NeonEmitter.cpp 74.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting arm_neon.h, which includes
// a declaration and definition of each function specified by the ARM NEON
// compiler interface.  See ARM document DUI0348B.
//
// Each NEON instruction is implemented in terms of 1 or more functions which
// are suffixed with the element type of the input vectors.  Functions may be
// implemented in terms of generic vector operations such as +, *, -, etc. or
// by calling a __builtin_-prefixed function which will be handled by clang's
// CodeGen library.
//
// Additional validation code can be generated by this file when runHeader() is
// called, rather than the normal run() entry point.
//
// See also the documentation in include/clang/Basic/arm_neon.td.
//
//===----------------------------------------------------------------------===//

#include "TableGenBackends.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/SetTheory.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

namespace {

// While globals are generally bad, this one allows us to perform assertions
// liberally and somehow still trace them back to the def they indirectly
// came from.
static Record *CurrentRecord = nullptr;
static void assert_with_loc(bool Assertion, const std::string &Str) {
  if (!Assertion) {
    if (CurrentRecord)
      PrintFatalError(CurrentRecord->getLoc(), Str);
    else
      PrintFatalError(Str);
  }
}

enum ClassKind {
  ClassNone,
  ClassI,     // generic integer instruction, e.g., "i8" suffix
  ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
  ClassW,     // width-specific instruction, e.g., "8" suffix
  ClassB,     // bitcast arguments with enum argument to specify type
  ClassL,     // Logical instructions which are op instructions
              // but we need to not emit any suffix for in our
              // tests.
  ClassNoTest // Instructions which we do not test since they are
              // not TRUE instructions.
};

/// NeonTypeFlags - Flags to identify the types for overloaded Neon
/// builtins.  These must be kept in sync with the flags in
/// include/clang/Basic/TargetBuiltins.h.
namespace NeonTypeFlags {

enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };

enum EltType {
  Int8,
  Int16,
  Int32,
  Int64,
  Poly8,
  Poly16,
  Poly64,
  Poly128,
  Float16,
  Float32,
  Float64
};

} // end namespace NeonTypeFlags

class NeonEmitter;

//===----------------------------------------------------------------------===//
// TypeSpec
//===----------------------------------------------------------------------===//

/// A TypeSpec is just a simple wrapper around a string, but gets its own type
/// for strong typing purposes.
///
/// A TypeSpec can be used to create a type.
class TypeSpec : public std::string {
public:
  static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
    std::vector<TypeSpec> Ret;
    TypeSpec Acc;
    for (char I : Str.str()) {
      if (islower(I)) {
        Acc.push_back(I);
        Ret.push_back(TypeSpec(Acc));
        Acc.clear();
      } else {
        Acc.push_back(I);
      }
    }
    return Ret;
  }
};

//===----------------------------------------------------------------------===//
// Type
//===----------------------------------------------------------------------===//

/// A Type. Not much more to say here.
class Type {
private:
  TypeSpec TS;

  enum TypeKind {
    Void,
    Float,
    SInt,
    UInt,
    Poly,
  };
  TypeKind Kind;
  bool Immediate, Constant, Pointer;
  // ScalarForMangling and NoManglingQ are really not suited to live here as
  // they are not related to the type. But they live in the TypeSpec (not the
  // prototype), so this is really the only place to store them.
  bool ScalarForMangling, NoManglingQ;
  unsigned Bitwidth, ElementBitwidth, NumVectors;

public:
  Type()
      : Kind(Void), Immediate(false), Constant(false),
        Pointer(false), ScalarForMangling(false), NoManglingQ(false),
        Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}

  Type(TypeSpec TS, StringRef CharMods)
      : TS(std::move(TS)), Kind(Void), Immediate(false),
        Constant(false), Pointer(false), ScalarForMangling(false),
        NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
    applyModifiers(CharMods);
  }

  /// Returns a type representing "void".
  static Type getVoid() { return Type(); }

  bool operator==(const Type &Other) const { return str() == Other.str(); }
  bool operator!=(const Type &Other) const { return !operator==(Other); }

  //
  // Query functions
  //
  bool isScalarForMangling() const { return ScalarForMangling; }
  bool noManglingQ() const { return NoManglingQ; }

  bool isPointer() const { return Pointer; }
  bool isValue() const { return !isVoid() && !isPointer(); }
  bool isScalar() const { return isValue() && NumVectors == 0; }
  bool isVector() const { return isValue() && NumVectors > 0; }
  bool isConstPointer() const { return Constant; }
  bool isFloating() const { return Kind == Float; }
  bool isInteger() const { return Kind == SInt || Kind == UInt; }
  bool isPoly() const { return Kind == Poly; }
  bool isSigned() const { return Kind == SInt; }
  bool isImmediate() const { return Immediate; }
  bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
  bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
  bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
  bool isChar() const { return ElementBitwidth == 8; }
  bool isShort() const { return isInteger() && ElementBitwidth == 16; }
  bool isInt() const { return isInteger() && ElementBitwidth == 32; }
  bool isLong() const { return isInteger() && ElementBitwidth == 64; }
  bool isVoid() const { return Kind == Void; }
  unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
  unsigned getSizeInBits() const { return Bitwidth; }
  unsigned getElementSizeInBits() const { return ElementBitwidth; }
  unsigned getNumVectors() const { return NumVectors; }

  //
  // Mutator functions
  //
  void makeUnsigned() {
    assert(!isVoid() && "not a potentially signed type");
    Kind = UInt;
  }
  void makeSigned() {
    assert(!isVoid() && "not a potentially signed type");
    Kind = SInt;
  }

  void makeInteger(unsigned ElemWidth, bool Sign) {
    assert(!isVoid() && "converting void to int probably not useful");
    Kind = Sign ? SInt : UInt;
    Immediate = false;
    ElementBitwidth = ElemWidth;
  }

  void makeImmediate(unsigned ElemWidth) {
    Kind = SInt;
    Immediate = true;
    ElementBitwidth = ElemWidth;
  }

  void makeScalar() {
    Bitwidth = ElementBitwidth;
    NumVectors = 0;
  }

  void makeOneVector() {
    assert(isVector());
    NumVectors = 1;
  }

  void doubleLanes() {
    assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
    Bitwidth = 128;
  }

  void halveLanes() {
    assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
    Bitwidth = 64;
  }

  /// Return the C string representation of a type, which is the typename
  /// defined in stdint.h or arm_neon.h.
  std::string str() const;

  /// Return the string representation of a type, which is an encoded
  /// string for passing to the BUILTIN() macro in Builtins.def.
  std::string builtin_str() const;

  /// Return the value in NeonTypeFlags for this type.
  unsigned getNeonEnum() const;

  /// Parse a type from a stdint.h or arm_neon.h typedef name,
  /// for example uint32x2_t or int64_t.
  static Type fromTypedefName(StringRef Name);

private:
  /// Creates the type based on the typespec string in TS.
  /// Sets "Quad" to true if the "Q" or "H" modifiers were
  /// seen. This is needed by applyModifier as some modifiers
  /// only take effect if the type size was changed by "Q" or "H".
  void applyTypespec(bool &Quad);
  /// Applies prototype modifiers to the type.
  void applyModifiers(StringRef Mods);
};

//===----------------------------------------------------------------------===//
// Variable
//===----------------------------------------------------------------------===//

/// A variable is a simple class that just has a type and a name.
class Variable {
  Type T;
  std::string N;

public:
  Variable() : T(Type::getVoid()), N("") {}
  Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}

  Type getType() const { return T; }
  std::string getName() const { return "__" + N; }
};

//===----------------------------------------------------------------------===//
// Intrinsic
//===----------------------------------------------------------------------===//

/// The main grunt class. This represents an instantiation of an intrinsic with
/// a particular typespec and prototype.
class Intrinsic {
  friend class DagEmitter;

  /// The Record this intrinsic was created from.
  Record *R;
  /// The unmangled name.
  std::string Name;
  /// The input and output typespecs. InTS == OutTS except when
  /// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
  TypeSpec OutTS, InTS;
  /// The base class kind. Most intrinsics use ClassS, which has full type
  /// info for integers (s32/u32). Some use ClassI, which doesn't care about
  /// signedness (i32), while some (ClassB) have no type at all, only a width
  /// (32).
  ClassKind CK;
  /// The list of DAGs for the body. May be empty, in which case we should
  /// emit a builtin call.
  ListInit *Body;
  /// The architectural #ifdef guard.
  std::string Guard;
  /// Set if the Unavailable bit is 1. This means we don't generate a body,
  /// just an "unavailable" attribute on a declaration.
  bool IsUnavailable;
  /// Is this intrinsic safe for big-endian? or does it need its arguments
  /// reversing?
  bool BigEndianSafe;

