ARMAsmBackend.cpp 49.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
//===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/ARMAsmBackend.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMAsmBackendDarwin.h"
#include "MCTargetDesc/ARMAsmBackendELF.h"
#include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
#include "MCTargetDesc/ARMFixupKinds.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

namespace {
class ARMELFObjectWriter : public MCELFObjectTargetWriter {
public:
  ARMELFObjectWriter(uint8_t OSABI)
      : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
                                /*HasRelocationAddend*/ false) {}
};
} // end anonymous namespace

Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const {
  if (STI.getTargetTriple().isOSBinFormatELF() && Name == "R_ARM_NONE")
    return FK_NONE;

  return MCAsmBackend::getFixupKind(Name);
}

const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
  unsigned IsPCRelConstant =
      MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_Constant;
  const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
      // This table *must* be in the order that the fixup_* kinds are defined in
      // ARMFixupKinds.h.
      //
      // Name                      Offset (bits) Size (bits)     Flags
      {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
      {"fixup_t2_ldst_pcrel_12", 0, 32,
       IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
      {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
      {"fixup_t2_pcrel_10", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_pcrel_9", 0, 32,
       IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_thumb_adr_pcrel_10", 0, 8,
       IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
      {"fixup_t2_adr_pcrel_12", 0, 32,
       IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_blx", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_cp", 0, 8,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
      // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
      // - 19.
      {"fixup_arm_movt_hi16", 0, 20, 0},
      {"fixup_arm_movw_lo16", 0, 20, 0},
      {"fixup_t2_movt_hi16", 0, 20, 0},
      {"fixup_t2_movw_lo16", 0, 20, 0},
      {"fixup_arm_mod_imm", 0, 12, 0},
      {"fixup_t2_so_imm", 0, 26, 0},
      {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfcsel_else_target", 0, 32, 0},
      {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}
  };
  const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
      // This table *must* be in the order that the fixup_* kinds are defined in
      // ARMFixupKinds.h.
      //
      // Name                      Offset (bits) Size (bits)     Flags
      {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_ldst_pcrel_12", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_pcrel_10", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_pcrel_9", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_thumb_adr_pcrel_10", 8, 8,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_adr_pcrel_12", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_blx", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_cp", 8, 8,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
      // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
      // - 19.
      {"fixup_arm_movt_hi16", 12, 20, 0},
      {"fixup_arm_movw_lo16", 12, 20, 0},
      {"fixup_t2_movt_hi16", 12, 20, 0},
      {"fixup_t2_movw_lo16", 12, 20, 0},
      {"fixup_arm_mod_imm", 20, 12, 0},
      {"fixup_t2_so_imm", 26, 6, 0},
      {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfcsel_else_target", 0, 32, 0},
      {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}
  };

  if (Kind < FirstTargetFixupKind)
    return MCAsmBackend::getFixupKindInfo(Kind);

  assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
         "Invalid kind!");
  return (Endian == support::little ? InfosLE
                                    : InfosBE)[Kind - FirstTargetFixupKind];
}

void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
  switch (Flag) {
  default:
    break;
  case MCAF_Code16:
    setIsThumb(true);
    break;
  case MCAF_Code32:
    setIsThumb(false);
    break;
  }
}

unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
                                         const MCSubtargetInfo &STI) const {
  bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
  bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];

  switch (Op) {
  default:
    return Op;
  case ARM::tBcc:
    return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
  case ARM::tLDRpci:
    return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
  case ARM::tADR:
    return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
  case ARM::tB:
    return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
  case ARM::tCBZ:
    return ARM::tHINT;
  case ARM::tCBNZ:
    return ARM::tHINT;
  }
}

bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
                                      const MCSubtargetInfo &STI) const {
  if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
    return true;
  return false;
}

static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) {
  int64_t Offset = int64_t(Value) - 4;
  if (Offset < Min || Offset > Max)
    return "out of range pc-relative fixup value";
  return nullptr;
}

