Trace.cpp 17.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
//===- Trace.cpp - XRay Trace Loading implementation. ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// XRay log reader implementation.
//
//===----------------------------------------------------------------------===//
#include "llvm/XRay/Trace.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/XRay/BlockIndexer.h"
#include "llvm/XRay/BlockVerifier.h"
#include "llvm/XRay/FDRRecordConsumer.h"
#include "llvm/XRay/FDRRecordProducer.h"
#include "llvm/XRay/FDRRecords.h"
#include "llvm/XRay/FDRTraceExpander.h"
#include "llvm/XRay/FileHeaderReader.h"
#include "llvm/XRay/YAMLXRayRecord.h"
#include <memory>
#include <vector>

using namespace llvm;
using namespace llvm::xray;
using llvm::yaml::Input;

namespace {
using XRayRecordStorage =
    std::aligned_storage<sizeof(XRayRecord), alignof(XRayRecord)>::type;

Error loadNaiveFormatLog(StringRef Data, bool IsLittleEndian,
                         XRayFileHeader &FileHeader,
                         std::vector<XRayRecord> &Records) {
  if (Data.size() < 32)
    return make_error<StringError>(
        "Not enough bytes for an XRay log.",
        std::make_error_code(std::errc::invalid_argument));

  if (Data.size() - 32 == 0 || Data.size() % 32 != 0)
    return make_error<StringError>(
        "Invalid-sized XRay data.",
        std::make_error_code(std::errc::invalid_argument));

  DataExtractor Reader(Data, IsLittleEndian, 8);
  uint64_t OffsetPtr = 0;
  auto FileHeaderOrError = readBinaryFormatHeader(Reader, OffsetPtr);
  if (!FileHeaderOrError)
    return FileHeaderOrError.takeError();
  FileHeader = std::move(FileHeaderOrError.get());

  // Each record after the header will be 32 bytes, in the following format:
  //
  //   (2)   uint16 : record type
  //   (1)   uint8  : cpu id
  //   (1)   uint8  : type
  //   (4)   sint32 : function id
  //   (8)   uint64 : tsc
  //   (4)   uint32 : thread id
  //   (4)   uint32 : process id
  //   (8)   -      : padding
  while (Reader.isValidOffset(OffsetPtr)) {
    if (!Reader.isValidOffsetForDataOfSize(OffsetPtr, 32))
      return createStringError(
          std::make_error_code(std::errc::executable_format_error),
          "Not enough bytes to read a full record at offset %" PRId64 ".",
          OffsetPtr);
    auto PreReadOffset = OffsetPtr;
    auto RecordType = Reader.getU16(&OffsetPtr);
    if (OffsetPtr == PreReadOffset)
      return createStringError(
          std::make_error_code(std::errc::executable_format_error),
          "Failed reading record type at offset %" PRId64 ".", OffsetPtr);

    switch (RecordType) {
    case 0: { // Normal records.
      Records.emplace_back();
      auto &Record = Records.back();
      Record.RecordType = RecordType;

      PreReadOffset = OffsetPtr;
      Record.CPU = Reader.getU8(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading CPU field at offset %" PRId64 ".", OffsetPtr);

      PreReadOffset = OffsetPtr;
      auto Type = Reader.getU8(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading record type field at offset %" PRId64 ".",
            OffsetPtr);

      switch (Type) {
      case 0:
        Record.Type = RecordTypes::ENTER;
        break;
      case 1:
        Record.Type = RecordTypes::EXIT;
        break;
      case 2:
        Record.Type = RecordTypes::TAIL_EXIT;
        break;
      case 3:
        Record.Type = RecordTypes::ENTER_ARG;
        break;
      default:
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Unknown record type '%d' at offset %" PRId64 ".", Type, OffsetPtr);
      }

      PreReadOffset = OffsetPtr;
      Record.FuncId = Reader.getSigned(&OffsetPtr, sizeof(int32_t));
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading function id field at offset %" PRId64 ".",
            OffsetPtr);

      PreReadOffset = OffsetPtr;
      Record.TSC = Reader.getU64(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading TSC field at offset %" PRId64 ".", OffsetPtr);

      PreReadOffset = OffsetPtr;
      Record.TId = Reader.getU32(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading thread id field at offset %" PRId64 ".", OffsetPtr);