  /// The types of return value [0] and parameters [1..].
  std::vector<Type> Types;
  /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
  int PolymorphicKeyType;
  /// The local variables defined.
  std::map<std::string, Variable> Variables;
  /// NeededEarly - set if any other intrinsic depends on this intrinsic.
  bool NeededEarly;
  /// UseMacro - set if we should implement using a macro or unset for a
  ///            function.
  bool UseMacro;
  /// The set of intrinsics that this intrinsic uses/requires.
  std::set<Intrinsic *> Dependencies;
  /// The "base type", which is Type('d', OutTS). InBaseType is only
  /// different if CartesianProductOfTypes = 1 (for vreinterpret).
  Type BaseType, InBaseType;
  /// The return variable.
  Variable RetVar;
  /// A postfix to apply to every variable. Defaults to "".
  std::string VariablePostfix;

  NeonEmitter &Emitter;
  std::stringstream OS;

  bool isBigEndianSafe() const {
    if (BigEndianSafe)
      return true;

    for (const auto &T : Types){
      if (T.isVector() && T.getNumElements() > 1)
        return false;
    }
    return true;
  }

public:
  Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
            TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
            StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
      : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
        Guard(Guard.str()), IsUnavailable(IsUnavailable),
        BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
        UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
        Emitter(Emitter) {
    // Modify the TypeSpec per-argument to get a concrete Type, and create
    // known variables for each.
    // Types[0] is the return value.
    unsigned Pos = 0;
    Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
    StringRef Mods = getNextModifiers(Proto, Pos);
    while (!Mods.empty()) {
      Types.emplace_back(InTS, Mods);
      if (Mods.find("!") != StringRef::npos)
        PolymorphicKeyType = Types.size() - 1;

      Mods = getNextModifiers(Proto, Pos);
    }

    for (auto Type : Types) {
      // If this builtin takes an immediate argument, we need to #define it rather
      // than use a standard declaration, so that SemaChecking can range check
      // the immediate passed by the user.

      // Pointer arguments need to use macros to avoid hiding aligned attributes
      // from the pointer type.

      // It is not permitted to pass or return an __fp16 by value, so intrinsics
      // taking a scalar float16_t must be implemented as macros.
      if (Type.isImmediate() || Type.isPointer() ||
          (Type.isScalar() && Type.isHalf()))
        UseMacro = true;
    }
  }

  /// Get the Record that this intrinsic is based off.
  Record *getRecord() const { return R; }
  /// Get the set of Intrinsics that this intrinsic calls.
  /// this is the set of immediate dependencies, NOT the
  /// transitive closure.
  const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
  /// Get the architectural guard string (#ifdef).
  std::string getGuard() const { return Guard; }
  /// Get the non-mangled name.
  std::string getName() const { return Name; }

  /// Return true if the intrinsic takes an immediate operand.
  bool hasImmediate() const {
    return std::any_of(Types.begin(), Types.end(),
                       [](const Type &T) { return T.isImmediate(); });
  }

  /// Return the parameter index of the immediate operand.
  unsigned getImmediateIdx() const {
    for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
      if (Types[Idx].isImmediate())
        return Idx - 1;
    llvm_unreachable("Intrinsic has no immediate");
  }


  unsigned getNumParams() const { return Types.size() - 1; }
  Type getReturnType() const { return Types[0]; }
  Type getParamType(unsigned I) const { return Types[I + 1]; }
  Type getBaseType() const { return BaseType; }
  Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }

  /// Return true if the prototype has a scalar argument.
  bool protoHasScalar() const;

  /// Return the index that parameter PIndex will sit at
  /// in a generated function call. This is often just PIndex,
  /// but may not be as things such as multiple-vector operands
  /// and sret parameters need to be taken into accont.
  unsigned getGeneratedParamIdx(unsigned PIndex) {
    unsigned Idx = 0;
    if (getReturnType().getNumVectors() > 1)
      // Multiple vectors are passed as sret.
      ++Idx;

    for (unsigned I = 0; I < PIndex; ++I)
      Idx += std::max(1U, getParamType(I).getNumVectors());

    return Idx;
  }

  bool hasBody() const { return Body && !Body->getValues().empty(); }

  void setNeededEarly() { NeededEarly = true; }

  bool operator<(const Intrinsic &Other) const {
    // Sort lexicographically on a two-tuple (Guard, Name)
    if (Guard != Other.Guard)
      return Guard < Other.Guard;
    return Name < Other.Name;
  }

  ClassKind getClassKind(bool UseClassBIfScalar = false) {
    if (UseClassBIfScalar && !protoHasScalar())
      return ClassB;
    return CK;
  }

  /// Return the name, mangled with type information.
  /// If ForceClassS is true, use ClassS (u32/s32) instead
  /// of the intrinsic's own type class.
  std::string getMangledName(bool ForceClassS = false) const;
  /// Return the type code for a builtin function call.
  std::string getInstTypeCode(Type T, ClassKind CK) const;
  /// Return the type string for a BUILTIN() macro in Builtins.def.
  std::string getBuiltinTypeStr();

  /// Generate the intrinsic, returning code.
  std::string generate();
  /// Perform type checking and populate the dependency graph, but
  /// don't generate code yet.
  void indexBody();

private:
  StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;

  std::string mangleName(std::string Name, ClassKind CK) const;

  void initVariables();
  std::string replaceParamsIn(std::string S);

  void emitBodyAsBuiltinCall();

  void generateImpl(bool ReverseArguments,
                    StringRef NamePrefix, StringRef CallPrefix);
  void emitReturn();
  void emitBody(StringRef CallPrefix);
  void emitShadowedArgs();
  void emitArgumentReversal();
  void emitReturnReversal();
  void emitReverseVariable(Variable &Dest, Variable &Src);
  void emitNewLine();
  void emitClosingBrace();
  void emitOpeningBrace();
  void emitPrototype(StringRef NamePrefix);

  class DagEmitter {
    Intrinsic &Intr;
    StringRef CallPrefix;

  public:
    DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
      Intr(Intr), CallPrefix(CallPrefix) {
    }
    std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
    std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
    std::pair<Type, std::string> emitDagSplat(DagInit *DI);
    std::pair<Type, std::string> emitDagDup(DagInit *DI);
    std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
    std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
    std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
    std::pair<Type, std::string> emitDagCall(DagInit *DI);
    std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
    std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
    std::pair<Type, std::string> emitDagOp(DagInit *DI);
    std::pair<Type, std::string> emitDag(DagInit *DI);
  };
};

//===----------------------------------------------------------------------===//
// NeonEmitter
//===----------------------------------------------------------------------===//

class NeonEmitter {
  RecordKeeper &Records;
  DenseMap<Record *, ClassKind> ClassMap;
  std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
  unsigned UniqueNumber;

  void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
  void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
  void genOverloadTypeCheckCode(raw_ostream &OS,
                                SmallVectorImpl<Intrinsic *> &Defs);
  void genIntrinsicRangeCheckCode(raw_ostream &OS,
                                  SmallVectorImpl<Intrinsic *> &Defs);

public:
  /// Called by Intrinsic - this attempts to get an intrinsic that takes
  /// the given types as arguments.
  Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types);

  /// Called by Intrinsic - returns a globally-unique number.
  unsigned getUniqueNumber() { return UniqueNumber++; }

  NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
    Record *SI = R.getClass("SInst");
    Record *II = R.getClass("IInst");
    Record *WI = R.getClass("WInst");
    Record *SOpI = R.getClass("SOpInst");
    Record *IOpI = R.getClass("IOpInst");
    Record *WOpI = R.getClass("WOpInst");
    Record *LOpI = R.getClass("LOpInst");
    Record *NoTestOpI = R.getClass("NoTestOpInst");

    ClassMap[SI] = ClassS;
    ClassMap[II] = ClassI;
    ClassMap[WI] = ClassW;
    ClassMap[SOpI] = ClassS;
    ClassMap[IOpI] = ClassI;
    ClassMap[WOpI] = ClassW;
    ClassMap[LOpI] = ClassL;
    ClassMap[NoTestOpI] = ClassNoTest;
  }

  // run - Emit arm_neon.h.inc
  void run(raw_ostream &o);

  // runFP16 - Emit arm_fp16.h.inc
  void runFP16(raw_ostream &o);

  // runHeader - Emit all the __builtin prototypes used in arm_neon.h
	// and arm_fp16.h
  void runHeader(raw_ostream &o);