const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
                                                    uint64_t Value) const {
  switch (Fixup.getTargetKind()) {
  case ARM::fixup_arm_thumb_br: {
    // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
    // low bit being an implied zero. There's an implied +4 offset for the
    // branch, so we adjust the other way here to determine what's
    // encodable.
    //
    // Relax if the value is too big for a (signed) i8.
    int64_t Offset = int64_t(Value) - 4;
    if (Offset > 2046 || Offset < -2048)
      return "out of range pc-relative fixup value";
    break;
  }
  case ARM::fixup_arm_thumb_bcc: {
    // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
    // low bit being an implied zero. There's an implied +4 offset for the
    // branch, so we adjust the other way here to determine what's
    // encodable.
    //
    // Relax if the value is too big for a (signed) i8.
    int64_t Offset = int64_t(Value) - 4;
    if (Offset > 254 || Offset < -256)
      return "out of range pc-relative fixup value";
    break;
  }
  case ARM::fixup_thumb_adr_pcrel_10:
  case ARM::fixup_arm_thumb_cp: {
    // If the immediate is negative, greater than 1020, or not a multiple
    // of four, the wide version of the instruction must be used.
    int64_t Offset = int64_t(Value) - 4;
    if (Offset & 3)
      return "misaligned pc-relative fixup value";
    else if (Offset > 1020 || Offset < 0)
      return "out of range pc-relative fixup value";
    break;
  }
  case ARM::fixup_arm_thumb_cb: {
    // If we have a Thumb CBZ or CBNZ instruction and its target is the next
    // instruction it is actually out of range for the instruction.
    // It will be changed to a NOP.
    int64_t Offset = (Value & ~1);
    if (Offset == 2)
      return "will be converted to nop";
    break;
  }
  case ARM::fixup_bf_branch:
    return checkPCRelOffset(Value, 0, 30);
  case ARM::fixup_bf_target:
    return checkPCRelOffset(Value, -0x10000, +0xfffe);
  case ARM::fixup_bfl_target:
    return checkPCRelOffset(Value, -0x40000, +0x3fffe);
  case ARM::fixup_bfc_target:
    return checkPCRelOffset(Value, -0x1000, +0xffe);
  case ARM::fixup_wls:
    return checkPCRelOffset(Value, 0, +0xffe);
  case ARM::fixup_le:
    // The offset field in the LE and LETP instructions is an 11-bit
    // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
    // interpreted as a negative offset from the value read from pc,
    // i.e. from instruction_address+4.
    //
    // So an LE instruction can in principle address the instruction
    // immediately after itself, or (not very usefully) the address
    // half way through the 4-byte LE.
    return checkPCRelOffset(Value, -0xffe, 0);
  case ARM::fixup_bfcsel_else_target: {
    if (Value != 2 && Value != 4)
      return "out of range label-relative fixup value";
    break;
  }

  default:
    llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
  }
  return nullptr;
}

bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
                                         const MCRelaxableFragment *DF,
                                         const MCAsmLayout &Layout) const {
  return reasonForFixupRelaxation(Fixup, Value);
}

void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
                                     const MCSubtargetInfo &STI,
                                     MCInst &Res) const {
  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);

  // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
  if (RelaxedOp == Inst.getOpcode()) {
    SmallString<256> Tmp;
    raw_svector_ostream OS(Tmp);
    Inst.dump_pretty(OS);
    OS << "\n";
    report_fatal_error("unexpected instruction to relax: " + OS.str());
  }

  // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
  // have to change the operands too.
  if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
      RelaxedOp == ARM::tHINT) {
    Res.setOpcode(RelaxedOp);
    Res.addOperand(MCOperand::createImm(0));
    Res.addOperand(MCOperand::createImm(14));
    Res.addOperand(MCOperand::createReg(0));
    return;
  }

  // The rest of instructions we're relaxing have the same operands.
  // We just need to update to the proper opcode.
  Res = Inst;
  Res.setOpcode(RelaxedOp);
}

bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
  const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
  const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
  const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
  const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
  if (isThumb()) {
    const uint16_t nopEncoding =
        hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
    uint64_t NumNops = Count / 2;
    for (uint64_t i = 0; i != NumNops; ++i)
      support::endian::write(OS, nopEncoding, Endian);
    if (Count & 1)
      OS << '\0';
    return true;
  }
  // ARM mode
  const uint32_t nopEncoding =
      hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
  uint64_t NumNops = Count / 4;
  for (uint64_t i = 0; i != NumNops; ++i)
    support::endian::write(OS, nopEncoding, Endian);
  // FIXME: should this function return false when unable to write exactly
  // 'Count' bytes with NOP encodings?
  switch (Count % 4) {
  default:
    break; // No leftover bytes to write
  case 1:
    OS << '\0';
    break;
  case 2:
    OS.write("\0\0", 2);
    break;
  case 3:
    OS.write("\0\0\xa0", 3);
    break;
  }

  return true;
}

static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
  if (IsLittleEndian) {
    // Note that the halfwords are stored high first and low second in thumb;
    // so we need to swap the fixup value here to map properly.
    uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
    Swapped |= (Value & 0x0000FFFF) << 16;
    return Swapped;
  } else
    return Value;
}

static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
                              bool IsLittleEndian) {
  uint32_t Value;

  if (IsLittleEndian) {
    Value = (SecondHalf & 0xFFFF) << 16;
    Value |= (FirstHalf & 0xFFFF);
  } else {
    Value = (SecondHalf & 0xFFFF);
    Value |= (FirstHalf & 0xFFFF) << 16;
  }

  return Value;
}

unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
                                         const MCFixup &Fixup,
                                         const MCValue &Target, uint64_t Value,
                                         bool IsResolved, MCContext &Ctx,
                                         const MCSubtargetInfo* STI) const {
  unsigned Kind = Fixup.getKind();

  // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
  // and .word relocations they put the Thumb bit into the addend if possible.
  // Other relocation types don't want this bit though (branches couldn't encode
  // it if it *was* present, and no other relocations exist) and it can
  // interfere with checking valid expressions.
  if (const MCSymbolRefExpr *A = Target.getSymA()) {
    if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
        A->getSymbol().isExternal() &&
        (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
         Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
         Kind == ARM::fixup_t2_movt_hi16))
      Value |= 1;
  }

  switch (Kind) {
  default:
    Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
    return 0;
  case FK_NONE:
  case FK_Data_1:
  case FK_Data_2:
  case FK_Data_4:
    return Value;
  case FK_SecRel_2:
    return Value;
  case FK_SecRel_4:
    return Value;
  case ARM::fixup_arm_movt_hi16:
    assert(STI != nullptr);
    if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
      Value >>= 16;
    LLVM_FALLTHROUGH;
  case ARM::fixup_arm_movw_lo16: {
    unsigned Hi4 = (Value & 0xF000) >> 12;
    unsigned Lo12 = Value & 0x0FFF;
    // inst{19-16} = Hi4;
    // inst{11-0} = Lo12;
    Value = (Hi4 << 16) | (Lo12);
    return Value;
  }
  case ARM::fixup_t2_movt_hi16:
    assert(STI != nullptr);
    if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
      Value >>= 16;
    LLVM_FALLTHROUGH;
  case ARM::fixup_t2_movw_lo16: {
    unsigned Hi4 = (Value & 0xF000) >> 12;
    unsigned i = (Value & 0x800) >> 11;
    unsigned Mid3 = (Value & 0x700) >> 8;
    unsigned Lo8 = Value & 0x0FF;
    // inst{19-16} = Hi4;
    // inst{26} = i;
    // inst{14-12} = Mid3;
    // inst{7-0} = Lo8;
    Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
    return swapHalfWords(Value, Endian == support::little);
  }
  case ARM::fixup_arm_ldst_pcrel_12:
    // ARM PC-relative values are offset by 8.
    Value -= 4;
    LLVM_FALLTHROUGH;
  case ARM::fixup_t2_ldst_pcrel_12: {
    // Offset by 4, adjusted by two due to the half-word ordering of thumb.
    Value -= 4;
    bool isAdd = true;
    if ((int64_t)Value < 0) {
      Value = -Value;
      isAdd = false;
    }
    if (Value >= 4096) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    Value |= isAdd << 23;

    // Same addressing mode as fixup_arm_pcrel_10,
    // but with 16-bit halfwords swapped.
    if (Kind == ARM::fixup_t2_ldst_pcrel_12)
      return swapHalfWords(Value, Endian == support::little);

    return Value;
  }
  case ARM::fixup_arm_adr_pcrel_12: {
    // ARM PC-relative values are offset by 8.
    Value -= 8;
    unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
    if ((int64_t)Value < 0) {
      Value = -Value;
      opc = 2; // 0b0010
    }
    if (ARM_AM::getSOImmVal(Value) == -1) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    // Encode the immediate and shift the opcode into place.
    return ARM_AM::getSOImmVal(Value) | (opc << 21);
  }

  case ARM::fixup_t2_adr_pcrel_12: {
    Value -= 4;
    unsigned opc = 0;
    if ((int64_t)Value < 0) {
      Value = -Value;
      opc = 5;
    }

    uint32_t out = (opc << 21);
    out |= (Value & 0x800) << 15;
    out |= (Value & 0x700) << 4;
    out |= (Value & 0x0FF);

    return swapHalfWords(out, Endian == support::little);
  }

  case ARM::fixup_arm_condbranch:
  case ARM::fixup_arm_uncondbranch:
  case ARM::fixup_arm_uncondbl:
  case ARM::fixup_arm_condbl:
  case ARM::fixup_arm_blx:
    // These values don't encode the low two bits since they're always zero.
    // Offset by 8 just as above.
    if (const MCSymbolRefExpr *SRE =
            dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
      if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
        return 0;
    return 0xffffff & ((Value - 8) >> 2);
  case ARM::fixup_t2_uncondbranch: {
    Value = Value - 4;
    if (!isInt<25>(Value)) {
      Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
      return 0;
    }

    Value >>= 1; // Low bit is not encoded.

    uint32_t out = 0;
    bool I = Value & 0x800000;
    bool J1 = Value & 0x400000;
    bool J2 = Value & 0x200000;
    J1 ^= I;
    J2 ^= I;

    out |= I << 26;                 // S bit
    out |= !J1 << 13;               // J1 bit
    out |= !J2 << 11;               // J2 bit
    out |= (Value & 0x1FF800) << 5; // imm6 field
    out |= (Value & 0x0007FF);      // imm11 field

    return swapHalfWords(out, Endian == support::little);
  }
  case ARM::fixup_t2_condbranch: {
    Value = Value - 4;
    if (!isInt<21>(Value)) {
      Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
      return 0;
    }

