sincos_helpers.cl
17.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "math.h"
#include "tables.h"
#include "sincos_helpers.h"
#define bitalign(hi, lo, shift) \
((hi) << (32 - (shift))) | ((lo) >> (shift));
#define bytealign(src0, src1, src2) \
((uint) (((((long)(src0)) << 32) | (long)(src1)) >> (((src2) & 3)*8)))
_CLC_DEF float __clc_sinf_piby4(float x, float y) {
// Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
// = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
// = x * f(w)
// where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
// We use a minimax approximation of (f(w) - 1) / w
// because this produces an expansion in even powers of x.
const float c1 = -0.1666666666e0f;
const float c2 = 0.8333331876e-2f;
const float c3 = -0.198400874e-3f;
const float c4 = 0.272500015e-5f;
const float c5 = -2.5050759689e-08f; // 0xb2d72f34
const float c6 = 1.5896910177e-10f; // 0x2f2ec9d3
float z = x * x;
float v = z * x;
float r = mad(z, mad(z, mad(z, mad(z, c6, c5), c4), c3), c2);
float ret = x - mad(v, -c1, mad(z, mad(y, 0.5f, -v*r), -y));
return ret;
}
_CLC_DEF float __clc_cosf_piby4(float x, float y) {
// Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
// = f(w)
// where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
// We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
// because this produces an expansion in even powers of x.
const float c1 = 0.416666666e-1f;
const float c2 = -0.138888876e-2f;
const float c3 = 0.248006008e-4f;
const float c4 = -0.2730101334e-6f;
const float c5 = 2.0875723372e-09f; // 0x310f74f6
const float c6 = -1.1359647598e-11f; // 0xad47d74e
float z = x * x;
float r = z * mad(z, mad(z, mad(z, mad(z, mad(z, c6, c5), c4), c3), c2), c1);
// if |x| < 0.3
float qx = 0.0f;
int ix = as_int(x) & EXSIGNBIT_SP32;
// 0.78125 > |x| >= 0.3
float xby4 = as_float(ix - 0x01000000);
qx = (ix >= 0x3e99999a) & (ix <= 0x3f480000) ? xby4 : qx;
// x > 0.78125
qx = ix > 0x3f480000 ? 0.28125f : qx;
float hz = mad(z, 0.5f, -qx);
float a = 1.0f - qx;
float ret = a - (hz - mad(z, r, -x*y));
return ret;
}
_CLC_DEF float __clc_tanf_piby4(float x, int regn)
{
// Core Remez [1,2] approximation to tan(x) on the interval [0,pi/4].
float r = x * x;
float a = mad(r, -0.0172032480471481694693109f, 0.385296071263995406715129f);
float b = mad(r,
mad(r, 0.01844239256901656082986661f, -0.51396505478854532132342f),
1.15588821434688393452299f);
float t = mad(x*r, native_divide(a, b), x);
float tr = -MATH_RECIP(t);
return regn & 1 ? tr : t;
}
_CLC_DEF void __clc_fullMulS(float *hi, float *lo, float a, float b, float bh, float bt)
{
if (HAVE_HW_FMA32()) {
float ph = a * b;
*hi = ph;
*lo = fma(a, b, -ph);
} else {
float ah = as_float(as_uint(a) & 0xfffff000U);
float at = a - ah;
float ph = a * b;
float pt = mad(at, bt, mad(at, bh, mad(ah, bt, mad(ah, bh, -ph))));
*hi = ph;
*lo = pt;
}
}
_CLC_DEF float __clc_removePi2S(float *hi, float *lo, float x)
{
// 72 bits of pi/2
const float fpiby2_1 = (float) 0xC90FDA / 0x1.0p+23f;
const float fpiby2_1_h = (float) 0xC90 / 0x1.0p+11f;
const float fpiby2_1_t = (float) 0xFDA / 0x1.0p+23f;
const float fpiby2_2 = (float) 0xA22168 / 0x1.0p+47f;
const float fpiby2_2_h = (float) 0xA22 / 0x1.0p+35f;
const float fpiby2_2_t = (float) 0x168 / 0x1.0p+47f;
const float fpiby2_3 = (float) 0xC234C4 / 0x1.0p+71f;
const float fpiby2_3_h = (float) 0xC23 / 0x1.0p+59f;