  // runTests - Emit tests for all the Neon intrinsics.
  void runTests(raw_ostream &o);
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Type implementation
//===----------------------------------------------------------------------===//

std::string Type::str() const {
  if (isVoid())
    return "void";
  std::string S;

  if (isInteger() && !isSigned())
    S += "u";

  if (isPoly())
    S += "poly";
  else if (isFloating())
    S += "float";
  else
    S += "int";

  S += utostr(ElementBitwidth);
  if (isVector())
    S += "x" + utostr(getNumElements());
  if (NumVectors > 1)
    S += "x" + utostr(NumVectors);
  S += "_t";

  if (Constant)
    S += " const";
  if (Pointer)
    S += " *";

  return S;
}

std::string Type::builtin_str() const {
  std::string S;
  if (isVoid())
    return "v";

  if (isPointer()) {
    // All pointers are void pointers.
    S = "v";
    if (isConstPointer())
      S += "C";
    S += "*";
    return S;
  } else if (isInteger())
    switch (ElementBitwidth) {
    case 8: S += "c"; break;
    case 16: S += "s"; break;
    case 32: S += "i"; break;
    case 64: S += "Wi"; break;
    case 128: S += "LLLi"; break;
    default: llvm_unreachable("Unhandled case!");
    }
  else
    switch (ElementBitwidth) {
    case 16: S += "h"; break;
    case 32: S += "f"; break;
    case 64: S += "d"; break;
    default: llvm_unreachable("Unhandled case!");
    }

  // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
  if (isChar() && !isPointer() && isSigned())
    // Make chars explicitly signed.
    S = "S" + S;
  else if (isInteger() && !isSigned())
    S = "U" + S;

  // Constant indices are "int", but have the "constant expression" modifier.
  if (isImmediate()) {
    assert(isInteger() && isSigned());
    S = "I" + S;
  }

  if (isScalar())
    return S;

  std::string Ret;
  for (unsigned I = 0; I < NumVectors; ++I)
    Ret += "V" + utostr(getNumElements()) + S;

  return Ret;
}

unsigned Type::getNeonEnum() const {
  unsigned Addend;
  switch (ElementBitwidth) {
  case 8: Addend = 0; break;
  case 16: Addend = 1; break;
  case 32: Addend = 2; break;
  case 64: Addend = 3; break;
  case 128: Addend = 4; break;
  default: llvm_unreachable("Unhandled element bitwidth!");
  }

  unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
  if (isPoly()) {
    // Adjustment needed because Poly32 doesn't exist.
    if (Addend >= 2)
      --Addend;
    Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
  }
  if (isFloating()) {
    assert(Addend != 0 && "Float8 doesn't exist!");
    Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
  }

  if (Bitwidth == 128)
    Base |= (unsigned)NeonTypeFlags::QuadFlag;
  if (isInteger() && !isSigned())
    Base |= (unsigned)NeonTypeFlags::UnsignedFlag;

  return Base;
}

Type Type::fromTypedefName(StringRef Name) {
  Type T;
  T.Kind = SInt;

  if (Name.front() == 'u') {
    T.Kind = UInt;
    Name = Name.drop_front();
  }

  if (Name.startswith("float")) {
    T.Kind = Float;
    Name = Name.drop_front(5);
  } else if (Name.startswith("poly")) {
    T.Kind = Poly;
    Name = Name.drop_front(4);
  } else {
    assert(Name.startswith("int"));
    Name = Name.drop_front(3);
  }

  unsigned I = 0;
  for (I = 0; I < Name.size(); ++I) {
    if (!isdigit(Name[I]))
      break;
  }
  Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
  Name = Name.drop_front(I);

  T.Bitwidth = T.ElementBitwidth;
  T.NumVectors = 1;

  if (Name.front() == 'x') {
    Name = Name.drop_front();
    unsigned I = 0;
    for (I = 0; I < Name.size(); ++I) {
      if (!isdigit(Name[I]))
        break;
    }
    unsigned NumLanes;
    Name.substr(0, I).getAsInteger(10, NumLanes);
    Name = Name.drop_front(I);
    T.Bitwidth = T.ElementBitwidth * NumLanes;
  } else {
    // Was scalar.
    T.NumVectors = 0;
  }
  if (Name.front() == 'x') {
    Name = Name.drop_front();
    unsigned I = 0;
    for (I = 0; I < Name.size(); ++I) {
      if (!isdigit(Name[I]))
        break;
    }
    Name.substr(0, I).getAsInteger(10, T.NumVectors);
    Name = Name.drop_front(I);
  }

  assert(Name.startswith("_t") && "Malformed typedef!");
  return T;
}

void Type::applyTypespec(bool &Quad) {
  std::string S = TS;
  ScalarForMangling = false;
  Kind = SInt;
  ElementBitwidth = ~0U;
  NumVectors = 1;

  for (char I : S) {
    switch (I) {
    case 'S':
      ScalarForMangling = true;
      break;
    case 'H':
      NoManglingQ = true;
      Quad = true;
      break;
    case 'Q':
      Quad = true;
      break;
    case 'P':
      Kind = Poly;
      break;
    case 'U':
      Kind = UInt;
      break;
    case 'c':
      ElementBitwidth = 8;
      break;
    case 'h':
      Kind = Float;
      LLVM_FALLTHROUGH;
    case 's':
      ElementBitwidth = 16;
      break;
    case 'f':
      Kind = Float;
      LLVM_FALLTHROUGH;
    case 'i':
      ElementBitwidth = 32;
      break;
    case 'd':
      Kind = Float;
      LLVM_FALLTHROUGH;
    case 'l':
      ElementBitwidth = 64;
      break;
    case 'k':
      ElementBitwidth = 128;
      // Poly doesn't have a 128x1 type.
      if (isPoly())
        NumVectors = 0;
      break;
    default:
      llvm_unreachable("Unhandled type code!");
    }
  }
  assert(ElementBitwidth != ~0U && "Bad element bitwidth!");

  Bitwidth = Quad ? 128 : 64;
}

void Type::applyModifiers(StringRef Mods) {
  bool AppliedQuad = false;
  applyTypespec(AppliedQuad);

  for (char Mod : Mods) {
    switch (Mod) {
    case '.':
      break;
    case 'v':
      Kind = Void;
      break;
    case 'S':
      Kind = SInt;
      break;
    case 'U':
      Kind = UInt;
      break;
    case 'F':
      Kind = Float;
      break;
    case 'P':
      Kind = Poly;
      break;
    case '>':
      assert(ElementBitwidth < 128);
      ElementBitwidth *= 2;
      break;
    case '<':
      assert(ElementBitwidth > 8);
      ElementBitwidth /= 2;
      break;
    case '1':
      NumVectors = 0;
      break;
    case '2':
      NumVectors = 2;
      break;
    case '3':
      NumVectors = 3;
      break;
    case '4':
      NumVectors = 4;
      break;
    case '*':
      Pointer = true;
      break;
    case 'c':
      Constant = true;
      break;
    case 'Q':
      Bitwidth = 128;
      break;
    case 'q':
      Bitwidth = 64;
      break;
    case 'I':
      Kind = SInt;
      ElementBitwidth = Bitwidth = 32;
      NumVectors = 0;
      Immediate = true;
      break;
    case 'p':
      if (isPoly())
        Kind = UInt;
      break;
    case '!':
      // Key type, handled elsewhere.
      break;
    default:
      llvm_unreachable("Unhandled character!");
    }
  }
}

//===----------------------------------------------------------------------===//
// Intrinsic implementation
//===----------------------------------------------------------------------===//

StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
  if (Proto.size() == Pos)
    return StringRef();
  else if (Proto[Pos] != '(')
    return Proto.substr(Pos++, 1);

  size_t Start = Pos + 1;
  size_t End = Proto.find(')', Start);
  assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
  Pos = End + 1;
  return Proto.slice(Start, End);
}

std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
  char typeCode = '\0';
  bool printNumber = true;

  if (CK == ClassB)
    return "";

  if (T.isPoly())
    typeCode = 'p';
  else if (T.isInteger())
    typeCode = T.isSigned() ? 's' : 'u';
  else
    typeCode = 'f';

  if (CK == ClassI) {
    switch (typeCode) {
    default:
      break;
    case 's':
    case 'u':
    case 'p':
      typeCode = 'i';
      break;
    }
  }
  if (CK == ClassB) {
    typeCode = '\0';
  }

  std::string S;
  if (typeCode != '\0')
    S.push_back(typeCode);
  if (printNumber)
    S += utostr(T.getElementSizeInBits());

  return S;
}

std::string Intrinsic::getBuiltinTypeStr() {
  ClassKind LocalCK = getClassKind(true);
  std::string S;

