}

ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
  MDNode *MD = getMetadata(LLVMContext::MD_prof);
  if (MD && MD->getOperand(0))
    if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
      if (MDS->getString().equals("function_entry_count")) {
        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
        uint64_t Count = CI->getValue().getZExtValue();
        // A value of -1 is used for SamplePGO when there were no samples.
        // Treat this the same as unknown.
        if (Count == (uint64_t)-1)
          return ProfileCount::getInvalid();
        return ProfileCount(Count, PCT_Real);
      } else if (AllowSynthetic &&
                 MDS->getString().equals("synthetic_function_entry_count")) {
        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
        uint64_t Count = CI->getValue().getZExtValue();
        return ProfileCount(Count, PCT_Synthetic);
      }
    }
  return ProfileCount::getInvalid();
}

DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
  DenseSet<GlobalValue::GUID> R;
  if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
    if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
      if (MDS->getString().equals("function_entry_count"))
        for (unsigned i = 2; i < MD->getNumOperands(); i++)
          R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
                       ->getValue()
                       .getZExtValue());
  return R;
}

void Function::setSectionPrefix(StringRef Prefix) {
  MDBuilder MDB(getContext());
  setMetadata(LLVMContext::MD_section_prefix,
              MDB.createFunctionSectionPrefix(Prefix));
}

Optional<StringRef> Function::getSectionPrefix() const {
  if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
    assert(cast<MDString>(MD->getOperand(0))
               ->getString()
               .equals("function_section_prefix") &&
           "Metadata not match");
    return cast<MDString>(MD->getOperand(1))->getString();
  }
  return None;
}

bool Function::nullPointerIsDefined() const {
  return getFnAttribute("null-pointer-is-valid")
          .getValueAsString()
          .equals("true");
}

bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
  if (F && F->nullPointerIsDefined())
    return true;

  if (AS != 0)
    return true;

  return false;
}