      PreReadOffset = OffsetPtr;
      Record.PId = Reader.getU32(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading process id at offset %" PRId64 ".", OffsetPtr);

      break;
    }
    case 1: { // Arg payload record.
      auto &Record = Records.back();

      // We skip the next two bytes of the record, because we don't need the
      // type and the CPU record for arg payloads.
      OffsetPtr += 2;
      PreReadOffset = OffsetPtr;
      int32_t FuncId = Reader.getSigned(&OffsetPtr, sizeof(int32_t));
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading function id field at offset %" PRId64 ".",
            OffsetPtr);

      PreReadOffset = OffsetPtr;
      auto TId = Reader.getU32(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading thread id field at offset %" PRId64 ".", OffsetPtr);

      PreReadOffset = OffsetPtr;
      auto PId = Reader.getU32(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading process id field at offset %" PRId64 ".",
            OffsetPtr);

      // Make a check for versions above 3 for the Pid field
      if (Record.FuncId != FuncId || Record.TId != TId ||
          (FileHeader.Version >= 3 ? Record.PId != PId : false))
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Corrupted log, found arg payload following non-matching "
            "function+thread record. Record for function %d != %d at offset "
            "%" PRId64 ".",
            Record.FuncId, FuncId, OffsetPtr);

      PreReadOffset = OffsetPtr;
      auto Arg = Reader.getU64(&OffsetPtr);
      if (OffsetPtr == PreReadOffset)
        return createStringError(
            std::make_error_code(std::errc::executable_format_error),
            "Failed reading argument payload at offset %" PRId64 ".",
            OffsetPtr);

      Record.CallArgs.push_back(Arg);
      break;
    }
    default:
      return createStringError(
          std::make_error_code(std::errc::executable_format_error),
          "Unknown record type '%d' at offset %" PRId64 ".", RecordType,
          OffsetPtr);
    }
    // Advance the offset pointer enough bytes to align to 32-byte records for
    // basic mode logs.
    OffsetPtr += 8;
  }
  return Error::success();
}

/// Reads a log in FDR mode for version 1 of this binary format. FDR mode is
/// defined as part of the compiler-rt project in xray_fdr_logging.h, and such
/// a log consists of the familiar 32 bit XRayHeader, followed by sequences of
/// of interspersed 16 byte Metadata Records and 8 byte Function Records.
///
/// The following is an attempt to document the grammar of the format, which is
/// parsed by this function for little-endian machines. Since the format makes
/// use of BitFields, when we support big-endian architectures, we will need to
/// adjust not only the endianness parameter to llvm's RecordExtractor, but also
/// the bit twiddling logic, which is consistent with the little-endian
/// convention that BitFields within a struct will first be packed into the
/// least significant bits the address they belong to.
///
/// We expect a format complying with the grammar in the following pseudo-EBNF
/// in Version 1 of the FDR log.
///
/// FDRLog: XRayFileHeader ThreadBuffer*
/// XRayFileHeader: 32 bytes to identify the log as FDR with machine metadata.
///     Includes BufferSize
/// ThreadBuffer: NewBuffer WallClockTime NewCPUId FunctionSequence EOB
/// BufSize: 8 byte unsigned integer indicating how large the buffer is.
/// NewBuffer: 16 byte metadata record with Thread Id.
/// WallClockTime: 16 byte metadata record with human readable time.
/// Pid: 16 byte metadata record with Pid
/// NewCPUId: 16 byte metadata record with CPUId and a 64 bit TSC reading.
/// EOB: 16 byte record in a thread buffer plus mem garbage to fill BufSize.
/// FunctionSequence: NewCPUId | TSCWrap | FunctionRecord
/// TSCWrap: 16 byte metadata record with a full 64 bit TSC reading.
/// FunctionRecord: 8 byte record with FunctionId, entry/exit, and TSC delta.
///
/// In Version 2, we make the following changes:
///
/// ThreadBuffer: BufferExtents NewBuffer WallClockTime NewCPUId
///               FunctionSequence
/// BufferExtents: 16 byte metdata record describing how many usable bytes are
///                in the buffer. This is measured from the start of the buffer
///                and must always be at least 48 (bytes).
///
/// In Version 3, we make the following changes:
///
/// ThreadBuffer: BufferExtents NewBuffer WallClockTime Pid NewCPUId
///               FunctionSequence
/// EOB: *deprecated*
///
/// In Version 4, we make the following changes:
///
/// CustomEventRecord now includes the CPU data.
///
/// In Version 5, we make the following changes:
///
/// CustomEventRecord and TypedEventRecord now use TSC delta encoding similar to
/// what FunctionRecord instances use, and we no longer need to include the CPU
/// id in the CustomEventRecord.
///
Error loadFDRLog(StringRef Data, bool IsLittleEndian,
                 XRayFileHeader &FileHeader, std::vector<XRayRecord> &Records) {