  Type RetT = getReturnType();
  if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
      !RetT.isFloating())
    RetT.makeInteger(RetT.getElementSizeInBits(), false);

  // Since the return value must be one type, return a vector type of the
  // appropriate width which we will bitcast.  An exception is made for
  // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
  // fashion, storing them to a pointer arg.
  if (RetT.getNumVectors() > 1) {
    S += "vv*"; // void result with void* first argument
  } else {
    if (RetT.isPoly())
      RetT.makeInteger(RetT.getElementSizeInBits(), false);
    if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
      RetT.makeSigned();

    if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
      // Cast to vector of 8-bit elements.
      RetT.makeInteger(8, true);

    S += RetT.builtin_str();
  }

  for (unsigned I = 0; I < getNumParams(); ++I) {
    Type T = getParamType(I);
    if (T.isPoly())
      T.makeInteger(T.getElementSizeInBits(), false);

    if (LocalCK == ClassB && !T.isScalar())
      T.makeInteger(8, true);
    // Halves always get converted to 8-bit elements.
    if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
      T.makeInteger(8, true);

    if (LocalCK == ClassI && T.isInteger())
      T.makeSigned();

    if (hasImmediate() && getImmediateIdx() == I)
      T.makeImmediate(32);

    S += T.builtin_str();
  }

  // Extra constant integer to hold type class enum for this function, e.g. s8
  if (LocalCK == ClassB)
    S += "i";

  return S;
}

std::string Intrinsic::getMangledName(bool ForceClassS) const {
  // Check if the prototype has a scalar operand with the type of the vector
  // elements.  If not, bitcasting the args will take care of arg checking.
  // The actual signedness etc. will be taken care of with special enums.
  ClassKind LocalCK = CK;
  if (!protoHasScalar())
    LocalCK = ClassB;

  return mangleName(Name, ForceClassS ? ClassS : LocalCK);
}

std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
  std::string typeCode = getInstTypeCode(BaseType, LocalCK);
  std::string S = Name;

  if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
      Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32")
    return Name;

  if (!typeCode.empty()) {
    // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
    if (Name.size() >= 3 && isdigit(Name.back()) &&
        Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
      S.insert(S.length() - 3, "_" + typeCode);
    else
      S += "_" + typeCode;
  }

  if (BaseType != InBaseType) {
    // A reinterpret - out the input base type at the end.
    S += "_" + getInstTypeCode(InBaseType, LocalCK);
  }

  if (LocalCK == ClassB)
    S += "_v";

  // Insert a 'q' before the first '_' character so that it ends up before
  // _lane or _n on vector-scalar operations.
  if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
    size_t Pos = S.find('_');
    S.insert(Pos, "q");
  }

  char Suffix = '\0';
  if (BaseType.isScalarForMangling()) {
    switch (BaseType.getElementSizeInBits()) {
    case 8: Suffix = 'b'; break;
    case 16: Suffix = 'h'; break;
    case 32: Suffix = 's'; break;
    case 64: Suffix = 'd'; break;
    default: llvm_unreachable("Bad suffix!");
    }
  }
  if (Suffix != '\0') {
    size_t Pos = S.find('_');
    S.insert(Pos, &Suffix, 1);
  }

  return S;
}

std::string Intrinsic::replaceParamsIn(std::string S) {
  while (S.find('$') != std::string::npos) {
    size_t Pos = S.find('$');
    size_t End = Pos + 1;
    while (isalpha(S[End]))
      ++End;

    std::string VarName = S.substr(Pos + 1, End - Pos - 1);
    assert_with_loc(Variables.find(VarName) != Variables.end(),
                    "Variable not defined!");
    S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
  }

  return S;
}

void Intrinsic::initVariables() {
  Variables.clear();

  // Modify the TypeSpec per-argument to get a concrete Type, and create
  // known variables for each.
  for (unsigned I = 1; I < Types.size(); ++I) {
    char NameC = '0' + (I - 1);
    std::string Name = "p";
    Name.push_back(NameC);

    Variables[Name] = Variable(Types[I], Name + VariablePostfix);
  }
  RetVar = Variable(Types[0], "ret" + VariablePostfix);
}

void Intrinsic::emitPrototype(StringRef NamePrefix) {
  if (UseMacro)
    OS << "#define ";
  else
    OS << "__ai " << Types[0].str() << " ";

  OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";

  for (unsigned I = 0; I < getNumParams(); ++I) {
    if (I != 0)
      OS << ", ";

    char NameC = '0' + I;
    std::string Name = "p";
    Name.push_back(NameC);
    assert(Variables.find(Name) != Variables.end());
    Variable &V = Variables[Name];

    if (!UseMacro)
      OS << V.getType().str() << " ";
    OS << V.getName();
  }

  OS << ")";
}

void Intrinsic::emitOpeningBrace() {
  if (UseMacro)
    OS << " __extension__ ({";
  else
    OS << " {";
  emitNewLine();
}

void Intrinsic::emitClosingBrace() {
  if (UseMacro)
    OS << "})";
  else
    OS << "}";
}

void Intrinsic::emitNewLine() {
  if (UseMacro)
    OS << " \\\n";
  else
    OS << "\n";
}

void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
  if (Dest.getType().getNumVectors() > 1) {
    emitNewLine();

    for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
      OS << "  " << Dest.getName() << ".val[" << K << "] = "
         << "__builtin_shufflevector("
         << Src.getName() << ".val[" << K << "], "
         << Src.getName() << ".val[" << K << "]";
      for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
        OS << ", " << J;
      OS << ");";
      emitNewLine();
    }
  } else {
    OS << "  " << Dest.getName()
       << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
    for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
      OS << ", " << J;
    OS << ");";
    emitNewLine();
  }
}

void Intrinsic::emitArgumentReversal() {
  if (isBigEndianSafe())
    return;

  // Reverse all vector arguments.
  for (unsigned I = 0; I < getNumParams(); ++I) {
    std::string Name = "p" + utostr(I);
    std::string NewName = "rev" + utostr(I);

    Variable &V = Variables[Name];
    Variable NewV(V.getType(), NewName + VariablePostfix);

    if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
      continue;

    OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
    emitReverseVariable(NewV, V);
    V = NewV;
  }
}

void Intrinsic::emitReturnReversal() {
  if (isBigEndianSafe())
    return;
  if (!getReturnType().isVector() || getReturnType().isVoid() ||
      getReturnType().getNumElements() == 1)
    return;
  emitReverseVariable(RetVar, RetVar);
}

void Intrinsic::emitShadowedArgs() {
  // Macro arguments are not type-checked like inline function arguments,
  // so assign them to local temporaries to get the right type checking.
  if (!UseMacro)
    return;

  for (unsigned I = 0; I < getNumParams(); ++I) {
    // Do not create a temporary for an immediate argument.
    // That would defeat the whole point of using a macro!
    if (getParamType(I).isImmediate())
      continue;
    // Do not create a temporary for pointer arguments. The input
    // pointer may have an alignment hint.
    if (getParamType(I).isPointer())
      continue;

    std::string Name = "p" + utostr(I);

    assert(Variables.find(Name) != Variables.end());
    Variable &V = Variables[Name];

    std::string NewName = "s" + utostr(I);
    Variable V2(V.getType(), NewName + VariablePostfix);

    OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
       << V.getName() << ";";
    emitNewLine();

    V = V2;
  }
}

bool Intrinsic::protoHasScalar() const {
  return std::any_of(Types.begin(), Types.end(), [](const Type &T) {
    return T.isScalar() && !T.isImmediate();
  });
}

void Intrinsic::emitBodyAsBuiltinCall() {
  std::string S;

  // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
  // sret-like argument.
  bool SRet = getReturnType().getNumVectors() >= 2;

  StringRef N = Name;
  ClassKind LocalCK = CK;
  if (!protoHasScalar())
    LocalCK = ClassB;

  if (!getReturnType().isVoid() && !SRet)
    S += "(" + RetVar.getType().str() + ") ";

  S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";

  if (SRet)
    S += "&" + RetVar.getName() + ", ";

  for (unsigned I = 0; I < getNumParams(); ++I) {
    Variable &V = Variables["p" + utostr(I)];
    Type T = V.getType();

