ARMAddressingModes.h 25.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM addressing mode implementation stuff.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>

namespace llvm {

/// ARM_AM - ARM Addressing Mode Stuff
namespace ARM_AM {
  enum ShiftOpc {
    no_shift = 0,
    asr,
    lsl,
    lsr,
    ror,
    rrx,
    uxtw
  };

  enum AddrOpc {
    sub = 0,
    add
  };

  inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }

  inline const char *getShiftOpcStr(ShiftOpc Op) {
    switch (Op) {
    default: llvm_unreachable("Unknown shift opc!");
    case ARM_AM::asr: return "asr";
    case ARM_AM::lsl: return "lsl";
    case ARM_AM::lsr: return "lsr";
    case ARM_AM::ror: return "ror";
    case ARM_AM::rrx: return "rrx";
    case ARM_AM::uxtw: return "uxtw";
    }
  }

  inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
    switch (Op) {
    default: llvm_unreachable("Unknown shift opc!");
    case ARM_AM::asr: return 2;
    case ARM_AM::lsl: return 0;
    case ARM_AM::lsr: return 1;
    case ARM_AM::ror: return 3;
    }
  }

  enum AMSubMode {
    bad_am_submode = 0,
    ia,
    ib,
    da,
    db
  };

  inline const char *getAMSubModeStr(AMSubMode Mode) {
    switch (Mode) {
    default: llvm_unreachable("Unknown addressing sub-mode!");
    case ARM_AM::ia: return "ia";
    case ARM_AM::ib: return "ib";
    case ARM_AM::da: return "da";
    case ARM_AM::db: return "db";
    }
  }

  /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
  ///
  inline unsigned rotr32(unsigned Val, unsigned Amt) {
    assert(Amt < 32 && "Invalid rotate amount");
    return (Val >> Amt) | (Val << ((32-Amt)&31));
  }

  /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
  ///
  inline unsigned rotl32(unsigned Val, unsigned Amt) {
    assert(Amt < 32 && "Invalid rotate amount");
    return (Val << Amt) | (Val >> ((32-Amt)&31));
  }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #1: shift_operand with registers
  //===--------------------------------------------------------------------===//
  //
  // This 'addressing mode' is used for arithmetic instructions.  It can
  // represent things like:
  //   reg
  //   reg [asr|lsl|lsr|ror|rrx] reg
  //   reg [asr|lsl|lsr|ror|rrx] imm
  //
  // This is stored three operands [rega, regb, opc].  The first is the base
  // reg, the second is the shift amount (or reg0 if not present or imm).  The
  // third operand encodes the shift opcode and the imm if a reg isn't present.
  //
  inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
    return ShOp | (Imm << 3);
  }
  inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
  inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }

  /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
  /// the 8-bit imm value.
  inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
  /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
  /// the rotate amount.
  inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }

  /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
  /// computing the rotate amount to use.  If this immediate value cannot be
  /// handled with a single shifter-op, determine a good rotate amount that will
  /// take a maximal chunk of bits out of the immediate.
  inline unsigned getSOImmValRotate(unsigned Imm) {
    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
    // of zero.
    if ((Imm & ~255U) == 0) return 0;

    // Use CTZ to compute the rotate amount.
    unsigned TZ = countTrailingZeros(Imm);

    // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
    // not 9.
    unsigned RotAmt = TZ & ~1;

    // If we can handle this spread, return it.
    if ((rotr32(Imm, RotAmt) & ~255U) == 0)
      return (32-RotAmt)&31;  // HW rotates right, not left.

    // For values like 0xF000000F, we should ignore the low 6 bits, then
    // retry the hunt.
    if (Imm & 63U) {
      unsigned TZ2 = countTrailingZeros(Imm & ~63U);
      unsigned RotAmt2 = TZ2 & ~1;
      if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
        return (32-RotAmt2)&31;  // HW rotates right, not left.
    }

    // Otherwise, we have no way to cover this span of bits with a single
    // shifter_op immediate.  Return a chunk of bits that will be useful to
    // handle.
    return (32-RotAmt)&31;  // HW rotates right, not left.
  }

  /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
  /// into an shifter_operand immediate operand, return the 12-bit encoding for
  /// it.  If not, return -1.
  inline int getSOImmVal(unsigned Arg) {
    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
    // of zero.
    if ((Arg & ~255U) == 0) return Arg;

    unsigned RotAmt = getSOImmValRotate(Arg);

