ARMTargetStreamer.cpp
12.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//===- ARMTargetStreamer.cpp - ARMTargetStreamer class --*- C++ -*---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARMTargetStreamer class.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "llvm/MC/ConstantPools.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/TargetParser.h"
using namespace llvm;
//
// ARMTargetStreamer Implemenation
//
ARMTargetStreamer::ARMTargetStreamer(MCStreamer &S)
: MCTargetStreamer(S), ConstantPools(new AssemblerConstantPools()) {}
ARMTargetStreamer::~ARMTargetStreamer() = default;
// The constant pool handling is shared by all ARMTargetStreamer
// implementations.
const MCExpr *ARMTargetStreamer::addConstantPoolEntry(const MCExpr *Expr, SMLoc Loc) {
return ConstantPools->addEntry(Streamer, Expr, 4, Loc);
}
void ARMTargetStreamer::emitCurrentConstantPool() {
ConstantPools->emitForCurrentSection(Streamer);
ConstantPools->clearCacheForCurrentSection(Streamer);
}
// finish() - write out any non-empty assembler constant pools.
void ARMTargetStreamer::finish() { ConstantPools->emitAll(Streamer); }
// reset() - Reset any state
void ARMTargetStreamer::reset() {}
void ARMTargetStreamer::emitInst(uint32_t Inst, char Suffix) {
unsigned Size;
char Buffer[4];
const bool LittleEndian = getStreamer().getContext().getAsmInfo()->isLittleEndian();
switch (Suffix) {
case '\0':
Size = 4;
for (unsigned II = 0, IE = Size; II != IE; II++) {
const unsigned I = LittleEndian ? (Size - II - 1) : II;
Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
}
break;
case 'n':
case 'w':
Size = (Suffix == 'n' ? 2 : 4);
// Thumb wide instructions are emitted as a pair of 16-bit words of the
// appropriate endianness.
for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
const unsigned I0 = LittleEndian ? II + 0 : II + 1;
const unsigned I1 = LittleEndian ? II + 1 : II + 0;
Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
}
break;
default:
llvm_unreachable("Invalid Suffix");
}
getStreamer().EmitBytes(StringRef(Buffer, Size));
}
// The remaining callbacks should be handled separately by each
// streamer.
void ARMTargetStreamer::emitFnStart() {}
void ARMTargetStreamer::emitFnEnd() {}
void ARMTargetStreamer::emitCantUnwind() {}
void ARMTargetStreamer::emitPersonality(const MCSymbol *Personality) {}
void ARMTargetStreamer::emitPersonalityIndex(unsigned Index) {}
void ARMTargetStreamer::emitHandlerData() {}
void ARMTargetStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
int64_t Offset) {}
void ARMTargetStreamer::emitMovSP(unsigned Reg, int64_t Offset) {}
void ARMTargetStreamer::emitPad(int64_t Offset) {}
void ARMTargetStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
bool isVector) {}
void ARMTargetStreamer::emitUnwindRaw(int64_t StackOffset,
const SmallVectorImpl<uint8_t> &Opcodes) {
}
void ARMTargetStreamer::switchVendor(StringRef Vendor) {}
void ARMTargetStreamer::emitAttribute(unsigned Attribute, unsigned Value) {}
void ARMTargetStreamer::emitTextAttribute(unsigned Attribute,
StringRef String) {}
void ARMTargetStreamer::emitIntTextAttribute(unsigned Attribute,
unsigned IntValue,
StringRef StringValue) {}
void ARMTargetStreamer::emitArch(ARM::ArchKind Arch) {}
void ARMTargetStreamer::emitArchExtension(unsigned ArchExt) {}
void ARMTargetStreamer::emitObjectArch(ARM::ArchKind Arch) {}
void ARMTargetStreamer::emitFPU(unsigned FPU) {}
void ARMTargetStreamer::finishAttributeSection() {}
void
ARMTargetStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) {}
void ARMTargetStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {}
static ARMBuildAttrs::CPUArch getArchForCPU(const MCSubtargetInfo &STI) {
if (STI.getCPU() == "xscale")
return ARMBuildAttrs::v5TEJ;
if (STI.hasFeature(ARM::HasV8Ops)) {
if (STI.hasFeature(ARM::FeatureRClass))
return ARMBuildAttrs::v8_R;
return ARMBuildAttrs::v8_A;
} else if (STI.hasFeature(ARM::HasV8_1MMainlineOps))
return ARMBuildAttrs::v8_1_M_Main;
else if (STI.hasFeature(ARM::HasV8MMainlineOps))
return ARMBuildAttrs::v8_M_Main;
else if (STI.hasFeature(ARM::HasV7Ops)) {
if (STI.hasFeature(ARM::FeatureMClass) && STI.hasFeature(ARM::FeatureDSP))
return ARMBuildAttrs::v7E_M;
return ARMBuildAttrs::v7;
} else if (STI.hasFeature(ARM::HasV6T2Ops))
return ARMBuildAttrs::v6T2;
else if (STI.hasFeature(ARM::HasV8MBaselineOps))
return ARMBuildAttrs::v8_M_Base;
else if (STI.hasFeature(ARM::HasV6MOps))
return ARMBuildAttrs::v6S_M;
else if (STI.hasFeature(ARM::HasV6Ops))
return ARMBuildAttrs::v6;
else if (STI.hasFeature(ARM::HasV5TEOps))
return ARMBuildAttrs::v5TE;
else if (STI.hasFeature(ARM::HasV5TOps))
return ARMBuildAttrs::v5T;
else if (STI.hasFeature(ARM::HasV4TOps))
return ARMBuildAttrs::v4T;
else
return ARMBuildAttrs::v4;
}
static bool isV8M(const MCSubtargetInfo &STI) {
// Note that v8M Baseline is a subset of v6T2!