    // Handle multiple-vector values specially, emitting each subvector as an
    // argument to the builtin.
    if (T.getNumVectors() > 1) {
      // Check if an explicit cast is needed.
      std::string Cast;
      if (LocalCK == ClassB) {
        Type T2 = T;
        T2.makeOneVector();
        T2.makeInteger(8, /*Signed=*/true);
        Cast = "(" + T2.str() + ")";
      }

      for (unsigned J = 0; J < T.getNumVectors(); ++J)
        S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
      continue;
    }

    std::string Arg = V.getName();
    Type CastToType = T;

    // Check if an explicit cast is needed.
    if (CastToType.isVector() &&
        (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
      CastToType.makeInteger(8, true);
      Arg = "(" + CastToType.str() + ")" + Arg;
    } else if (CastToType.isVector() && LocalCK == ClassI) {
      if (CastToType.isInteger())
        CastToType.makeSigned();
      Arg = "(" + CastToType.str() + ")" + Arg;
    }

    S += Arg + ", ";
  }

  // Extra constant integer to hold type class enum for this function, e.g. s8
  if (getClassKind(true) == ClassB) {
    S += utostr(getPolymorphicKeyType().getNeonEnum());
  } else {
    // Remove extraneous ", ".
    S.pop_back();
    S.pop_back();
  }
  S += ");";

  std::string RetExpr;
  if (!SRet && !RetVar.getType().isVoid())
    RetExpr = RetVar.getName() + " = ";

  OS << "  " << RetExpr << S;
  emitNewLine();
}

void Intrinsic::emitBody(StringRef CallPrefix) {
  std::vector<std::string> Lines;

  assert(RetVar.getType() == Types[0]);
  // Create a return variable, if we're not void.
  if (!RetVar.getType().isVoid()) {
    OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
    emitNewLine();
  }

  if (!Body || Body->getValues().empty()) {
    // Nothing specific to output - must output a builtin.
    emitBodyAsBuiltinCall();
    return;
  }

  // We have a list of "things to output". The last should be returned.
  for (auto *I : Body->getValues()) {
    if (StringInit *SI = dyn_cast<StringInit>(I)) {
      Lines.push_back(replaceParamsIn(SI->getAsString()));
    } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
      DagEmitter DE(*this, CallPrefix);
      Lines.push_back(DE.emitDag(DI).second + ";");
    }
  }

  assert(!Lines.empty() && "Empty def?");
  if (!RetVar.getType().isVoid())
    Lines.back().insert(0, RetVar.getName() + " = ");

  for (auto &L : Lines) {
    OS << "  " << L;
    emitNewLine();
  }
}

void Intrinsic::emitReturn() {
  if (RetVar.getType().isVoid())
    return;
  if (UseMacro)
    OS << "  " << RetVar.getName() << ";";
  else
    OS << "  return " << RetVar.getName() << ";";
  emitNewLine();
}

std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
  // At this point we should only be seeing a def.
  DefInit *DefI = cast<DefInit>(DI->getOperator());
  std::string Op = DefI->getAsString();

  if (Op == "cast" || Op == "bitcast")
    return emitDagCast(DI, Op == "bitcast");
  if (Op == "shuffle")
    return emitDagShuffle(DI);
  if (Op == "dup")
    return emitDagDup(DI);
  if (Op == "dup_typed")
    return emitDagDupTyped(DI);
  if (Op == "splat")
    return emitDagSplat(DI);
  if (Op == "save_temp")
    return emitDagSaveTemp(DI);
  if (Op == "op")
    return emitDagOp(DI);
  if (Op == "call")
    return emitDagCall(DI);
  if (Op == "name_replace")
    return emitDagNameReplace(DI);
  if (Op == "literal")
    return emitDagLiteral(DI);
  assert_with_loc(false, "Unknown operation!");
  return std::make_pair(Type::getVoid(), "");
}

std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
  std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
  if (DI->getNumArgs() == 2) {
    // Unary op.
    std::pair<Type, std::string> R =
        emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
    return std::make_pair(R.first, Op + R.second);
  } else {
    assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
    std::pair<Type, std::string> R1 =
        emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
    std::pair<Type, std::string> R2 =
        emitDagArg(DI->getArg(2), DI->getArgNameStr(2));
    assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
    return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
  }
}

std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
  std::vector<Type> Types;
  std::vector<std::string> Values;
  for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
    std::pair<Type, std::string> R =
        emitDagArg(DI->getArg(I + 1), DI->getArgNameStr(I + 1));
    Types.push_back(R.first);
    Values.push_back(R.second);
  }

  // Look up the called intrinsic.
  std::string N;
  if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
    N = SI->getAsUnquotedString();
  else
    N = emitDagArg(DI->getArg(0), "").second;
  Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types);

  // Make sure the callee is known as an early def.
  Callee.setNeededEarly();
  Intr.Dependencies.insert(&Callee);

  // Now create the call itself.
  std::string S = "";
  if (!Callee.isBigEndianSafe())
    S += CallPrefix.str();
  S += Callee.getMangledName(true) + "(";
  for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
    if (I != 0)
      S += ", ";
    S += Values[I];
  }
  S += ")";

  return std::make_pair(Callee.getReturnType(), S);
}

std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
                                                                bool IsBitCast){
  // (cast MOD* VAL) -> cast VAL to type given by MOD.
  std::pair<Type, std::string> R = emitDagArg(
      DI->getArg(DI->getNumArgs() - 1),
      DI->getArgNameStr(DI->getNumArgs() - 1));
  Type castToType = R.first;
  for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {

    // MOD can take several forms:
    //   1. $X - take the type of parameter / variable X.
    //   2. The value "R" - take the type of the return type.
    //   3. a type string
    //   4. The value "U" or "S" to switch the signedness.
    //   5. The value "H" or "D" to half or double the bitwidth.
    //   6. The value "8" to convert to 8-bit (signed) integer lanes.
    if (!DI->getArgNameStr(ArgIdx).empty()) {
      assert_with_loc(Intr.Variables.find(DI->getArgNameStr(ArgIdx)) !=
                      Intr.Variables.end(),
                      "Variable not found");
      castToType = Intr.Variables[DI->getArgNameStr(ArgIdx)].getType();
    } else {
      StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
      assert_with_loc(SI, "Expected string type or $Name for cast type");

      if (SI->getAsUnquotedString() == "R") {
        castToType = Intr.getReturnType();
      } else if (SI->getAsUnquotedString() == "U") {
        castToType.makeUnsigned();
      } else if (SI->getAsUnquotedString() == "S") {
        castToType.makeSigned();
      } else if (SI->getAsUnquotedString() == "H") {
        castToType.halveLanes();
      } else if (SI->getAsUnquotedString() == "D") {
        castToType.doubleLanes();
      } else if (SI->getAsUnquotedString() == "8") {
        castToType.makeInteger(8, true);
      } else {
        castToType = Type::fromTypedefName(SI->getAsUnquotedString());
        assert_with_loc(!castToType.isVoid(), "Unknown typedef");
      }
    }
  }

  std::string S;
  if (IsBitCast) {
    // Emit a reinterpret cast. The second operand must be an lvalue, so create
    // a temporary.
    std::string N = "reint";
    unsigned I = 0;
    while (Intr.Variables.find(N) != Intr.Variables.end())
      N = "reint" + utostr(++I);
    Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);

    Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
            << R.second << ";";
    Intr.emitNewLine();

    S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
  } else {
    // Emit a normal (static) cast.
    S = "(" + castToType.str() + ")(" + R.second + ")";
  }

  return std::make_pair(castToType, S);
}

std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
  // See the documentation in arm_neon.td for a description of these operators.
  class LowHalf : public SetTheory::Operator {
  public:
    void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
               ArrayRef<SMLoc> Loc) override {
      SetTheory::RecSet Elts2;
      ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
      Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
    }
  };

  class HighHalf : public SetTheory::Operator {
  public:
    void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
               ArrayRef<SMLoc> Loc) override {
      SetTheory::RecSet Elts2;
      ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
      Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
    }
  };

  class Rev : public SetTheory::Operator {
    unsigned ElementSize;

  public:
    Rev(unsigned ElementSize) : ElementSize(ElementSize) {}

    void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
               ArrayRef<SMLoc> Loc) override {
      SetTheory::RecSet Elts2;
      ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);

      int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
      VectorSize /= ElementSize;

      std::vector<Record *> Revved;
      for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
        for (int LI = VectorSize - 1; LI >= 0; --LI) {
          Revved.push_back(Elts2[VI + LI]);
        }
      }