    // If this cannot be handled with a single shifter_op, bail out.
    if (rotr32(~255U, RotAmt) & Arg)
      return -1;

    // Encode this correctly.
    return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
  }

  /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
  /// or'ing together two SOImmVal's.
  inline bool isSOImmTwoPartVal(unsigned V) {
    // If this can be handled with a single shifter_op, bail out.
    V = rotr32(~255U, getSOImmValRotate(V)) & V;
    if (V == 0)
      return false;

    // If this can be handled with two shifter_op's, accept.
    V = rotr32(~255U, getSOImmValRotate(V)) & V;
    return V == 0;
  }

  /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
  /// return the first chunk of it.
  inline unsigned getSOImmTwoPartFirst(unsigned V) {
    return rotr32(255U, getSOImmValRotate(V)) & V;
  }

  /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
  /// return the second chunk of it.
  inline unsigned getSOImmTwoPartSecond(unsigned V) {
    // Mask out the first hunk.
    V = rotr32(~255U, getSOImmValRotate(V)) & V;

    // Take what's left.
    assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
    return V;
  }

  /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
  /// by a left shift. Returns the shift amount to use.
  inline unsigned getThumbImmValShift(unsigned Imm) {
    // 8-bit (or less) immediates are trivially immediate operand with a shift
    // of zero.
    if ((Imm & ~255U) == 0) return 0;

    // Use CTZ to compute the shift amount.
    return countTrailingZeros(Imm);
  }

  /// isThumbImmShiftedVal - Return true if the specified value can be obtained
  /// by left shifting a 8-bit immediate.
  inline bool isThumbImmShiftedVal(unsigned V) {
    // If this can be handled with
    V = (~255U << getThumbImmValShift(V)) & V;
    return V == 0;
  }

  /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
  /// by a left shift. Returns the shift amount to use.
  inline unsigned getThumbImm16ValShift(unsigned Imm) {
    // 16-bit (or less) immediates are trivially immediate operand with a shift
    // of zero.
    if ((Imm & ~65535U) == 0) return 0;

    // Use CTZ to compute the shift amount.
    return countTrailingZeros(Imm);
  }

  /// isThumbImm16ShiftedVal - Return true if the specified value can be
  /// obtained by left shifting a 16-bit immediate.
  inline bool isThumbImm16ShiftedVal(unsigned V) {
    // If this can be handled with
    V = (~65535U << getThumbImm16ValShift(V)) & V;
    return V == 0;
  }

  /// getThumbImmNonShiftedVal - If V is a value that satisfies
  /// isThumbImmShiftedVal, return the non-shiftd value.
  inline unsigned getThumbImmNonShiftedVal(unsigned V) {
    return V >> getThumbImmValShift(V);
  }


  /// getT2SOImmValSplat - Return the 12-bit encoded representation
  /// if the specified value can be obtained by splatting the low 8 bits
  /// into every other byte or every byte of a 32-bit value. i.e.,
  ///     00000000 00000000 00000000 abcdefgh    control = 0
  ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
  ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
  ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
  /// Return -1 if none of the above apply.
  /// See ARM Reference Manual A6.3.2.
  inline int getT2SOImmValSplatVal(unsigned V) {
    unsigned u, Vs, Imm;
    // control = 0
    if ((V & 0xffffff00) == 0)
      return V;

    // If the value is zeroes in the first byte, just shift those off
    Vs = ((V & 0xff) == 0) ? V >> 8 : V;
    // Any passing value only has 8 bits of payload, splatted across the word
    Imm = Vs & 0xff;
    // Likewise, any passing values have the payload splatted into the 3rd byte
    u = Imm | (Imm << 16);

    // control = 1 or 2
    if (Vs == u)
      return (((Vs == V) ? 1 : 2) << 8) | Imm;

    // control = 3
    if (Vs == (u | (u << 8)))
      return (3 << 8) | Imm;

    return -1;
  }

  /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
  /// specified value is a rotated 8-bit value. Return -1 if no rotation
  /// encoding is possible.
  /// See ARM Reference Manual A6.3.2.
  inline int getT2SOImmValRotateVal(unsigned V) {
    unsigned RotAmt = countLeadingZeros(V);
    if (RotAmt >= 24)
      return -1;