return (STI.hasFeature(ARM::HasV8MBaselineOps) &&
!STI.hasFeature(ARM::HasV6T2Ops)) ||
STI.hasFeature(ARM::HasV8MMainlineOps);
}
/// Emit the build attributes that only depend on the hardware that we expect
// /to be available, and not on the ABI, or any source-language choices.
void ARMTargetStreamer::emitTargetAttributes(const MCSubtargetInfo &STI) {
switchVendor("aeabi");
const StringRef CPUString = STI.getCPU();
if (!CPUString.empty() && !CPUString.startswith("generic")) {
// FIXME: remove krait check when GNU tools support krait cpu
if (STI.hasFeature(ARM::ProcKrait)) {
emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
// We consider krait as a "cortex-a9" + hwdiv CPU
// Enable hwdiv through ".arch_extension idiv"
if (STI.hasFeature(ARM::FeatureHWDivThumb) ||
STI.hasFeature(ARM::FeatureHWDivARM))
emitArchExtension(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM);
} else {
emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
}
}
emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(STI));
if (STI.hasFeature(ARM::FeatureAClass)) {
emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::ApplicationProfile);
} else if (STI.hasFeature(ARM::FeatureRClass)) {
emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::RealTimeProfile);
} else if (STI.hasFeature(ARM::FeatureMClass)) {
emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::MicroControllerProfile);
}
emitAttribute(ARMBuildAttrs::ARM_ISA_use, STI.hasFeature(ARM::FeatureNoARM)
? ARMBuildAttrs::Not_Allowed
: ARMBuildAttrs::Allowed);
if (isV8M(STI)) {
emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumbDerived);
} else if (STI.hasFeature(ARM::FeatureThumb2)) {
emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumb32);
} else if (STI.hasFeature(ARM::HasV4TOps)) {
emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
}
if (STI.hasFeature(ARM::FeatureNEON)) {
/* NEON is not exactly a VFP architecture, but GAS emit one of
* neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
if (STI.hasFeature(ARM::FeatureFPARMv8)) {
if (STI.hasFeature(ARM::FeatureCrypto))
emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
else
emitFPU(ARM::FK_NEON_FP_ARMV8);
} else if (STI.hasFeature(ARM::FeatureVFP4))
emitFPU(ARM::FK_NEON_VFPV4);
else
emitFPU(STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_NEON_FP16
: ARM::FK_NEON);
// Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
if (STI.hasFeature(ARM::HasV8Ops))
emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
STI.hasFeature(ARM::HasV8_1aOps)
? ARMBuildAttrs::AllowNeonARMv8_1a
: ARMBuildAttrs::AllowNeonARMv8);
} else {
if (STI.hasFeature(ARM::FeatureFPARMv8_D16_SP))
// FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
// FPU, but there are two different names for it depending on the CPU.
emitFPU(STI.hasFeature(ARM::FeatureD32)
? ARM::FK_FP_ARMV8
: (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_FPV5_D16
: ARM::FK_FPV5_SP_D16));
else if (STI.hasFeature(ARM::FeatureVFP4_D16_SP))
emitFPU(STI.hasFeature(ARM::FeatureD32)
? ARM::FK_VFPV4
: (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_VFPV4_D16
: ARM::FK_FPV4_SP_D16));
else if (STI.hasFeature(ARM::FeatureVFP3_D16_SP))
emitFPU(
STI.hasFeature(ARM::FeatureD32)
// +d32
? (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3_FP16
: ARM::FK_VFPV3)
// -d32
: (STI.hasFeature(ARM::FeatureFP64)
? (STI.hasFeature(ARM::FeatureFP16)
? ARM::FK_VFPV3_D16_FP16
: ARM::FK_VFPV3_D16)
: (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3XD_FP16
: ARM::FK_VFPV3XD)));
else if (STI.hasFeature(ARM::FeatureVFP2_SP))
emitFPU(ARM::FK_VFPV2);
}
// ABI_HardFP_use attribute to indicate single precision FP.
if (STI.hasFeature(ARM::FeatureVFP2_SP) && !STI.hasFeature(ARM::FeatureFP64))
emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
ARMBuildAttrs::HardFPSinglePrecision);
if (STI.hasFeature(ARM::FeatureFP16))
emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
if (STI.hasFeature(ARM::FeatureMP))
emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
if (STI.hasFeature(ARM::HasMVEFloatOps))
emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEIntegerAndFloat);
else if (STI.hasFeature(ARM::HasMVEIntegerOps))
emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEInteger);
// Hardware divide in ARM mode is part of base arch, starting from ARMv8.
// If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
// It is not possible to produce DisallowDIV: if hwdiv is present in the base
// arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
// AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
// otherwise, the default value (AllowDIVIfExists) applies.
if (STI.hasFeature(ARM::FeatureHWDivARM) && !STI.hasFeature(ARM::HasV8Ops))
emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
if (STI.hasFeature(ARM::FeatureDSP) && isV8M(STI))
emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed);
if (STI.hasFeature(ARM::FeatureStrictAlign))
emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
ARMBuildAttrs::Not_Allowed);
else
emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
ARMBuildAttrs::Allowed);
if (STI.hasFeature(ARM::FeatureTrustZone) &&
STI.hasFeature(ARM::FeatureVirtualization))
emitAttribute(ARMBuildAttrs::Virtualization_use,
ARMBuildAttrs::AllowTZVirtualization);
else if (STI.hasFeature(ARM::FeatureTrustZone))
emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowTZ);
else if (STI.hasFeature(ARM::FeatureVirtualization))
emitAttribute(ARMBuildAttrs::Virtualization_use,
ARMBuildAttrs::AllowVirtualization);
}