      Elts.insert(Revved.begin(), Revved.end());
    }
  };

  class MaskExpander : public SetTheory::Expander {
    unsigned N;

  public:
    MaskExpander(unsigned N) : N(N) {}

    void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
      unsigned Addend = 0;
      if (R->getName() == "mask0")
        Addend = 0;
      else if (R->getName() == "mask1")
        Addend = N;
      else
        return;
      for (unsigned I = 0; I < N; ++I)
        Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
    }
  };

  // (shuffle arg1, arg2, sequence)
  std::pair<Type, std::string> Arg1 =
      emitDagArg(DI->getArg(0), DI->getArgNameStr(0));
  std::pair<Type, std::string> Arg2 =
      emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
  assert_with_loc(Arg1.first == Arg2.first,
                  "Different types in arguments to shuffle!");

  SetTheory ST;
  SetTheory::RecSet Elts;
  ST.addOperator("lowhalf", std::make_unique<LowHalf>());
  ST.addOperator("highhalf", std::make_unique<HighHalf>());
  ST.addOperator("rev",
                 std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
  ST.addExpander("MaskExpand",
                 std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
  ST.evaluate(DI->getArg(2), Elts, None);

  std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
  for (auto &E : Elts) {
    StringRef Name = E->getName();
    assert_with_loc(Name.startswith("sv"),
                    "Incorrect element kind in shuffle mask!");
    S += ", " + Name.drop_front(2).str();
  }
  S += ")";

  // Recalculate the return type - the shuffle may have halved or doubled it.
  Type T(Arg1.first);
  if (Elts.size() > T.getNumElements()) {
    assert_with_loc(
        Elts.size() == T.getNumElements() * 2,
        "Can only double or half the number of elements in a shuffle!");
    T.doubleLanes();
  } else if (Elts.size() < T.getNumElements()) {
    assert_with_loc(
        Elts.size() == T.getNumElements() / 2,
        "Can only double or half the number of elements in a shuffle!");
    T.halveLanes();
  }

  return std::make_pair(T, S);
}

std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
  assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
  std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
                                              DI->getArgNameStr(0));
  assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");

  Type T = Intr.getBaseType();
  assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
  std::string S = "(" + T.str() + ") {";
  for (unsigned I = 0; I < T.getNumElements(); ++I) {
    if (I != 0)
      S += ", ";
    S += A.second;
  }
  S += "}";

  return std::make_pair(T, S);
}

std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
  assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
  std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
                                              DI->getArgNameStr(0));
  std::pair<Type, std::string> B = emitDagArg(DI->getArg(1),
                                              DI->getArgNameStr(1));
  assert_with_loc(B.first.isScalar(),
                  "dup_typed() requires a scalar as the second argument");

  Type T = A.first;
  assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
  std::string S = "(" + T.str() + ") {";
  for (unsigned I = 0; I < T.getNumElements(); ++I) {
    if (I != 0)
      S += ", ";
    S += B.second;
  }
  S += "}";

  return std::make_pair(T, S);
}

std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
  assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
  std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
                                              DI->getArgNameStr(0));
  std::pair<Type, std::string> B = emitDagArg(DI->getArg(1),
                                              DI->getArgNameStr(1));

  assert_with_loc(B.first.isScalar(),
                  "splat() requires a scalar int as the second argument");

  std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
  for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
    S += ", " + B.second;
  }
  S += ")";

  return std::make_pair(Intr.getBaseType(), S);
}

std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
  assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
  std::pair<Type, std::string> A = emitDagArg(DI->getArg(1),
                                              DI->getArgNameStr(1));

  assert_with_loc(!A.first.isVoid(),
                  "Argument to save_temp() must have non-void type!");

  std::string N = DI->getArgNameStr(0);
  assert_with_loc(!N.empty(),
                  "save_temp() expects a name as the first argument");

  assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
                  "Variable already defined!");
  Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);

  std::string S =
      A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;

  return std::make_pair(Type::getVoid(), S);
}

std::pair<Type, std::string>
Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
  std::string S = Intr.Name;

  assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
  std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
  std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();

  size_t Idx = S.find(ToReplace);

  assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
  S.replace(Idx, ToReplace.size(), ReplaceWith);

  return std::make_pair(Type::getVoid(), S);
}

std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
  std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
  std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
  return std::make_pair(Type::fromTypedefName(Ty), Value);
}

std::pair<Type, std::string>
Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
  if (!ArgName.empty()) {
    assert_with_loc(!Arg->isComplete(),
                    "Arguments must either be DAGs or names, not both!");
    assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
                    "Variable not defined!");
    Variable &V = Intr.Variables[ArgName];
    return std::make_pair(V.getType(), V.getName());
  }

  assert(Arg && "Neither ArgName nor Arg?!");
  DagInit *DI = dyn_cast<DagInit>(Arg);
  assert_with_loc(DI, "Arguments must either be DAGs or names!");

  return emitDag(DI);
}

std::string Intrinsic::generate() {
  // Avoid duplicated code for big and little endian
  if (isBigEndianSafe()) {
    generateImpl(false, "", "");
    return OS.str();
  }
  // Little endian intrinsics are simple and don't require any argument
  // swapping.
  OS << "#ifdef __LITTLE_ENDIAN__\n";

  generateImpl(false, "", "");

  OS << "#else\n";

  // Big endian intrinsics are more complex. The user intended these
  // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
  // but we load as-if (V)LD1. So we should swap all arguments and
  // swap the return value too.
  //
  // If we call sub-intrinsics, we should call a version that does
  // not re-swap the arguments!
  generateImpl(true, "", "__noswap_");

  // If we're needed early, create a non-swapping variant for
  // big-endian.
  if (NeededEarly) {
    generateImpl(false, "__noswap_", "__noswap_");
  }
  OS << "#endif\n\n";

  return OS.str();
}

void Intrinsic::generateImpl(bool ReverseArguments,
                             StringRef NamePrefix, StringRef CallPrefix) {
  CurrentRecord = R;

  // If we call a macro, our local variables may be corrupted due to
  // lack of proper lexical scoping. So, add a globally unique postfix
  // to every variable.
  //
  // indexBody() should have set up the Dependencies set by now.
  for (auto *I : Dependencies)
    if (I->UseMacro) {
      VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
      break;
    }

  initVariables();

  emitPrototype(NamePrefix);

  if (IsUnavailable) {
    OS << " __attribute__((unavailable));";
  } else {
    emitOpeningBrace();
    emitShadowedArgs();
    if (ReverseArguments)
      emitArgumentReversal();
    emitBody(CallPrefix);
    if (ReverseArguments)
      emitReturnReversal();
    emitReturn();
    emitClosingBrace();
  }
  OS << "\n";

  CurrentRecord = nullptr;
}

void Intrinsic::indexBody() {
  CurrentRecord = R;

  initVariables();
  emitBody("");
  OS.str("");

  CurrentRecord = nullptr;
}

//===----------------------------------------------------------------------===//
// NeonEmitter implementation
//===----------------------------------------------------------------------===//

Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
  // First, look up the name in the intrinsic map.
  assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
                  ("Intrinsic '" + Name + "' not found!").str());
  auto &V = IntrinsicMap.find(Name.str())->second;
  std::vector<Intrinsic *> GoodVec;

  // Create a string to print if we end up failing.
  std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
  for (unsigned I = 0; I < Types.size(); ++I) {
    if (I != 0)
      ErrMsg += ", ";
    ErrMsg += Types[I].str();
  }
  ErrMsg += ")'\n";
  ErrMsg += "Available overloads:\n";

  // Now, look through each intrinsic implementation and see if the types are
  // compatible.
  for (auto &I : V) {
    ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
    ErrMsg += "(";
    for (unsigned A = 0; A < I.getNumParams(); ++A) {
      if (A != 0)
        ErrMsg += ", ";
      ErrMsg += I.getParamType(A).str();
    }
    ErrMsg += ")\n";

    if (I.getNumParams() != Types.size())
      continue;

    bool Good = true;
    for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
      if (I.getParamType(Arg) != Types[Arg]) {
        Good = false;
        break;
      }
    }
    if (Good)
      GoodVec.push_back(&I);
  }

  assert_with_loc(!GoodVec.empty(),
                  "No compatible intrinsic found - " + ErrMsg);
  assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);

  return *GoodVec.front();
}

void NeonEmitter::createIntrinsic(Record *R,
                                  SmallVectorImpl<Intrinsic *> &Out) {
  std::string Name = R->getValueAsString("Name");
  std::string Proto = R->getValueAsString("Prototype");
  std::string Types = R->getValueAsString("Types");
  Record *OperationRec = R->getValueAsDef("Operation");
  bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
  bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
  std::string Guard = R->getValueAsString("ArchGuard");
  bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");