    // If 'Arg' can be handled with a single shifter_op return the value.
    if ((rotr32(0xff000000U, RotAmt) & V) == V)
      return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);

    return -1;
  }

  /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
  /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
  /// encoding for it.  If not, return -1.
  /// See ARM Reference Manual A6.3.2.
  inline int getT2SOImmVal(unsigned Arg) {
    // If 'Arg' is an 8-bit splat, then get the encoded value.
    int Splat = getT2SOImmValSplatVal(Arg);
    if (Splat != -1)
      return Splat;

    // If 'Arg' can be handled with a single shifter_op return the value.
    int Rot = getT2SOImmValRotateVal(Arg);
    if (Rot != -1)
      return Rot;

    return -1;
  }

  inline unsigned getT2SOImmValRotate(unsigned V) {
    if ((V & ~255U) == 0) return 0;
    // Use CTZ to compute the rotate amount.
    unsigned RotAmt = countTrailingZeros(V);
    return (32 - RotAmt) & 31;
  }

  inline bool isT2SOImmTwoPartVal(unsigned Imm) {
    unsigned V = Imm;
    // Passing values can be any combination of splat values and shifter
    // values. If this can be handled with a single shifter or splat, bail
    // out. Those should be handled directly, not with a two-part val.
    if (getT2SOImmValSplatVal(V) != -1)
      return false;
    V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
    if (V == 0)
      return false;

    // If this can be handled as an immediate, accept.
    if (getT2SOImmVal(V) != -1) return true;

    // Likewise, try masking out a splat value first.
    V = Imm;
    if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
      V &= ~0xff00ff00U;
    else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
      V &= ~0x00ff00ffU;
    // If what's left can be handled as an immediate, accept.
    if (getT2SOImmVal(V) != -1) return true;

    // Otherwise, do not accept.
    return false;
  }

  inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
    assert (isT2SOImmTwoPartVal(Imm) &&
            "Immedate cannot be encoded as two part immediate!");
    // Try a shifter operand as one part
    unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
    // If the rest is encodable as an immediate, then return it.
    if (getT2SOImmVal(V) != -1) return V;

    // Try masking out a splat value first.
    if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
      return Imm & 0xff00ff00U;

    // The other splat is all that's left as an option.
    assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
    return Imm & 0x00ff00ffU;
  }

  inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
    // Mask out the first hunk
    Imm ^= getT2SOImmTwoPartFirst(Imm);
    // Return what's left
    assert (getT2SOImmVal(Imm) != -1 &&
            "Unable to encode second part of T2 two part SO immediate");
    return Imm;
  }


  //===--------------------------------------------------------------------===//
  // Addressing Mode #2
  //===--------------------------------------------------------------------===//
  //
  // This is used for most simple load/store instructions.
  //
  // addrmode2 := reg +/- reg shop imm
  // addrmode2 := reg +/- imm12
  //
  // The first operand is always a Reg.  The second operand is a reg if in
  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
  // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
  // fourth operand 16-17 encodes the index mode.
  //
  // If this addressing mode is a frame index (before prolog/epilog insertion
  // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
  // with no shift amount for the frame offset.
  //
  inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
                            unsigned IdxMode = 0) {
    assert(Imm12 < (1 << 12) && "Imm too large!");
    bool isSub = Opc == sub;
    return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
  }
  inline unsigned getAM2Offset(unsigned AM2Opc) {
    return AM2Opc & ((1 << 12)-1);
  }
  inline AddrOpc getAM2Op(unsigned AM2Opc) {
    return ((AM2Opc >> 12) & 1) ? sub : add;
  }
  inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
    return (ShiftOpc)((AM2Opc >> 13) & 7);
  }
  inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #3
  //===--------------------------------------------------------------------===//
  //
  // This is used for sign-extending loads, and load/store-pair instructions.
  //
  // addrmode3 := reg +/- reg
  // addrmode3 := reg +/- imm8
  //
  // The first operand is always a Reg.  The second operand is a reg if in
  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
  // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
  // index mode.

