sincos_helpers.cl 17.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <clc/clc.h>

#include "math.h"
#include "tables.h"
#include "sincos_helpers.h"

#define bitalign(hi, lo, shift) \
  ((hi) << (32 - (shift))) | ((lo) >> (shift));

#define bytealign(src0, src1, src2) \
  ((uint) (((((long)(src0)) << 32) | (long)(src1)) >> (((src2) & 3)*8)))

_CLC_DEF float __clc_sinf_piby4(float x, float y) {
    // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
    // = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
    // = x * f(w)
    // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
    // We use a minimax approximation of (f(w) - 1) / w
    // because this produces an expansion in even powers of x.

    const float c1 = -0.1666666666e0f;
    const float c2 = 0.8333331876e-2f;
    const float c3 = -0.198400874e-3f;
    const float c4 = 0.272500015e-5f;
    const float c5 = -2.5050759689e-08f; // 0xb2d72f34
    const float c6 = 1.5896910177e-10f;	 // 0x2f2ec9d3

    float z = x * x;
    float v = z * x;
    float r = mad(z, mad(z, mad(z, mad(z, c6, c5), c4), c3), c2);
    float ret = x - mad(v, -c1, mad(z, mad(y, 0.5f, -v*r), -y));

    return ret;
}

_CLC_DEF float __clc_cosf_piby4(float x, float y) {
    // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
    // = f(w)
    // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
    // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
    // because this produces an expansion in even powers of x.

    const float c1 = 0.416666666e-1f;
    const float c2 = -0.138888876e-2f;
    const float c3 = 0.248006008e-4f;
    const float c4 = -0.2730101334e-6f;
    const float c5 = 2.0875723372e-09f;	 // 0x310f74f6
    const float c6 = -1.1359647598e-11f; // 0xad47d74e

    float z = x * x;
    float r = z * mad(z, mad(z, mad(z, mad(z, mad(z, c6,  c5), c4), c3), c2), c1);

    // if |x| < 0.3
    float qx = 0.0f;

    int ix = as_int(x) & EXSIGNBIT_SP32;

    //  0.78125 > |x| >= 0.3
    float xby4 = as_float(ix - 0x01000000);
    qx = (ix >= 0x3e99999a) & (ix <= 0x3f480000) ? xby4 : qx;

    // x > 0.78125
    qx = ix > 0x3f480000 ? 0.28125f : qx;

    float hz = mad(z, 0.5f, -qx);
    float a = 1.0f - qx;
    float ret = a - (hz - mad(z, r, -x*y));
    return ret;
}

_CLC_DEF float __clc_tanf_piby4(float x, int regn)
{
    // Core Remez [1,2] approximation to tan(x) on the interval [0,pi/4].
    float r = x * x;

    float a = mad(r, -0.0172032480471481694693109f, 0.385296071263995406715129f);

    float b = mad(r,
	          mad(r, 0.01844239256901656082986661f, -0.51396505478854532132342f),
	          1.15588821434688393452299f);

    float t = mad(x*r, native_divide(a, b), x);
    float tr = -MATH_RECIP(t);

    return regn & 1 ? tr : t;
}

_CLC_DEF void __clc_fullMulS(float *hi, float *lo, float a, float b, float bh, float bt)
{
    if (HAVE_HW_FMA32()) {
        float ph = a * b;
        *hi = ph;
        *lo = fma(a, b, -ph);
    } else {
        float ah = as_float(as_uint(a) & 0xfffff000U);
        float at = a - ah;
        float ph = a * b;
        float pt = mad(at, bt, mad(at, bh, mad(ah, bt, mad(ah, bh, -ph))));
        *hi = ph;
        *lo = pt;
    }
}

_CLC_DEF float __clc_removePi2S(float *hi, float *lo, float x)
{
    // 72 bits of pi/2
    const float fpiby2_1 = (float) 0xC90FDA / 0x1.0p+23f;
    const float fpiby2_1_h = (float) 0xC90 / 0x1.0p+11f;
    const float fpiby2_1_t = (float) 0xFDA / 0x1.0p+23f;

    const float fpiby2_2 = (float) 0xA22168 / 0x1.0p+47f;
    const float fpiby2_2_h = (float) 0xA22 / 0x1.0p+35f;
    const float fpiby2_2_t = (float) 0x168 / 0x1.0p+47f;

    const float fpiby2_3 = (float) 0xC234C4 / 0x1.0p+71f;
    const float fpiby2_3_h = (float) 0xC23 / 0x1.0p+59f;
    const float fpiby2_3_t = (float) 0x4C4 / 0x1.0p+71f;

    const float twobypi = 0x1.45f306p-1f;

    float fnpi2 = trunc(mad(x, twobypi, 0.5f));