  // Set the global current record. This allows assert_with_loc to produce
  // decent location information even when highly nested.
  CurrentRecord = R;

  ListInit *Body = OperationRec->getValueAsListInit("Ops");

  std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);

  ClassKind CK = ClassNone;
  if (R->getSuperClasses().size() >= 2)
    CK = ClassMap[R->getSuperClasses()[1].first];

  std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
  for (auto TS : TypeSpecs) {
    if (CartesianProductOfTypes) {
      Type DefaultT(TS, ".");
      for (auto SrcTS : TypeSpecs) {
        Type DefaultSrcT(SrcTS, ".");
        if (TS == SrcTS ||
            DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
          continue;
        NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
      }
    } else {
      NewTypeSpecs.push_back(std::make_pair(TS, TS));
    }
  }

  llvm::sort(NewTypeSpecs);
  NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
		     NewTypeSpecs.end());
  auto &Entry = IntrinsicMap[Name];

  for (auto &I : NewTypeSpecs) {
    Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
                       Guard, IsUnavailable, BigEndianSafe);
    Out.push_back(&Entry.back());
  }

  CurrentRecord = nullptr;
}

/// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
/// declaration of builtins, checking for unique builtin declarations.
void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
                                 SmallVectorImpl<Intrinsic *> &Defs) {
  OS << "#ifdef GET_NEON_BUILTINS\n";

  // We only want to emit a builtin once, and we want to emit them in
  // alphabetical order, so use a std::set.
  std::set<std::string> Builtins;

  for (auto *Def : Defs) {
    if (Def->hasBody())
      continue;

    std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";

    S += Def->getBuiltinTypeStr();
    S += "\", \"n\")";

    Builtins.insert(S);
  }

  for (auto &S : Builtins)
    OS << S << "\n";
  OS << "#endif\n\n";
}

/// Generate the ARM and AArch64 overloaded type checking code for
/// SemaChecking.cpp, checking for unique builtin declarations.
void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
                                           SmallVectorImpl<Intrinsic *> &Defs) {
  OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";

  // We record each overload check line before emitting because subsequent Inst
  // definitions may extend the number of permitted types (i.e. augment the
  // Mask). Use std::map to avoid sorting the table by hash number.
  struct OverloadInfo {
    uint64_t Mask;
    int PtrArgNum;
    bool HasConstPtr;
    OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
  };
  std::map<std::string, OverloadInfo> OverloadMap;

  for (auto *Def : Defs) {
    // If the def has a body (that is, it has Operation DAGs), it won't call
    // __builtin_neon_* so we don't need to generate a definition for it.
    if (Def->hasBody())
      continue;
    // Functions which have a scalar argument cannot be overloaded, no need to
    // check them if we are emitting the type checking code.
    if (Def->protoHasScalar())
      continue;

    uint64_t Mask = 0ULL;
    Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();

    // Check if the function has a pointer or const pointer argument.
    int PtrArgNum = -1;
    bool HasConstPtr = false;
    for (unsigned I = 0; I < Def->getNumParams(); ++I) {
      const auto &Type = Def->getParamType(I);
      if (Type.isPointer()) {
        PtrArgNum = I;
        HasConstPtr = Type.isConstPointer();
      }
    }

    // For sret builtins, adjust the pointer argument index.
    if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
      PtrArgNum += 1;

    std::string Name = Def->getName();
    // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
    // and vst1_lane intrinsics.  Using a pointer to the vector element
    // type with one of those operations causes codegen to select an aligned
    // load/store instruction.  If you want an unaligned operation,
    // the pointer argument needs to have less alignment than element type,
    // so just accept any pointer type.
    if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
      PtrArgNum = -1;
      HasConstPtr = false;
    }

    if (Mask) {
      std::string Name = Def->getMangledName();
      OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
      OverloadInfo &OI = OverloadMap[Name];
      OI.Mask |= Mask;
      OI.PtrArgNum |= PtrArgNum;
      OI.HasConstPtr = HasConstPtr;
    }
  }

  for (auto &I : OverloadMap) {
    OverloadInfo &OI = I.second;

    OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
    OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
    if (OI.PtrArgNum >= 0)
      OS << "; PtrArgNum = " << OI.PtrArgNum;
    if (OI.HasConstPtr)
      OS << "; HasConstPtr = true";
    OS << "; break;\n";
  }
  OS << "#endif\n\n";
}

void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
                                        SmallVectorImpl<Intrinsic *> &Defs) {
  OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";

  std::set<std::string> Emitted;

  for (auto *Def : Defs) {
    if (Def->hasBody())
      continue;
    // Functions which do not have an immediate do not need to have range
    // checking code emitted.
    if (!Def->hasImmediate())
      continue;
    if (Emitted.find(Def->getMangledName()) != Emitted.end())
      continue;

    std::string LowerBound, UpperBound;

    Record *R = Def->getRecord();
    if (R->getValueAsBit("isVCVT_N")) {
      // VCVT between floating- and fixed-point values takes an immediate
      // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
      LowerBound = "1";
	  if (Def->getBaseType().getElementSizeInBits() == 16 ||
		  Def->getName().find('h') != std::string::npos)
		// VCVTh operating on FP16 intrinsics in range [1, 16)
		UpperBound = "15";
	  else if (Def->getBaseType().getElementSizeInBits() == 32)
        UpperBound = "31";
	  else
        UpperBound = "63";
    } else if (R->getValueAsBit("isScalarShift")) {
      // Right shifts have an 'r' in the name, left shifts do not. Convert
      // instructions have the same bounds and right shifts.
      if (Def->getName().find('r') != std::string::npos ||
          Def->getName().find("cvt") != std::string::npos)
        LowerBound = "1";

      UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
    } else if (R->getValueAsBit("isShift")) {
      // Builtins which are overloaded by type will need to have their upper
      // bound computed at Sema time based on the type constant.

      // Right shifts have an 'r' in the name, left shifts do not.
      if (Def->getName().find('r') != std::string::npos)
        LowerBound = "1";
      UpperBound = "RFT(TV, true)";
    } else if (Def->getClassKind(true) == ClassB) {
      // ClassB intrinsics have a type (and hence lane number) that is only
      // known at runtime.
      if (R->getValueAsBit("isLaneQ"))
        UpperBound = "RFT(TV, false, true)";
      else
        UpperBound = "RFT(TV, false, false)";
    } else {
      // The immediate generally refers to a lane in the preceding argument.
      assert(Def->getImmediateIdx() > 0);
      Type T = Def->getParamType(Def->getImmediateIdx() - 1);
      UpperBound = utostr(T.getNumElements() - 1);
    }

    // Calculate the index of the immediate that should be range checked.
    unsigned Idx = Def->getNumParams();
    if (Def->hasImmediate())
      Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());

    OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
       << "i = " << Idx << ";";
    if (!LowerBound.empty())
      OS << " l = " << LowerBound << ";";
    if (!UpperBound.empty())
      OS << " u = " << UpperBound << ";";
    OS << " break;\n";

    Emitted.insert(Def->getMangledName());
  }

  OS << "#endif\n\n";
}

/// runHeader - Emit a file with sections defining:
/// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
/// 2. the SemaChecking code for the type overload checking.
/// 3. the SemaChecking code for validation of intrinsic immediate arguments.
void NeonEmitter::runHeader(raw_ostream &OS) {
  std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");

  SmallVector<Intrinsic *, 128> Defs;
  for (auto *R : RV)
    createIntrinsic(R, Defs);

  // Generate shared BuiltinsXXX.def
  genBuiltinsDef(OS, Defs);

  // Generate ARM overloaded type checking code for SemaChecking.cpp
  genOverloadTypeCheckCode(OS, Defs);

  // Generate ARM range checking code for shift/lane immediates.
  genIntrinsicRangeCheckCode(OS, Defs);
}

/// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
/// is comprised of type definitions and function declarations.
void NeonEmitter::run(raw_ostream &OS) {
  OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
        "------------------------------"
        "---===\n"
        " *\n"
        " * Permission is hereby granted, free of charge, to any person "
        "obtaining "
        "a copy\n"
        " * of this software and associated documentation files (the "
        "\"Software\"),"
        " to deal\n"
        " * in the Software without restriction, including without limitation "
        "the "
        "rights\n"
        " * to use, copy, modify, merge, publish, distribute, sublicense, "
        "and/or sell\n"
        " * copies of the Software, and to permit persons to whom the Software "
        "is\n"
        " * furnished to do so, subject to the following conditions:\n"
        " *\n"
        " * The above copyright notice and this permission notice shall be "
        "included in\n"
        " * all copies or substantial portions of the Software.\n"
        " *\n"
        " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
        "EXPRESS OR\n"
        " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
        "MERCHANTABILITY,\n"
        " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
        "SHALL THE\n"
        " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
        "OTHER\n"
        " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
        "ARISING FROM,\n"
        " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
        "DEALINGS IN\n"
        " * THE SOFTWARE.\n"
        " *\n"
        " *===-----------------------------------------------------------------"
        "---"
        "---===\n"
        " */\n\n";