  /// getAM3Opc - This function encodes the addrmode3 opc field.
  inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
                            unsigned IdxMode = 0) {
    bool isSub = Opc == sub;
    return ((int)isSub << 8) | Offset | (IdxMode << 9);
  }
  inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
  inline AddrOpc getAM3Op(unsigned AM3Opc) {
    return ((AM3Opc >> 8) & 1) ? sub : add;
  }
  inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #4
  //===--------------------------------------------------------------------===//
  //
  // This is used for load / store multiple instructions.
  //
  // addrmode4 := reg, <mode>
  //
  // The four modes are:
  //    IA - Increment after
  //    IB - Increment before
  //    DA - Decrement after
  //    DB - Decrement before
  // For VFP instructions, only the IA and DB modes are valid.

  inline AMSubMode getAM4SubMode(unsigned Mode) {
    return (AMSubMode)(Mode & 0x7);
  }

  inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #5
  //===--------------------------------------------------------------------===//
  //
  // This is used for coprocessor instructions, such as FP load/stores.
  //
  // addrmode5 := reg +/- imm8*4
  //
  // The first operand is always a Reg.  The second operand encodes the
  // operation (add or subtract) in bit 8 and the immediate in bits 0-7.

  /// getAM5Opc - This function encodes the addrmode5 opc field.
  inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
    bool isSub = Opc == sub;
    return ((int)isSub << 8) | Offset;
  }
  inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
  inline AddrOpc getAM5Op(unsigned AM5Opc) {
    return ((AM5Opc >> 8) & 1) ? sub : add;
  }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #5 FP16
  //===--------------------------------------------------------------------===//
  //
  // This is used for coprocessor instructions, such as 16-bit FP load/stores.
  //
  // addrmode5fp16 := reg +/- imm8*2
  //
  // The first operand is always a Reg.  The second operand encodes the
  // operation (add or subtract) in bit 8 and the immediate in bits 0-7.

  /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
  inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
    bool isSub = Opc == sub;
    return ((int)isSub << 8) | Offset;
  }
  inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
    return AM5Opc & 0xFF;
  }
  inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
    return ((AM5Opc >> 8) & 1) ? sub : add;
  }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #6
  //===--------------------------------------------------------------------===//
  //
  // This is used for NEON load / store instructions.
  //
  // addrmode6 := reg with optional alignment
  //
  // This is stored in two operands [regaddr, align].  The first is the
  // address register.  The second operand is the value of the alignment
  // specifier in bytes or zero if no explicit alignment.
  // Valid alignments depend on the specific instruction.

  //===--------------------------------------------------------------------===//
  // NEON/MVE Modified Immediates
  //===--------------------------------------------------------------------===//
  //
  // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate"
  // vector operand, where a small immediate encoded in the instruction
  // specifies a full NEON vector value.  These modified immediates are
  // represented here as encoded integers.  The low 8 bits hold the immediate
  // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
  // the "Cmode" field of the instruction.  The interfaces below treat the
  // Op and Cmode values as a single 5-bit value.

  inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) {
    return (OpCmode << 8) | Val;
  }
  inline unsigned getVMOVModImmOpCmode(unsigned ModImm) {
    return (ModImm >> 8) & 0x1f;
  }
  inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; }

  /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the
  /// element value and the element size in bits.  (If the element size is
  /// smaller than the vector, it is splatted into all the elements.)
  inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) {
    unsigned OpCmode = getVMOVModImmOpCmode(ModImm);
    unsigned Imm8 = getVMOVModImmVal(ModImm);
    uint64_t Val = 0;

    if (OpCmode == 0xe) {
      // 8-bit vector elements
      Val = Imm8;
      EltBits = 8;
    } else if ((OpCmode & 0xc) == 0x8) {
      // 16-bit vector elements
      unsigned ByteNum = (OpCmode & 0x6) >> 1;
      Val = Imm8 << (8 * ByteNum);
      EltBits = 16;
    } else if ((OpCmode & 0x8) == 0) {
      // 32-bit vector elements, zero with one byte set
      unsigned ByteNum = (OpCmode & 0x6) >> 1;
      Val = Imm8 << (8 * ByteNum);
      EltBits = 32;
    } else if ((OpCmode & 0xe) == 0xc) {
      // 32-bit vector elements, one byte with low bits set
      unsigned ByteNum = 1 + (OpCmode & 0x1);
      Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
      EltBits = 32;
    } else if (OpCmode == 0x1e) {
      // 64-bit vector elements
      for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
        if ((ModImm >> ByteNum) & 1)
          Val |= (uint64_t)0xff << (8 * ByteNum);
      }
      EltBits = 64;
    } else {
      llvm_unreachable("Unsupported VMOV immediate");
    }
    return Val;
  }