    // subtract n * pi/2 from x
    float rhead, rtail;
    __clc_fullMulS(&rhead, &rtail, fnpi2, fpiby2_1, fpiby2_1_h, fpiby2_1_t);
    float v = x - rhead;
    float rem = v + (((x - v) - rhead) - rtail);

    float rhead2, rtail2;
    __clc_fullMulS(&rhead2, &rtail2, fnpi2, fpiby2_2, fpiby2_2_h, fpiby2_2_t);
    v = rem - rhead2;
    rem = v + (((rem - v) - rhead2) - rtail2);

    float rhead3, rtail3;
    __clc_fullMulS(&rhead3, &rtail3, fnpi2, fpiby2_3, fpiby2_3_h, fpiby2_3_t);
    v = rem - rhead3;

    *hi = v + ((rem - v) - rhead3);
    *lo = -rtail3;
    return fnpi2;
}

_CLC_DEF int __clc_argReductionSmallS(float *r, float *rr, float x)
{
    float fnpi2 = __clc_removePi2S(r, rr, x);
    return (int)fnpi2 & 0x3;
}

#define FULL_MUL(A, B, HI, LO) \
    LO = A * B; \
    HI = mul_hi(A, B)

#define FULL_MAD(A, B, C, HI, LO) \
    LO = ((A) * (B) + (C)); \
    HI = mul_hi(A, B); \
    HI += LO < C

_CLC_DEF int __clc_argReductionLargeS(float *r, float *rr, float x)
{
    int xe = (int)(as_uint(x) >> 23) - 127;
    uint xm = 0x00800000U | (as_uint(x) & 0x7fffffU);

    // 224 bits of 2/PI: . A2F9836E 4E441529 FC2757D1 F534DDC0 DB629599 3C439041 FE5163AB
    const uint b6 = 0xA2F9836EU;
    const uint b5 = 0x4E441529U;
    const uint b4 = 0xFC2757D1U;
    const uint b3 = 0xF534DDC0U;
    const uint b2 = 0xDB629599U;
    const uint b1 = 0x3C439041U;
    const uint b0 = 0xFE5163ABU;

    uint p0, p1, p2, p3, p4, p5, p6, p7, c0, c1;

    FULL_MUL(xm, b0, c0, p0);
    FULL_MAD(xm, b1, c0, c1, p1);
    FULL_MAD(xm, b2, c1, c0, p2);
    FULL_MAD(xm, b3, c0, c1, p3);
    FULL_MAD(xm, b4, c1, c0, p4);
    FULL_MAD(xm, b5, c0, c1, p5);
    FULL_MAD(xm, b6, c1, p7, p6);

    uint fbits = 224 + 23 - xe;

    // shift amount to get 2 lsb of integer part at top 2 bits
    //   min: 25 (xe=18) max: 134 (xe=127)
    uint shift = 256U - 2 - fbits;

    // Shift by up to 134/32 = 4 words
    int c = shift > 31;
    p7 = c ? p6 : p7;
    p6 = c ? p5 : p6;
    p5 = c ? p4 : p5;
    p4 = c ? p3 : p4;
    p3 = c ? p2 : p3;
    p2 = c ? p1 : p2;
    p1 = c ? p0 : p1;
    shift -= (-c) & 32;

    c = shift > 31;
    p7 = c ? p6 : p7;
    p6 = c ? p5 : p6;
    p5 = c ? p4 : p5;
    p4 = c ? p3 : p4;
    p3 = c ? p2 : p3;
    p2 = c ? p1 : p2;
    shift -= (-c) & 32;

    c = shift > 31;
    p7 = c ? p6 : p7;
    p6 = c ? p5 : p6;
    p5 = c ? p4 : p5;
    p4 = c ? p3 : p4;
    p3 = c ? p2 : p3;
    shift -= (-c) & 32;

    c = shift > 31;
    p7 = c ? p6 : p7;
    p6 = c ? p5 : p6;
    p5 = c ? p4 : p5;
    p4 = c ? p3 : p4;
    shift -= (-c) & 32;