    Value >>= 1; // Low bit is not encoded.

    uint64_t out = 0;
    out |= (Value & 0x80000) << 7; // S bit
    out |= (Value & 0x40000) >> 7; // J2 bit
    out |= (Value & 0x20000) >> 4; // J1 bit
    out |= (Value & 0x1F800) << 5; // imm6 field
    out |= (Value & 0x007FF);      // imm11 field

    return swapHalfWords(out, Endian == support::little);
  }
  case ARM::fixup_arm_thumb_bl: {
    if (!isInt<25>(Value - 4) ||
        (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
         !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
         !STI->getFeatureBits()[ARM::HasV6MOps] &&
         !isInt<23>(Value - 4))) {
      Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
      return 0;
    }

    // The value doesn't encode the low bit (always zero) and is offset by
    // four. The 32-bit immediate value is encoded as
    //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
    // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
    // The value is encoded into disjoint bit positions in the destination
    // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
    // J = either J1 or J2 bit
    //
    //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
    //
    // Note that the halfwords are stored high first, low second; so we need
    // to transpose the fixup value here to map properly.
    uint32_t offset = (Value - 4) >> 1;
    uint32_t signBit = (offset & 0x800000) >> 23;
    uint32_t I1Bit = (offset & 0x400000) >> 22;
    uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
    uint32_t I2Bit = (offset & 0x200000) >> 21;
    uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
    uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
    uint32_t imm11Bits = (offset & 0x000007FF);

    uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
    uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
                           (uint16_t)imm11Bits);
    return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
  }
  case ARM::fixup_arm_thumb_blx: {
    // The value doesn't encode the low two bits (always zero) and is offset by
    // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
    //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
    // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
    // The value is encoded into disjoint bit positions in the destination
    // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
    // J = either J1 or J2 bit, 0 = zero.
    //
    //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
    //
    // Note that the halfwords are stored high first, low second; so we need
    // to transpose the fixup value here to map properly.
    if (Value % 4 != 0) {
      Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
      return 0;
    }

    uint32_t offset = (Value - 4) >> 2;
    if (const MCSymbolRefExpr *SRE =
            dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
      if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
        offset = 0;
    uint32_t signBit = (offset & 0x400000) >> 22;
    uint32_t I1Bit = (offset & 0x200000) >> 21;
    uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
    uint32_t I2Bit = (offset & 0x100000) >> 20;
    uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
    uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
    uint32_t imm10LBits = (offset & 0x3FF);

    uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
    uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
                           ((uint16_t)imm10LBits) << 1);
    return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
  }
  case ARM::fixup_thumb_adr_pcrel_10:
  case ARM::fixup_arm_thumb_cp:
    // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
    // could have an error on our hands.
    assert(STI != nullptr);
    if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
      const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
      if (FixupDiagnostic) {
        Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
        return 0;
      }
    }
    // Offset by 4, and don't encode the low two bits.
    return ((Value - 4) >> 2) & 0xff;
  case ARM::fixup_arm_thumb_cb: {
    // CB instructions can only branch to offsets in [4, 126] in multiples of 2
    // so ensure that the raw value LSB is zero and it lies in [2, 130].
    // An offset of 2 will be relaxed to a NOP.
    if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    // Offset by 4 and don't encode the lower bit, which is always 0.
    // FIXME: diagnose if no Thumb2
    uint32_t Binary = (Value - 4) >> 1;
    return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
  }
  case ARM::fixup_arm_thumb_br:
    // Offset by 4 and don't encode the lower bit, which is always 0.
    assert(STI != nullptr);
    if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
        !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
      const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
      if (FixupDiagnostic) {
        Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
        return 0;
      }
    }
    return ((Value - 4) >> 1) & 0x7ff;
  case ARM::fixup_arm_thumb_bcc:
    // Offset by 4 and don't encode the lower bit, which is always 0.
    assert(STI != nullptr);
    if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
      const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
      if (FixupDiagnostic) {
        Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
        return 0;
      }
    }
    return ((Value - 4) >> 1) & 0xff;
  case ARM::fixup_arm_pcrel_10_unscaled: {
    Value = Value - 8; // ARM fixups offset by an additional word and don't
                       // need to adjust for the half-word ordering.
    bool isAdd = true;
    if ((int64_t)Value < 0) {
      Value = -Value;
      isAdd = false;
    }
    // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
    if (Value >= 256) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    Value = (Value & 0xf) | ((Value & 0xf0) << 4);
    return Value | (isAdd << 23);
  }
  case ARM::fixup_arm_pcrel_10:
    Value = Value - 4; // ARM fixups offset by an additional word and don't
                       // need to adjust for the half-word ordering.
    LLVM_FALLTHROUGH;
  case ARM::fixup_t2_pcrel_10: {
    // Offset by 4, adjusted by two due to the half-word ordering of thumb.
    Value = Value - 4;
    bool isAdd = true;
    if ((int64_t)Value < 0) {
      Value = -Value;
      isAdd = false;
    }
    // These values don't encode the low two bits since they're always zero.
    Value >>= 2;
    if (Value >= 256) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    Value |= isAdd << 23;

    // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
    // swapped.
    if (Kind == ARM::fixup_t2_pcrel_10)
      return swapHalfWords(Value, Endian == support::little);

    return Value;
  }
  case ARM::fixup_arm_pcrel_9:
    Value = Value - 4; // ARM fixups offset by an additional word and don't
                       // need to adjust for the half-word ordering.
    LLVM_FALLTHROUGH;
  case ARM::fixup_t2_pcrel_9: {
    // Offset by 4, adjusted by two due to the half-word ordering of thumb.
    Value = Value - 4;
    bool isAdd = true;
    if ((int64_t)Value < 0) {
      Value = -Value;
      isAdd = false;
    }
    // These values don't encode the low bit since it's always zero.
    if (Value & 1) {
      Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
      return 0;
    }
    Value >>= 1;
    if (Value >= 256) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    Value |= isAdd << 23;

    // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
    // swapped.
    if (Kind == ARM::fixup_t2_pcrel_9)
      return swapHalfWords(Value, Endian == support::little);

    return Value;
  }
  case ARM::fixup_arm_mod_imm:
    Value = ARM_AM::getSOImmVal(Value);
    if (Value >> 12) {
      Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
      return 0;
    }
    return Value;
  case ARM::fixup_t2_so_imm: {
    Value = ARM_AM::getT2SOImmVal(Value);
    if ((int64_t)Value < 0) {
      Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
      return 0;
    }
    // Value will contain a 12-bit value broken up into a 4-bit shift in bits
    // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
    // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
    // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
    // half-word.
    uint64_t EncValue = 0;
    EncValue |= (Value & 0x800) << 15;
    EncValue |= (Value & 0x700) << 4;
    EncValue |= (Value & 0xff);
    return swapHalfWords(EncValue, Endian == support::little);
  }
  case ARM::fixup_bf_branch: {
    const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    if (FixupDiagnostic) {
      Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
      return 0;
    }
    uint32_t out = (((Value - 4) >> 1) & 0xf) << 23;
    return swapHalfWords(out, Endian == support::little);
  }
  case ARM::fixup_bf_target:
  case ARM::fixup_bfl_target:
  case ARM::fixup_bfc_target: {
    const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    if (FixupDiagnostic) {
      Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
      return 0;
    }
    uint32_t out = 0;
    uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 :
                            Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800);
    out |= (((Value - 4) >> 1) & 0x1) << 11;
    out |= (((Value - 4) >> 1) & 0x7fe);
    out |= (((Value - 4) >> 1) & HighBitMask) << 5;
    return swapHalfWords(out, Endian == support::little);
  }
  case ARM::fixup_bfcsel_else_target: {
    // If this is a fixup of a branch future's else target then it should be a
    // constant MCExpr representing the distance between the branch targetted
    // and the instruction after that same branch.
    Value = Target.getConstant();

    const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    if (FixupDiagnostic) {
      Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
      return 0;
    }
    uint32_t out = ((Value >> 2) & 1) << 17;
    return swapHalfWords(out, Endian == support::little);
  }
  case ARM::fixup_wls:
  case ARM::fixup_le: {
    const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    if (FixupDiagnostic) {
      Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
      return 0;
    }
    uint64_t real_value = Value - 4;
    uint32_t out = 0;
    if (Kind == ARM::fixup_le)
      real_value = -real_value;
    out |= ((real_value >> 1) & 0x1) << 11;
    out |= ((real_value >> 1) & 0x7fe);
    return swapHalfWords(out, Endian == support::little);
  }
  }
}

bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
                                          const MCFixup &Fixup,
                                          const MCValue &Target) {
  const MCSymbolRefExpr *A = Target.getSymA();
  const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
  const unsigned FixupKind = Fixup.getKind();
  if (FixupKind == FK_NONE)
    return true;
  if (FixupKind == ARM::fixup_arm_thumb_bl) {
    assert(Sym && "How did we resolve this?");

    // If the symbol is external the linker will handle it.
    // FIXME: Should we handle it as an optimization?

    // If the symbol is out of range, produce a relocation and hope the
    // linker can handle it. GNU AS produces an error in this case.
    if (Sym->isExternal())
      return true;
  }
  // Create relocations for unconditional branches to function symbols with
  // different execution mode in ELF binaries.
  if (Sym && Sym->isELF()) {
    unsigned Type = cast<MCSymbolELF>(Sym)->getType();
    if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
      if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
        return true;
      if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
                                    FixupKind == ARM::fixup_arm_thumb_bl ||
                                    FixupKind == ARM::fixup_t2_condbranch ||
                                    FixupKind == ARM::fixup_t2_uncondbranch))
        return true;
    }
  }
  // We must always generate a relocation for BL/BLX instructions if we have
  // a symbol to reference, as the linker relies on knowing the destination
  // symbol's thumb-ness to get interworking right.
  if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
            FixupKind == ARM::fixup_arm_blx ||
            FixupKind == ARM::fixup_arm_uncondbl ||
            FixupKind == ARM::fixup_arm_condbl))
    return true;
  return false;
}