  if (Data.size() < 32)
    return createStringError(std::make_error_code(std::errc::invalid_argument),
                             "Not enough bytes for an XRay FDR log.");
  DataExtractor DE(Data, IsLittleEndian, 8);

  uint64_t OffsetPtr = 0;
  auto FileHeaderOrError = readBinaryFormatHeader(DE, OffsetPtr);
  if (!FileHeaderOrError)
    return FileHeaderOrError.takeError();
  FileHeader = std::move(FileHeaderOrError.get());

  // First we load the records into memory.
  std::vector<std::unique_ptr<Record>> FDRRecords;

  {
    FileBasedRecordProducer P(FileHeader, DE, OffsetPtr);
    LogBuilderConsumer C(FDRRecords);
    while (DE.isValidOffsetForDataOfSize(OffsetPtr, 1)) {
      auto R = P.produce();
      if (!R)
        return R.takeError();
      if (auto E = C.consume(std::move(R.get())))
        return E;
    }
  }

  // Next we index the records into blocks.
  BlockIndexer::Index Index;
  {
    BlockIndexer Indexer(Index);
    for (auto &R : FDRRecords)
      if (auto E = R->apply(Indexer))
        return E;
    if (auto E = Indexer.flush())
      return E;
  }

  // Then we verify the consistency of the blocks.
  {
    for (auto &PTB : Index) {
      auto &Blocks = PTB.second;
      for (auto &B : Blocks) {
        BlockVerifier Verifier;
        for (auto *R : B.Records)
          if (auto E = R->apply(Verifier))
            return E;
        if (auto E = Verifier.verify())
          return E;
      }
    }
  }

  // This is now the meat of the algorithm. Here we sort the blocks according to
  // the Walltime record in each of the blocks for the same thread. This allows
  // us to more consistently recreate the execution trace in temporal order.
  // After the sort, we then reconstitute `Trace` records using a stateful
  // visitor associated with a single process+thread pair.
  {
    for (auto &PTB : Index) {
      auto &Blocks = PTB.second;
      llvm::sort(Blocks, [](const BlockIndexer::Block &L,
                            const BlockIndexer::Block &R) {
        return (L.WallclockTime->seconds() < R.WallclockTime->seconds() &&
                L.WallclockTime->nanos() < R.WallclockTime->nanos());
      });
      auto Adder = [&](const XRayRecord &R) { Records.push_back(R); };
      TraceExpander Expander(Adder, FileHeader.Version);
      for (auto &B : Blocks) {
        for (auto *R : B.Records)
          if (auto E = R->apply(Expander))
            return E;
      }
      if (auto E = Expander.flush())
        return E;
    }
  }

  return Error::success();
}

Error loadYAMLLog(StringRef Data, XRayFileHeader &FileHeader,
                  std::vector<XRayRecord> &Records) {
  YAMLXRayTrace Trace;
  Input In(Data);
  In >> Trace;
  if (In.error())
    return make_error<StringError>("Failed loading YAML Data.", In.error());

  FileHeader.Version = Trace.Header.Version;
  FileHeader.Type = Trace.Header.Type;
  FileHeader.ConstantTSC = Trace.Header.ConstantTSC;
  FileHeader.NonstopTSC = Trace.Header.NonstopTSC;
  FileHeader.CycleFrequency = Trace.Header.CycleFrequency;

  if (FileHeader.Version != 1)
    return make_error<StringError>(
        Twine("Unsupported XRay file version: ") + Twine(FileHeader.Version),
        std::make_error_code(std::errc::invalid_argument));

  Records.clear();
  std::transform(Trace.Records.begin(), Trace.Records.end(),
                 std::back_inserter(Records), [&](const YAMLXRayRecord &R) {
                   return XRayRecord{R.RecordType, R.CPU,      R.Type,
                                     R.FuncId,     R.TSC,      R.TId,
                                     R.PId,        R.CallArgs, R.Data};
                 });
  return Error::success();
}
} // namespace