    // bitalign cannot handle a shift of 32
    c = shift > 0;
    shift = 32 - shift;
    uint t7 = bitalign(p7, p6, shift);
    uint t6 = bitalign(p6, p5, shift);
    uint t5 = bitalign(p5, p4, shift);
    p7 = c ? t7 : p7;
    p6 = c ? t6 : p6;
    p5 = c ? t5 : p5;

    // Get 2 lsb of int part and msb of fraction
    int i = p7 >> 29;

    // Scoot up 2 more bits so only fraction remains
    p7 = bitalign(p7, p6, 30);
    p6 = bitalign(p6, p5, 30);
    p5 = bitalign(p5, p4, 30);

    // Subtract 1 if msb of fraction is 1, i.e. fraction >= 0.5
    uint flip = i & 1 ? 0xffffffffU : 0U;
    uint sign = i & 1 ? 0x80000000U : 0U;
    p7 = p7 ^ flip;
    p6 = p6 ^ flip;
    p5 = p5 ^ flip;

    // Find exponent and shift away leading zeroes and hidden bit
    xe = clz(p7) + 1;
    shift = 32 - xe;
    p7 = bitalign(p7, p6, shift);
    p6 = bitalign(p6, p5, shift);

    // Most significant part of fraction
    float q1 = as_float(sign | ((127 - xe) << 23) | (p7 >> 9));

    // Shift out bits we captured on q1
    p7 = bitalign(p7, p6, 32-23);

    // Get 24 more bits of fraction in another float, there are not long strings of zeroes here
    int xxe = clz(p7) + 1;
    p7 = bitalign(p7, p6, 32-xxe);
    float q0 = as_float(sign | ((127 - (xe + 23 + xxe)) << 23) | (p7 >> 9));

    // At this point, the fraction q1 + q0 is correct to at least 48 bits
    // Now we need to multiply the fraction by pi/2
    // This loses us about 4 bits
    // pi/2 = C90 FDA A22 168 C23 4C4

    const float pio2h = (float)0xc90fda / 0x1.0p+23f;
    const float pio2hh = (float)0xc90 / 0x1.0p+11f;
    const float pio2ht = (float)0xfda / 0x1.0p+23f;
    const float pio2t = (float)0xa22168 / 0x1.0p+47f;

    float rh, rt;

    if (HAVE_HW_FMA32()) {
        rh = q1 * pio2h;
        rt = fma(q0, pio2h, fma(q1, pio2t, fma(q1, pio2h, -rh)));
    } else {
        float q1h = as_float(as_uint(q1) & 0xfffff000);
        float q1t = q1 - q1h;
        rh = q1 * pio2h;
        rt = mad(q1t, pio2ht, mad(q1t, pio2hh, mad(q1h, pio2ht, mad(q1h, pio2hh, -rh))));
        rt = mad(q0, pio2h, mad(q1, pio2t, rt));
    }

    float t = rh + rt;
    rt = rt - (t - rh);

    *r = t;
    *rr = rt;
    return ((i >> 1) + (i & 1)) & 0x3;
}

_CLC_DEF int __clc_argReductionS(float *r, float *rr, float x)
{
    if (x < 0x1.0p+23f)
        return __clc_argReductionSmallS(r, rr, x);
    else
        return __clc_argReductionLargeS(r, rr, x);
}

#ifdef cl_khr_fp64

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

// Reduction for medium sized arguments
_CLC_DEF void __clc_remainder_piby2_medium(double x, double *r, double *rr, int *regn) {
    // How many pi/2 is x a multiple of?
    const double two_by_pi = 0x1.45f306dc9c883p-1;
    double dnpi2 = trunc(fma(x, two_by_pi, 0.5));

    const double piby2_h = -7074237752028440.0 / 0x1.0p+52;
    const double piby2_m = -2483878800010755.0 / 0x1.0p+105;
    const double piby2_t = -3956492004828932.0 / 0x1.0p+158;

    // Compute product of npi2 with 159 bits of 2/pi
    double p_hh = piby2_h * dnpi2;
    double p_ht = fma(piby2_h, dnpi2, -p_hh);
    double p_mh = piby2_m * dnpi2;
    double p_mt = fma(piby2_m, dnpi2, -p_mh);
    double p_th = piby2_t * dnpi2;
    double p_tt = fma(piby2_t, dnpi2, -p_th);