  // Generic validation for single-byte immediate (0X00, 00X0, etc).
  inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
    assert(Size >= 1 && Size <= 4 && "Invalid size");
    unsigned count = 0;
    for (unsigned i = 0; i < Size; ++i) {
      if (Value & 0xff) count++;
      Value >>= 8;
    }
    return count == 1;
  }

  /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
  inline bool isNEONi16splat(unsigned Value) {
    if (Value > 0xffff)
      return false;
    // i16 value with set bits only in one byte X0 or 0X.
    return Value == 0 || isNEONBytesplat(Value, 2);
  }

  // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
  inline unsigned encodeNEONi16splat(unsigned Value) {
    assert(isNEONi16splat(Value) && "Invalid NEON splat value");
    if (Value >= 0x100)
      Value = (Value >> 8) | 0xa00;
    else
      Value |= 0x800;
    return Value;
  }

  /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
  inline bool isNEONi32splat(unsigned Value) {
    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
    return Value == 0 || isNEONBytesplat(Value, 4);
  }

  /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
  inline unsigned encodeNEONi32splat(unsigned Value) {
    assert(isNEONi32splat(Value) && "Invalid NEON splat value");
    if (Value >= 0x100 && Value <= 0xff00)
      Value = (Value >> 8) | 0x200;
    else if (Value > 0xffff && Value <= 0xff0000)
      Value = (Value >> 16) | 0x400;
    else if (Value > 0xffffff)
      Value = (Value >> 24) | 0x600;
    return Value;
  }

  //===--------------------------------------------------------------------===//
  // Floating-point Immediates
  //
  inline float getFPImmFloat(unsigned Imm) {
    // We expect an 8-bit binary encoding of a floating-point number here.

    uint8_t Sign = (Imm >> 7) & 0x1;
    uint8_t Exp = (Imm >> 4) & 0x7;
    uint8_t Mantissa = Imm & 0xf;

    //   8-bit FP    IEEE Float Encoding
    //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
    //
    // where B = NOT(b);
    uint32_t I = 0;
    I |= Sign << 31;
    I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
    I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
    I |= (Exp & 0x3) << 23;
    I |= Mantissa << 19;
    return bit_cast<float>(I);
  }

  /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
  /// floating-point value. If the value cannot be represented as an 8-bit
  /// floating-point value, then return -1.
  inline int getFP16Imm(const APInt &Imm) {
    uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
    int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
    int64_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits

    // We can handle 4 bits of mantissa.
    // mantissa = (16+UInt(e:f:g:h))/16.
    if (Mantissa & 0x3f)
      return -1;
    Mantissa >>= 6;

    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
    if (Exp < -3 || Exp > 4)
      return -1;
    Exp = ((Exp+3) & 0x7) ^ 4;

    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
  }

  inline int getFP16Imm(const APFloat &FPImm) {
    return getFP16Imm(FPImm.bitcastToAPInt());
  }

  /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
  /// floating-point value. If the value cannot be represented as an 8-bit
  /// floating-point value, then return -1.
  inline int getFP32Imm(const APInt &Imm) {
    uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
    int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
    int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits

    // We can handle 4 bits of mantissa.
    // mantissa = (16+UInt(e:f:g:h))/16.
    if (Mantissa & 0x7ffff)
      return -1;
    Mantissa >>= 19;
    if ((Mantissa & 0xf) != Mantissa)
      return -1;

    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
    if (Exp < -3 || Exp > 4)
      return -1;
    Exp = ((Exp+3) & 0x7) ^ 4;

    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
  }

  inline int getFP32Imm(const APFloat &FPImm) {
    return getFP32Imm(FPImm.bitcastToAPInt());
  }

  /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
  /// floating-point value. If the value cannot be represented as an 8-bit
  /// floating-point value, then return -1.
  inline int getFP64Imm(const APInt &Imm) {
    uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
    int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
    uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;

    // We can handle 4 bits of mantissa.
    // mantissa = (16+UInt(e:f:g:h))/16.
    if (Mantissa & 0xffffffffffffULL)
      return -1;
    Mantissa >>= 48;
    if ((Mantissa & 0xf) != Mantissa)
      return -1;

    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
    if (Exp < -3 || Exp > 4)
      return -1;
    Exp = ((Exp+3) & 0x7) ^ 4;

    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
  }

  inline int getFP64Imm(const APFloat &FPImm) {
    return getFP64Imm(FPImm.bitcastToAPInt());
  }

} // end namespace ARM_AM
} // end namespace llvm

#endif