tanh.cl
4.87 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "math.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float tanh(float x)
{
// The definition of tanh(x) is sinh(x)/cosh(x), which is also equivalent
// to the following three formulae:
// 1. (exp(x) - exp(-x))/(exp(x) + exp(-x))
// 2. (1 - (2/(exp(2*x) + 1 )))
// 3. (exp(2*x) - 1)/(exp(2*x) + 1)
// but computationally, some formulae are better on some ranges.
const float large_threshold = 0x1.0a2b24p+3f;
uint ux = as_uint(x);
uint aux = ux & EXSIGNBIT_SP32;
uint xs = ux ^ aux;
float y = as_float(aux);
float y2 = y*y;
float a1 = mad(y2,
mad(y2, 0.4891631088530669873e-4F, -0.14628356048797849e-2F),
-0.28192806108402678e0F);
float b1 = mad(y2, 0.3427017942262751343e0F, 0.845784192581041099e0F);
float a2 = mad(y2,
mad(y2, 0.3827534993599483396e-4F, -0.12325644183611929e-2F),
-0.24069858695196524e0F);
float b2 = mad(y2, 0.292529068698052819e0F, 0.72209738473684982e0F);
int c = y < 0.9f;
float a = c ? a1 : a2;
float b = c ? b1 : b2;
float zlo = mad(MATH_DIVIDE(a, b), y*y2, y);
float p = exp(2.0f * y) + 1.0f;
float zhi = 1.0F - MATH_DIVIDE(2.0F, p);
float z = y <= 1.0f ? zlo : zhi;
z = as_float(xs | as_uint(z));
// Edge cases
float sone = as_float(0x3f800000U | xs);
z = y > large_threshold ? sone : z;
z = aux < 0x39000000 | aux > 0x7f800000 ? x : z;
return z;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, tanh, float);
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_OVERLOAD _CLC_DEF double tanh(double x)
{
// The definition of tanh(x) is sinh(x)/cosh(x), which is also equivalent
// to the following three formulae:
// 1. (exp(x) - exp(-x))/(exp(x) + exp(-x))
// 2. (1 - (2/(exp(2*x) + 1 )))
// 3. (exp(2*x) - 1)/(exp(2*x) + 1)
// but computationally, some formulae are better on some ranges.
// The point at which e^-x is insignificant compared to e^x = ln(2^27)
const double large_threshold = 0x1.2b708872320e2p+4;
ulong ux = as_ulong(x);
ulong ax = ux & ~SIGNBIT_DP64;
ulong sx = ux ^ ax;
double y = as_double(ax);
double y2 = y * y;
// y < 0.9
double znl = fma(y2,
fma(y2,
fma(y2, -0.142077926378834722618091e-7, -0.200047621071909498730453e-3),
-0.176016349003044679402273e-1),
-0.274030424656179760118928e0);
double zdl = fma(y2,
fma(y2,
fma(y2, 0.2091140262529164482568557e-3, 0.201562166026937652780575e-1),
0.381641414288328849317962e0),
0.822091273968539282568011e0);
// 0.9 <= y <= 1
double znm = fma(y2,
fma(y2,
fma(y2, -0.115475878996143396378318e-7, -0.165597043903549960486816e-3),
-0.146173047288731678404066e-1),
-0.227793870659088295252442e0);
double zdm = fma(y2,
fma(y2,
fma(y2, 0.173076050126225961768710e-3, 0.167358775461896562588695e-1),
0.317204558977294374244770e0),
0.683381611977295894959554e0);
int c = y < 0.9;
double zn = c ? znl : znm;
double zd = c ? zdl : zdm;
double z = y + y*y2 * MATH_DIVIDE(zn, zd);
// y > 1
double p = exp(2.0 * y) + 1.0;
double zg = 1.0 - 2.0 / p;
z = y > 1.0 ? zg : z;
// Other cases
z = y < 0x1.0p-28 | ax > PINFBITPATT_DP64 ? x : z;
z = y > large_threshold ? 1.0 : z;
return as_double(sx | as_ulong(z));
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, tanh, double);
#endif // cl_khr_fp64