    // Reduce to 159 bits
    double ph = p_hh;
    double pm = p_ht + p_mh;
    double t = p_mh - (pm - p_ht);
    double pt = p_th + t + p_mt + p_tt;
    t = ph + pm; pm = pm - (t - ph); ph = t;
    t = pm + pt; pt = pt - (t - pm); pm = t;

    // Subtract from x
    t = x + ph;
    double qh = t + pm;
    double qt = pm - (qh - t) + pt;

    *r = qh;
    *rr = qt;
    *regn = (int)(long)dnpi2 & 0x3;
}

// Given positive argument x, reduce it to the range [-pi/4,pi/4] using
// extra precision, and return the result in r, rr.
// Return value "regn" tells how many lots of pi/2 were subtracted
// from x to put it in the range [-pi/4,pi/4], mod 4.

_CLC_DEF void __clc_remainder_piby2_large(double x, double *r, double *rr, int *regn) {

    long ux = as_long(x);
    int e = (int)(ux >> 52) -  1023;
    int i = max(23, (e >> 3) + 17);
    int j = 150 - i;
    int j16 = j & ~0xf;
    double fract_temp;

    // The following extracts 192 consecutive bits of 2/pi aligned on an arbitrary byte boundary
    uint4 q0 = USE_TABLE(pibits_tbl, j16);
    uint4 q1 = USE_TABLE(pibits_tbl, (j16 + 16));
    uint4 q2 = USE_TABLE(pibits_tbl, (j16 + 32));

    int k = (j >> 2) & 0x3;
    int4 c = (int4)k == (int4)(0, 1, 2, 3);

    uint u0, u1, u2, u3, u4, u5, u6;

    u0 = c.s1 ? q0.s1 : q0.s0;
    u0 = c.s2 ? q0.s2 : u0;
    u0 = c.s3 ? q0.s3 : u0;

    u1 = c.s1 ? q0.s2 : q0.s1;
    u1 = c.s2 ? q0.s3 : u1;
    u1 = c.s3 ? q1.s0 : u1;

    u2 = c.s1 ? q0.s3 : q0.s2;
    u2 = c.s2 ? q1.s0 : u2;
    u2 = c.s3 ? q1.s1 : u2;

    u3 = c.s1 ? q1.s0 : q0.s3;
    u3 = c.s2 ? q1.s1 : u3;
    u3 = c.s3 ? q1.s2 : u3;

    u4 = c.s1 ? q1.s1 : q1.s0;
    u4 = c.s2 ? q1.s2 : u4;
    u4 = c.s3 ? q1.s3 : u4;

    u5 = c.s1 ? q1.s2 : q1.s1;
    u5 = c.s2 ? q1.s3 : u5;
    u5 = c.s3 ? q2.s0 : u5;

    u6 = c.s1 ? q1.s3 : q1.s2;
    u6 = c.s2 ? q2.s0 : u6;
    u6 = c.s3 ? q2.s1 : u6;

    uint v0 = bytealign(u1, u0, j);
    uint v1 = bytealign(u2, u1, j);
    uint v2 = bytealign(u3, u2, j);
    uint v3 = bytealign(u4, u3, j);
    uint v4 = bytealign(u5, u4, j);
    uint v5 = bytealign(u6, u5, j);

    // Place those 192 bits in 4 48-bit doubles along with correct exponent
    // If i > 1018 we would get subnormals so we scale p up and x down to get the same product
    i = 2 + 8*i;
    x *= i > 1018 ? 0x1.0p-136 : 1.0;
    i -= i > 1018 ? 136 : 0;

    uint ua = (uint)(1023 + 52 - i) << 20;
    double a = as_double((uint2)(0, ua));
    double p0 = as_double((uint2)(v0, ua | (v1 & 0xffffU))) - a;
    ua += 0x03000000U;
    a = as_double((uint2)(0, ua));
    double p1 = as_double((uint2)((v2 << 16) | (v1 >> 16), ua | (v2 >> 16))) - a;
    ua += 0x03000000U;
    a = as_double((uint2)(0, ua));
    double p2 = as_double((uint2)(v3, ua | (v4 & 0xffffU))) - a;
    ua += 0x03000000U;
    a = as_double((uint2)(0, ua));
    double p3 = as_double((uint2)((v5 << 16) | (v4 >> 16), ua | (v5 >> 16))) - a;