/// getFixupKindNumBytes - The number of bytes the fixup may change.
static unsigned getFixupKindNumBytes(unsigned Kind) {
  switch (Kind) {
  default:
    llvm_unreachable("Unknown fixup kind!");

  case FK_NONE:
    return 0;

  case FK_Data_1:
  case ARM::fixup_arm_thumb_bcc:
  case ARM::fixup_arm_thumb_cp:
  case ARM::fixup_thumb_adr_pcrel_10:
    return 1;

  case FK_Data_2:
  case ARM::fixup_arm_thumb_br:
  case ARM::fixup_arm_thumb_cb:
  case ARM::fixup_arm_mod_imm:
    return 2;

  case ARM::fixup_arm_pcrel_10_unscaled:
  case ARM::fixup_arm_ldst_pcrel_12:
  case ARM::fixup_arm_pcrel_10:
  case ARM::fixup_arm_pcrel_9:
  case ARM::fixup_arm_adr_pcrel_12:
  case ARM::fixup_arm_uncondbl:
  case ARM::fixup_arm_condbl:
  case ARM::fixup_arm_blx:
  case ARM::fixup_arm_condbranch:
  case ARM::fixup_arm_uncondbranch:
    return 3;

  case FK_Data_4:
  case ARM::fixup_t2_ldst_pcrel_12:
  case ARM::fixup_t2_condbranch:
  case ARM::fixup_t2_uncondbranch:
  case ARM::fixup_t2_pcrel_10:
  case ARM::fixup_t2_pcrel_9:
  case ARM::fixup_t2_adr_pcrel_12:
  case ARM::fixup_arm_thumb_bl:
  case ARM::fixup_arm_thumb_blx:
  case ARM::fixup_arm_movt_hi16:
  case ARM::fixup_arm_movw_lo16:
  case ARM::fixup_t2_movt_hi16:
  case ARM::fixup_t2_movw_lo16:
  case ARM::fixup_t2_so_imm:
  case ARM::fixup_bf_branch:
  case ARM::fixup_bf_target:
  case ARM::fixup_bfl_target:
  case ARM::fixup_bfc_target:
  case ARM::fixup_bfcsel_else_target:
  case ARM::fixup_wls:
  case ARM::fixup_le:
    return 4;

  case FK_SecRel_2:
    return 2;
  case FK_SecRel_4:
    return 4;
  }
}

/// getFixupKindContainerSizeBytes - The number of bytes of the
/// container involved in big endian.
static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
  switch (Kind) {
  default:
    llvm_unreachable("Unknown fixup kind!");

  case FK_NONE:
    return 0;

  case FK_Data_1:
    return 1;
  case FK_Data_2:
    return 2;
  case FK_Data_4:
    return 4;

  case ARM::fixup_arm_thumb_bcc:
  case ARM::fixup_arm_thumb_cp:
  case ARM::fixup_thumb_adr_pcrel_10:
  case ARM::fixup_arm_thumb_br:
  case ARM::fixup_arm_thumb_cb:
    // Instruction size is 2 bytes.
    return 2;

  case ARM::fixup_arm_pcrel_10_unscaled:
  case ARM::fixup_arm_ldst_pcrel_12:
  case ARM::fixup_arm_pcrel_10:
  case ARM::fixup_arm_pcrel_9:
  case ARM::fixup_arm_adr_pcrel_12:
  case ARM::fixup_arm_uncondbl:
  case ARM::fixup_arm_condbl:
  case ARM::fixup_arm_blx:
  case ARM::fixup_arm_condbranch:
  case ARM::fixup_arm_uncondbranch:
  case ARM::fixup_t2_ldst_pcrel_12:
  case ARM::fixup_t2_condbranch:
  case ARM::fixup_t2_uncondbranch:
  case ARM::fixup_t2_pcrel_10:
  case ARM::fixup_t2_adr_pcrel_12:
  case ARM::fixup_arm_thumb_bl:
  case ARM::fixup_arm_thumb_blx:
  case ARM::fixup_arm_movt_hi16:
  case ARM::fixup_arm_movw_lo16:
  case ARM::fixup_t2_movt_hi16:
  case ARM::fixup_t2_movw_lo16:
  case ARM::fixup_arm_mod_imm:
  case ARM::fixup_t2_so_imm:
  case ARM::fixup_bf_branch:
  case ARM::fixup_bf_target:
  case ARM::fixup_bfl_target:
  case ARM::fixup_bfc_target:
  case ARM::fixup_bfcsel_else_target:
  case ARM::fixup_wls:
  case ARM::fixup_le:
    // Instruction size is 4 bytes.
    return 4;
  }
}

void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
                               const MCValue &Target,
                               MutableArrayRef<char> Data, uint64_t Value,
                               bool IsResolved,
                               const MCSubtargetInfo* STI) const {
  unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
  MCContext &Ctx = Asm.getContext();
  Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
  if (!Value)
    return; // Doesn't change encoding.