Expected<Trace> llvm::xray::loadTraceFile(StringRef Filename, bool Sort) {
  Expected<sys::fs::file_t> FdOrErr = sys::fs::openNativeFileForRead(Filename);
  if (!FdOrErr)
    return FdOrErr.takeError();

  uint64_t FileSize;
  if (auto EC = sys::fs::file_size(Filename, FileSize)) {
    return make_error<StringError>(
        Twine("Cannot read log from '") + Filename + "'", EC);
  }
  if (FileSize < 4) {
    return make_error<StringError>(
        Twine("File '") + Filename + "' too small for XRay.",
        std::make_error_code(std::errc::executable_format_error));
  }

  // Map the opened file into memory and use a StringRef to access it later.
  std::error_code EC;
  sys::fs::mapped_file_region MappedFile(
      *FdOrErr, sys::fs::mapped_file_region::mapmode::readonly, FileSize, 0,
      EC);
  sys::fs::closeFile(*FdOrErr);
  if (EC) {
    return make_error<StringError>(
        Twine("Cannot read log from '") + Filename + "'", EC);
  }
  auto Data = StringRef(MappedFile.data(), MappedFile.size());

  // TODO: Lift the endianness and implementation selection here.
  DataExtractor LittleEndianDE(Data, true, 8);
  auto TraceOrError = loadTrace(LittleEndianDE, Sort);
  if (!TraceOrError) {
    DataExtractor BigEndianDE(Data, false, 8);
    TraceOrError = loadTrace(BigEndianDE, Sort);
  }
  return TraceOrError;
}

Expected<Trace> llvm::xray::loadTrace(const DataExtractor &DE, bool Sort) {
  // Attempt to detect the file type using file magic. We have a slight bias
  // towards the binary format, and we do this by making sure that the first 4
  // bytes of the binary file is some combination of the following byte
  // patterns: (observe the code loading them assumes they're little endian)
  //
  //   0x01 0x00 0x00 0x00 - version 1, "naive" format
  //   0x01 0x00 0x01 0x00 - version 1, "flight data recorder" format
  //   0x02 0x00 0x01 0x00 - version 2, "flight data recorder" format
  //
  // YAML files don't typically have those first four bytes as valid text so we
  // try loading assuming YAML if we don't find these bytes.
  //
  // Only if we can't load either the binary or the YAML format will we yield an
  // error.
  DataExtractor HeaderExtractor(DE.getData(), DE.isLittleEndian(), 8);
  uint64_t OffsetPtr = 0;
  uint16_t Version = HeaderExtractor.getU16(&OffsetPtr);
  uint16_t Type = HeaderExtractor.getU16(&OffsetPtr);

  enum BinaryFormatType { NAIVE_FORMAT = 0, FLIGHT_DATA_RECORDER_FORMAT = 1 };

  Trace T;
  switch (Type) {
  case NAIVE_FORMAT:
    if (Version == 1 || Version == 2 || Version == 3) {
      if (auto E = loadNaiveFormatLog(DE.getData(), DE.isLittleEndian(),
                                      T.FileHeader, T.Records))
        return std::move(E);
    } else {
      return make_error<StringError>(
          Twine("Unsupported version for Basic/Naive Mode logging: ") +
              Twine(Version),
          std::make_error_code(std::errc::executable_format_error));
    }
    break;
  case FLIGHT_DATA_RECORDER_FORMAT:
    if (Version >= 1 && Version <= 5) {
      if (auto E = loadFDRLog(DE.getData(), DE.isLittleEndian(), T.FileHeader,
                              T.Records))
        return std::move(E);
    } else {
      return make_error<StringError>(
          Twine("Unsupported version for FDR Mode logging: ") + Twine(Version),
          std::make_error_code(std::errc::executable_format_error));
    }
    break;
  default:
    if (auto E = loadYAMLLog(DE.getData(), T.FileHeader, T.Records))
      return std::move(E);
  }

  if (Sort)
    llvm::stable_sort(T.Records, [&](const XRayRecord &L, const XRayRecord &R) {
      return L.TSC < R.TSC;
    });

  return std::move(T);
}