    // Exact multiply
    double f0h = p0 * x;
    double f0l = fma(p0, x, -f0h);
    double f1h = p1 * x;
    double f1l = fma(p1, x, -f1h);
    double f2h = p2 * x;
    double f2l = fma(p2, x, -f2h);
    double f3h = p3 * x;
    double f3l = fma(p3, x, -f3h);

    // Accumulate product into 4 doubles
    double s, t;

    double f3 = f3h + f2h;
    t = f2h - (f3 - f3h);
    s = f3l + t;
    t = t - (s - f3l);

    double f2 = s + f1h;
    t = f1h - (f2 - s) + t;
    s = f2l + t;
    t = t - (s - f2l);

    double f1 = s + f0h;
    t = f0h - (f1 - s) + t;
    s = f1l + t;

    double f0 = s + f0l;

    // Strip off unwanted large integer bits
    f3 = 0x1.0p+10 * fract(f3 * 0x1.0p-10, &fract_temp);
    f3 += f3 + f2 < 0.0 ? 0x1.0p+10 : 0.0;

    // Compute least significant integer bits
    t = f3 + f2;
    double di = t - fract(t, &fract_temp);
    i = (float)di;

    // Shift out remaining integer part
    f3 -= di;
    s = f3 + f2; t = f2 - (s - f3); f3 = s; f2 = t;
    s = f2 + f1; t = f1 - (s - f2); f2 = s; f1 = t;
    f1 += f0;

    // Subtract 1 if fraction is >= 0.5, and update regn
    int g = f3 >= 0.5;
    i += g;
    f3 -= (float)g;

    // Shift up bits
    s = f3 + f2; t = f2 -(s - f3); f3 = s; f2 = t + f1;

    // Multiply precise fraction by pi/2 to get radians
    const double p2h = 7074237752028440.0 / 0x1.0p+52;
    const double p2t = 4967757600021510.0 / 0x1.0p+106;

    double rhi = f3 * p2h;
    double rlo = fma(f2, p2h, fma(f3, p2t, fma(f3, p2h, -rhi)));

    *r = rhi + rlo;
    *rr = rlo - (*r - rhi);
    *regn = i & 0x3;
}


_CLC_DEF double2 __clc_sincos_piby4(double x, double xx) {
    // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
    //                      = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
    //                      = x * f(w)
    // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
    // We use a minimax approximation of (f(w) - 1) / w
    // because this produces an expansion in even powers of x.
    // If xx (the tail of x) is non-zero, we add a correction
    // term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx)
    // is an approximation to cos(x)*sin(xx) valid because
    // xx is tiny relative to x.

    // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
    //                      = f(w)
    // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
    // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
    // because this produces an expansion in even powers of x.
    // If xx (the tail of x) is non-zero, we subtract a correction
    // term g(x,xx) = x*xx to the result, where g(x,xx)
    // is an approximation to sin(x)*sin(xx) valid because
    // xx is tiny relative to x.

    const double sc1 = -0.166666666666666646259241729;
    const double sc2 =  0.833333333333095043065222816e-2;
    const double sc3 = -0.19841269836761125688538679e-3;
    const double sc4 =  0.275573161037288022676895908448e-5;
    const double sc5 = -0.25051132068021699772257377197e-7;
    const double sc6 =  0.159181443044859136852668200e-9;

    const double cc1 =  0.41666666666666665390037e-1;
    const double cc2 = -0.13888888888887398280412e-2;
    const double cc3 =  0.248015872987670414957399e-4;
    const double cc4 = -0.275573172723441909470836e-6;
    const double cc5 =  0.208761463822329611076335e-8;
    const double cc6 = -0.113826398067944859590880e-10;

    double x2 = x * x;
    double x3 = x2 * x;
    double r = 0.5 * x2;
    double t = 1.0 - r;

    double sp = fma(fma(fma(fma(sc6, x2, sc5), x2, sc4), x2, sc3), x2, sc2);

    double cp = t + fma(fma(fma(fma(fma(fma(cc6, x2, cc5), x2, cc4), x2, cc3), x2, cc2), x2, cc1),
                        x2*x2, fma(x, xx, (1.0 - t) - r));

    double2 ret;
    ret.lo = x - fma(-x3, sc1, fma(fma(-x3, sp, 0.5*xx), x2, -xx));
    ret.hi = cp;

    return ret;
}

#endif