  unsigned Offset = Fixup.getOffset();
  assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");

  // Used to point to big endian bytes.
  unsigned FullSizeBytes;
  if (Endian == support::big) {
    FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
    assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
    assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
  }

  // For each byte of the fragment that the fixup touches, mask in the bits from
  // the fixup value. The Value has been "split up" into the appropriate
  // bitfields above.
  for (unsigned i = 0; i != NumBytes; ++i) {
    unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
    Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
  }
}

namespace CU {

/// Compact unwind encoding values.
enum CompactUnwindEncodings {
  UNWIND_ARM_MODE_MASK                         = 0x0F000000,
  UNWIND_ARM_MODE_FRAME                        = 0x01000000,
  UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
  UNWIND_ARM_MODE_DWARF                        = 0x04000000,

  UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,

  UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
  UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
  UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,

  UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
  UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
  UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
  UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
  UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,

  UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,

  UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
};

} // end CU namespace

/// Generate compact unwind encoding for the function based on the CFI
/// instructions. If the CFI instructions describe a frame that cannot be
/// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
/// tells the runtime to fallback and unwind using dwarf.
uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
    ArrayRef<MCCFIInstruction> Instrs) const {
  DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
  // Only armv7k uses CFI based unwinding.
  if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
    return 0;
  // No .cfi directives means no frame.
  if (Instrs.empty())
    return 0;
  // Start off assuming CFA is at SP+0.
  unsigned CFARegister = ARM::SP;
  int CFARegisterOffset = 0;
  // Mark savable registers as initially unsaved
  DenseMap<unsigned, int> RegOffsets;
  int FloatRegCount = 0;
  // Process each .cfi directive and build up compact unwind info.
  for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
    unsigned Reg;
    const MCCFIInstruction &Inst = Instrs[i];
    switch (Inst.getOperation()) {
    case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
      CFARegisterOffset = -Inst.getOffset();
      CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
      break;
    case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
      CFARegisterOffset = -Inst.getOffset();
      break;
    case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
      CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
      break;
    case MCCFIInstruction::OpOffset: // DW_CFA_offset
      Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
        RegOffsets[Reg] = Inst.getOffset();
      else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
        RegOffsets[Reg] = Inst.getOffset();
        ++FloatRegCount;
      } else {
        DEBUG_WITH_TYPE("compact-unwind",
                        llvm::dbgs() << ".cfi_offset on unknown register="
                                     << Inst.getRegister() << "\n");
        return CU::UNWIND_ARM_MODE_DWARF;
      }
      break;
    case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
      // Ignore
      break;
    default:
      // Directive not convertable to compact unwind, bail out.
      DEBUG_WITH_TYPE("compact-unwind",
                      llvm::dbgs()
                          << "CFI directive not compatiable with comact "
                             "unwind encoding, opcode=" << Inst.getOperation()
                          << "\n");
      return CU::UNWIND_ARM_MODE_DWARF;
      break;
    }
  }

  // If no frame set up, return no unwind info.
  if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
    return 0;

  // Verify standard frame (lr/r7) was used.
  if (CFARegister != ARM::R7) {
    DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
                                                   << CFARegister
                                                   << " instead of r7\n");
    return CU::UNWIND_ARM_MODE_DWARF;
  }
  int StackAdjust = CFARegisterOffset - 8;
  if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
    DEBUG_WITH_TYPE("compact-unwind",
                    llvm::dbgs()
                        << "LR not saved as standard frame, StackAdjust="
                        << StackAdjust
                        << ", CFARegisterOffset=" << CFARegisterOffset
                        << ", lr save at offset=" << RegOffsets[14] << "\n");
    return CU::UNWIND_ARM_MODE_DWARF;
  }
  if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
    DEBUG_WITH_TYPE("compact-unwind",
                    llvm::dbgs() << "r7 not saved as standard frame\n");
    return CU::UNWIND_ARM_MODE_DWARF;
  }
  uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;

  // If var-args are used, there may be a stack adjust required.
  switch (StackAdjust) {
  case 0:
    break;
  case 4:
    CompactUnwindEncoding |= 0x00400000;
    break;
  case 8:
    CompactUnwindEncoding |= 0x00800000;
    break;
  case 12:
    CompactUnwindEncoding |= 0x00C00000;
    break;
  default:
    DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
                                          << ".cfi_def_cfa stack adjust ("
                                          << StackAdjust << ") out of range\n");
    return CU::UNWIND_ARM_MODE_DWARF;
  }

