nth_element.pass.cpp
6.51 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// -*- C++ -*-
//===-- nth_element.pass.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++98, c++03, c++11, c++14
#include "support/pstl_test_config.h"
#include <iostream>
#include <execution>
#include <algorithm>
#include "support/utils.h"
using namespace TestUtils;
// User defined type with minimal requirements
template <typename T>
struct DataType
{
explicit DataType(int32_t k) : my_val(k) {}
DataType(DataType&& input)
{
my_val = std::move(input.my_val);
input.my_val = T(0);
}
DataType&
operator=(DataType&& input)
{
my_val = std::move(input.my_val);
input.my_val = T(0);
return *this;
}
T
get_val() const
{
return my_val;
}
friend std::ostream&
operator<<(std::ostream& stream, const DataType<T>& input)
{
return stream << input.my_val;
}
private:
T my_val;
};
template <typename T>
bool
is_equal(const DataType<T>& x, const DataType<T>& y)
{
return x.get_val() == y.get_val();
}
template <typename T>
bool
is_equal(const T& x, const T& y)
{
return x == y;
}
struct test_one_policy
{
#if _PSTL_ICC_17_VC141_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN || \
_PSTL_ICC_16_VC14_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN // dummy specialization by policy type, in case of broken configuration
template <typename Iterator1, typename Size, typename Generator1, typename Generator2, typename Compare>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(pstl::execution::unsequenced_policy, Iterator1 first1, Iterator1 last1, Iterator1 first2,
Iterator1 last2, Size n, Size m, Generator1 generator1, Generator2 generator2, Compare comp)
{
}
template <typename Iterator1, typename Size, typename Generator1, typename Generator2, typename Compare>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(pstl::execution::parallel_unsequenced_policy, Iterator1 first1, Iterator1 last1, Iterator1 first2,
Iterator1 last2, Size n, Size m, Generator1 generator1, Generator2 generator2, Compare comp)
{
}
#endif
// nth_element works only with random access iterators
template <typename Policy, typename Iterator1, typename Size, typename Generator1, typename Generator2,
typename Compare>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(Policy&& exec, Iterator1 first1, Iterator1 last1, Iterator1 first2, Iterator1 last2, Size n, Size m,
Generator1 generator1, Generator2 generator2, Compare comp)
{
using T = typename std::iterator_traits<Iterator1>::value_type;
const Iterator1 mid1 = std::next(first1, m);
const Iterator1 mid2 = std::next(first2, m);
fill_data(first1, mid1, generator1);
fill_data(mid1, last1, generator2);
fill_data(first2, mid2, generator1);
fill_data(mid2, last2, generator2);
std::nth_element(first1, mid1, last1, comp);
std::nth_element(exec, first2, mid2, last2, comp);
if (m > 0 && m < n)
{
EXPECT_TRUE(is_equal(*mid1, *mid2), "wrong result from nth_element with predicate");
}
EXPECT_TRUE(std::find_first_of(first2, mid2, mid2, last2, [comp](T& x, T& y) { return comp(y, x); }) == mid2,
"wrong effect from nth_element with predicate");
}
template <typename Policy, typename Iterator1, typename Size, typename Generator1, typename Generator2,
typename Compare>
typename std::enable_if<!is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(Policy&&, Iterator1, Iterator1, Iterator1, Iterator1, Size, Size, Generator1, Generator2, Compare)
{
}
};
template <typename T, typename Generator1, typename Generator2, typename Compare>
void
test_by_type(Generator1 generator1, Generator2 generator2, Compare comp)
{
using namespace std;
size_t max_size = 10000;
Sequence<T> in1(max_size, [](size_t v) { return T(v); });
Sequence<T> exp(max_size, [](size_t v) { return T(v); });
size_t m;
for (size_t n = 0; n <= max_size; n = n <= 16 ? n + 1 : size_t(3.1415 * n))
{
m = 0;
invoke_on_all_policies(test_one_policy(), exp.begin(), exp.begin() + n, in1.begin(), in1.begin() + n, n, m,
generator1, generator2, comp);
m = n / 7;
invoke_on_all_policies(test_one_policy(), exp.begin(), exp.begin() + n, in1.begin(), in1.begin() + n, n, m,
generator1, generator2, comp);
m = 3 * n / 5;
invoke_on_all_policies(test_one_policy(), exp.begin(), exp.begin() + n, in1.begin(), in1.begin() + n, n, m,
generator1, generator2, comp);
}
invoke_on_all_policies(test_one_policy(), exp.begin(), exp.begin() + max_size, in1.begin(), in1.begin() + max_size,
max_size, max_size, generator1, generator2, comp);
}
template <typename T>
struct test_non_const
{
template <typename Policy, typename Iterator>
void
operator()(Policy&& exec, Iterator iter)
{
invoke_if(exec, [&]() { nth_element(exec, iter, iter, iter, non_const(std::less<T>())); });
}
};
int
main()
{
test_by_type<int32_t>([](int32_t i) { return 10 * i; }, [](int32_t i) { return i + 1; }, std::less<int32_t>());
test_by_type<int32_t>([](int32_t) { return 0; }, [](int32_t) { return 0; }, std::less<int32_t>());
test_by_type<float64_t>([](int32_t i) { return -2 * i; }, [](int32_t i) { return -(2 * i + 1); },
[](const float64_t x, const float64_t y) { return x > y; });
test_by_type<DataType<float32_t>>(
[](int32_t i) { return DataType<float32_t>(2 * i + 1); }, [](int32_t i) { return DataType<float32_t>(2 * i); },
[](const DataType<float32_t>& x, const DataType<float32_t>& y) { return x.get_val() < y.get_val(); });
test_algo_basic_single<int32_t>(run_for_rnd<test_non_const<int32_t>>());
std::cout << done() << std::endl;
return 0;
}