  OS << "#ifndef __ARM_NEON_H\n";
  OS << "#define __ARM_NEON_H\n\n";

  OS << "#if !defined(__ARM_NEON)\n";
  OS << "#error \"NEON support not enabled\"\n";
  OS << "#endif\n\n";

  OS << "#include <stdint.h>\n\n";

  // Emit NEON-specific scalar typedefs.
  OS << "typedef float float32_t;\n";
  OS << "typedef __fp16 float16_t;\n";

  OS << "#ifdef __aarch64__\n";
  OS << "typedef double float64_t;\n";
  OS << "#endif\n\n";

  // For now, signedness of polynomial types depends on target
  OS << "#ifdef __aarch64__\n";
  OS << "typedef uint8_t poly8_t;\n";
  OS << "typedef uint16_t poly16_t;\n";
  OS << "typedef uint64_t poly64_t;\n";
  OS << "typedef __uint128_t poly128_t;\n";
  OS << "#else\n";
  OS << "typedef int8_t poly8_t;\n";
  OS << "typedef int16_t poly16_t;\n";
  OS << "#endif\n";

  // Emit Neon vector typedefs.
  std::string TypedefTypes(
      "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
  std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);

  // Emit vector typedefs.
  bool InIfdef = false;
  for (auto &TS : TDTypeVec) {
    bool IsA64 = false;
    Type T(TS, ".");
    if (T.isDouble() || (T.isPoly() && T.getElementSizeInBits() == 64))
      IsA64 = true;

    if (InIfdef && !IsA64) {
      OS << "#endif\n";
      InIfdef = false;
    }
    if (!InIfdef && IsA64) {
      OS << "#ifdef __aarch64__\n";
      InIfdef = true;
    }

    if (T.isPoly())
      OS << "typedef __attribute__((neon_polyvector_type(";
    else
      OS << "typedef __attribute__((neon_vector_type(";

    Type T2 = T;
    T2.makeScalar();
    OS << T.getNumElements() << "))) ";
    OS << T2.str();
    OS << " " << T.str() << ";\n";
  }
  if (InIfdef)
    OS << "#endif\n";
  OS << "\n";

  // Emit struct typedefs.
  InIfdef = false;
  for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
    for (auto &TS : TDTypeVec) {
      bool IsA64 = false;
      Type T(TS, ".");
      if (T.isDouble() || (T.isPoly() && T.getElementSizeInBits() == 64))
        IsA64 = true;

      if (InIfdef && !IsA64) {
        OS << "#endif\n";
        InIfdef = false;
      }
      if (!InIfdef && IsA64) {
        OS << "#ifdef __aarch64__\n";
        InIfdef = true;
      }

      const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
      Type VT(TS, Mods);
      OS << "typedef struct " << VT.str() << " {\n";
      OS << "  " << T.str() << " val";
      OS << "[" << NumMembers << "]";
      OS << ";\n} ";
      OS << VT.str() << ";\n";
      OS << "\n";
    }
  }
  if (InIfdef)
    OS << "#endif\n";
  OS << "\n";

  OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
        "__nodebug__))\n\n";

  SmallVector<Intrinsic *, 128> Defs;
  std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
  for (auto *R : RV)
    createIntrinsic(R, Defs);

  for (auto *I : Defs)
    I->indexBody();

  llvm::stable_sort(Defs, llvm::deref<std::less<>>());

  // Only emit a def when its requirements have been met.
  // FIXME: This loop could be made faster, but it's fast enough for now.
  bool MadeProgress = true;
  std::string InGuard;
  while (!Defs.empty() && MadeProgress) {
    MadeProgress = false;

    for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
         I != Defs.end(); /*No step*/) {
      bool DependenciesSatisfied = true;
      for (auto *II : (*I)->getDependencies()) {
        if (llvm::is_contained(Defs, II))
          DependenciesSatisfied = false;
      }
      if (!DependenciesSatisfied) {
        // Try the next one.
        ++I;
        continue;
      }

      // Emit #endif/#if pair if needed.
      if ((*I)->getGuard() != InGuard) {
        if (!InGuard.empty())
          OS << "#endif\n";
        InGuard = (*I)->getGuard();
        if (!InGuard.empty())
          OS << "#if " << InGuard << "\n";
      }

      // Actually generate the intrinsic code.
      OS << (*I)->generate();

      MadeProgress = true;
      I = Defs.erase(I);
    }
  }
  assert(Defs.empty() && "Some requirements were not satisfied!");
  if (!InGuard.empty())
    OS << "#endif\n";

  OS << "\n";
  OS << "#undef __ai\n\n";
  OS << "#endif /* __ARM_NEON_H */\n";
}

/// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
/// is comprised of type definitions and function declarations.
void NeonEmitter::runFP16(raw_ostream &OS) {
  OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
        "------------------------------"
        "---===\n"
        " *\n"
        " * Permission is hereby granted, free of charge, to any person "
        "obtaining a copy\n"
        " * of this software and associated documentation files (the "
				"\"Software\"), to deal\n"
        " * in the Software without restriction, including without limitation "
				"the rights\n"
        " * to use, copy, modify, merge, publish, distribute, sublicense, "
				"and/or sell\n"
        " * copies of the Software, and to permit persons to whom the Software "
				"is\n"
        " * furnished to do so, subject to the following conditions:\n"
        " *\n"
        " * The above copyright notice and this permission notice shall be "
        "included in\n"
        " * all copies or substantial portions of the Software.\n"
        " *\n"
        " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
        "EXPRESS OR\n"
        " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
        "MERCHANTABILITY,\n"
        " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
        "SHALL THE\n"
        " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
        "OTHER\n"
        " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
        "ARISING FROM,\n"
        " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
        "DEALINGS IN\n"
        " * THE SOFTWARE.\n"
        " *\n"
        " *===-----------------------------------------------------------------"
        "---"
        "---===\n"
        " */\n\n";

  OS << "#ifndef __ARM_FP16_H\n";
  OS << "#define __ARM_FP16_H\n\n";

  OS << "#include <stdint.h>\n\n";

  OS << "typedef __fp16 float16_t;\n";

  OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
        "__nodebug__))\n\n";

  SmallVector<Intrinsic *, 128> Defs;
  std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
  for (auto *R : RV)
    createIntrinsic(R, Defs);

  for (auto *I : Defs)
    I->indexBody();

  llvm::stable_sort(Defs, llvm::deref<std::less<>>());

  // Only emit a def when its requirements have been met.
  // FIXME: This loop could be made faster, but it's fast enough for now.
  bool MadeProgress = true;
  std::string InGuard;
  while (!Defs.empty() && MadeProgress) {
    MadeProgress = false;

    for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
         I != Defs.end(); /*No step*/) {
      bool DependenciesSatisfied = true;
      for (auto *II : (*I)->getDependencies()) {
        if (llvm::is_contained(Defs, II))
          DependenciesSatisfied = false;
      }
      if (!DependenciesSatisfied) {
        // Try the next one.
        ++I;
        continue;
      }

      // Emit #endif/#if pair if needed.
      if ((*I)->getGuard() != InGuard) {
        if (!InGuard.empty())
          OS << "#endif\n";
        InGuard = (*I)->getGuard();
        if (!InGuard.empty())
          OS << "#if " << InGuard << "\n";
      }

      // Actually generate the intrinsic code.
      OS << (*I)->generate();

      MadeProgress = true;
      I = Defs.erase(I);
    }
  }
  assert(Defs.empty() && "Some requirements were not satisfied!");
  if (!InGuard.empty())
    OS << "#endif\n";

  OS << "\n";
  OS << "#undef __ai\n\n";
  OS << "#endif /* __ARM_FP16_H */\n";
}

void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
  NeonEmitter(Records).run(OS);
}

void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
  NeonEmitter(Records).runFP16(OS);
}

void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
  NeonEmitter(Records).runHeader(OS);
}

void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
  llvm_unreachable("Neon test generation no longer implemented!");
}