  // If r6 is saved, it must be right below r7.
  static struct {
    unsigned Reg;
    unsigned Encoding;
  } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
                   {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
                   {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
                   {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
                   {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
                   {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
                   {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
                   {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};

  int CurOffset = -8 - StackAdjust;
  for (auto CSReg : GPRCSRegs) {
    auto Offset = RegOffsets.find(CSReg.Reg);
    if (Offset == RegOffsets.end())
      continue;

    int RegOffset = Offset->second;
    if (RegOffset != CurOffset - 4) {
      DEBUG_WITH_TYPE("compact-unwind",
                      llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
                                   << RegOffset << " but only supported at "
                                   << CurOffset << "\n");
      return CU::UNWIND_ARM_MODE_DWARF;
    }
    CompactUnwindEncoding |= CSReg.Encoding;
    CurOffset -= 4;
  }

  // If no floats saved, we are done.
  if (FloatRegCount == 0)
    return CompactUnwindEncoding;

  // Switch mode to include D register saving.
  CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
  CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;

  // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
  // but needs coordination with the linker and libunwind.
  if (FloatRegCount > 4) {
    DEBUG_WITH_TYPE("compact-unwind",
                    llvm::dbgs() << "unsupported number of D registers saved ("
                                 << FloatRegCount << ")\n");
      return CU::UNWIND_ARM_MODE_DWARF;
  }

  // Floating point registers must either be saved sequentially, or we defer to
  // DWARF. No gaps allowed here so check that each saved d-register is
  // precisely where it should be.
  static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
  for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
    auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
    if (Offset == RegOffsets.end()) {
      DEBUG_WITH_TYPE("compact-unwind",
                      llvm::dbgs() << FloatRegCount << " D-regs saved, but "
                                   << MRI.getName(FPRCSRegs[Idx])
                                   << " not saved\n");
      return CU::UNWIND_ARM_MODE_DWARF;
    } else if (Offset->second != CurOffset - 8) {
      DEBUG_WITH_TYPE("compact-unwind",
                      llvm::dbgs() << FloatRegCount << " D-regs saved, but "
                                   << MRI.getName(FPRCSRegs[Idx])
                                   << " saved at " << Offset->second
                                   << ", expected at " << CurOffset - 8
                                   << "\n");
      return CU::UNWIND_ARM_MODE_DWARF;
    }
    CurOffset -= 8;
  }

  return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
}

static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
  ARM::ArchKind AK = ARM::parseArch(Arch);
  switch (AK) {
  default:
    return MachO::CPU_SUBTYPE_ARM_V7;
  case ARM::ArchKind::ARMV4T:
    return MachO::CPU_SUBTYPE_ARM_V4T;
  case ARM::ArchKind::ARMV5T:
  case ARM::ArchKind::ARMV5TE:
  case ARM::ArchKind::ARMV5TEJ:
    return MachO::CPU_SUBTYPE_ARM_V5;
  case ARM::ArchKind::ARMV6:
  case ARM::ArchKind::ARMV6K:
    return MachO::CPU_SUBTYPE_ARM_V6;
  case ARM::ArchKind::ARMV7A:
    return MachO::CPU_SUBTYPE_ARM_V7;
  case ARM::ArchKind::ARMV7S:
    return MachO::CPU_SUBTYPE_ARM_V7S;
  case ARM::ArchKind::ARMV7K:
    return MachO::CPU_SUBTYPE_ARM_V7K;
  case ARM::ArchKind::ARMV6M:
    return MachO::CPU_SUBTYPE_ARM_V6M;
  case ARM::ArchKind::ARMV7M:
    return MachO::CPU_SUBTYPE_ARM_V7M;
  case ARM::ArchKind::ARMV7EM:
    return MachO::CPU_SUBTYPE_ARM_V7EM;
  }
}

static MCAsmBackend *createARMAsmBackend(const Target &T,
                                         const MCSubtargetInfo &STI,
                                         const MCRegisterInfo &MRI,
                                         const MCTargetOptions &Options,
                                         support::endianness Endian) {
  const Triple &TheTriple = STI.getTargetTriple();
  switch (TheTriple.getObjectFormat()) {
  default:
    llvm_unreachable("unsupported object format");
  case Triple::MachO: {
    MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
    return new ARMAsmBackendDarwin(T, STI, MRI, CS);
  }
  case Triple::COFF:
    assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
    return new ARMAsmBackendWinCOFF(T, STI);
  case Triple::ELF:
    assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
    uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
    return new ARMAsmBackendELF(T, STI, OSABI, Endian);
  }
}

MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
                                          const MCSubtargetInfo &STI,
                                          const MCRegisterInfo &MRI,
                                          const MCTargetOptions &Options) {
  return createARMAsmBackend(T, STI, MRI, Options, support::little);
}

MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
                                          const MCSubtargetInfo &STI,
                                          const MCRegisterInfo &MRI,
                                          const MCTargetOptions &Options) {
  return createARMAsmBackend(T, STI, MRI, Options, support::big);
}