const float fpiby2_3_t = (float) 0x4C4 / 0x1.0p+71f;
const float twobypi = 0x1.45f306p-1f;
float fnpi2 = trunc(mad(x, twobypi, 0.5f));
// subtract n * pi/2 from x
float rhead, rtail;
__clc_fullMulS(&rhead, &rtail, fnpi2, fpiby2_1, fpiby2_1_h, fpiby2_1_t);
float v = x - rhead;
float rem = v + (((x - v) - rhead) - rtail);
float rhead2, rtail2;
__clc_fullMulS(&rhead2, &rtail2, fnpi2, fpiby2_2, fpiby2_2_h, fpiby2_2_t);
v = rem - rhead2;
rem = v + (((rem - v) - rhead2) - rtail2);
float rhead3, rtail3;
__clc_fullMulS(&rhead3, &rtail3, fnpi2, fpiby2_3, fpiby2_3_h, fpiby2_3_t);
v = rem - rhead3;
*hi = v + ((rem - v) - rhead3);
*lo = -rtail3;
return fnpi2;
}
_CLC_DEF int __clc_argReductionSmallS(float *r, float *rr, float x)
{
float fnpi2 = __clc_removePi2S(r, rr, x);
return (int)fnpi2 & 0x3;
}
#define FULL_MUL(A, B, HI, LO) \
LO = A * B; \
HI = mul_hi(A, B)
#define FULL_MAD(A, B, C, HI, LO) \
LO = ((A) * (B) + (C)); \
HI = mul_hi(A, B); \
HI += LO < C
_CLC_DEF int __clc_argReductionLargeS(float *r, float *rr, float x)
{
int xe = (int)(as_uint(x) >> 23) - 127;
uint xm = 0x00800000U | (as_uint(x) & 0x7fffffU);
// 224 bits of 2/PI: . A2F9836E 4E441529 FC2757D1 F534DDC0 DB629599 3C439041 FE5163AB
const uint b6 = 0xA2F9836EU;
const uint b5 = 0x4E441529U;
const uint b4 = 0xFC2757D1U;
const uint b3 = 0xF534DDC0U;
const uint b2 = 0xDB629599U;
const uint b1 = 0x3C439041U;
const uint b0 = 0xFE5163ABU;
uint p0, p1, p2, p3, p4, p5, p6, p7, c0, c1;
FULL_MUL(xm, b0, c0, p0);
FULL_MAD(xm, b1, c0, c1, p1);
FULL_MAD(xm, b2, c1, c0, p2);
FULL_MAD(xm, b3, c0, c1, p3);
FULL_MAD(xm, b4, c1, c0, p4);
FULL_MAD(xm, b5, c0, c1, p5);
FULL_MAD(xm, b6, c1, p7, p6);
uint fbits = 224 + 23 - xe;
// shift amount to get 2 lsb of integer part at top 2 bits
// min: 25 (xe=18) max: 134 (xe=127)
uint shift = 256U - 2 - fbits;
// Shift by up to 134/32 = 4 words
int c = shift > 31;
p7 = c ? p6 : p7;
p6 = c ? p5 : p6;
p5 = c ? p4 : p5;
p4 = c ? p3 : p4;
p3 = c ? p2 : p3;
p2 = c ? p1 : p2;
p1 = c ? p0 : p1;
shift -= (-c) & 32;
c = shift > 31;
p7 = c ? p6 : p7;
p6 = c ? p5 : p6;
p5 = c ? p4 : p5;
p4 = c ? p3 : p4;
p3 = c ? p2 : p3;
p2 = c ? p1 : p2;
shift -= (-c) & 32;
c = shift > 31;
p7 = c ? p6 : p7;
p6 = c ? p5 : p6;
p5 = c ? p4 : p5;
p4 = c ? p3 : p4;
p3 = c ? p2 : p3;
shift -= (-c) & 32;
c = shift > 31;
p7 = c ? p6 : p7;
p6 = c ? p5 : p6;
p5 = c ? p4 : p5;
p4 = c ? p3 : p4;
shift -= (-c) & 32;
// bitalign cannot handle a shift of 32
c = shift > 0;
shift = 32 - shift;
uint t7 = bitalign(p7, p6, shift);
uint t6 = bitalign(p6, p5, shift);
uint t5 = bitalign(p5, p4, shift);
p7 = c ? t7 : p7;
p6 = c ? t6 : p6;
p5 = c ? t5 : p5;
// Get 2 lsb of int part and msb of fraction
int i = p7 >> 29;
// Scoot up 2 more bits so only fraction remains
p7 = bitalign(p7, p6, 30);
p6 = bitalign(p6, p5, 30);
p5 = bitalign(p5, p4, 30);
// Subtract 1 if msb of fraction is 1, i.e. fraction >= 0.5
uint flip = i & 1 ? 0xffffffffU : 0U;
uint sign = i & 1 ? 0x80000000U : 0U;
p7 = p7 ^ flip;
p6 = p6 ^ flip;
p5 = p5 ^ flip;
// Find exponent and shift away leading zeroes and hidden bit
xe = clz(p7) + 1;
shift = 32 - xe;
p7 = bitalign(p7, p6, shift);
p6 = bitalign(p6, p5, shift);
// Most significant part of fraction
float q1 = as_float(sign | ((127 - xe) << 23) | (p7 >> 9));
// Shift out bits we captured on q1
p7 = bitalign(p7, p6, 32-23);
// Get 24 more bits of fraction in another float, there are not long strings of zeroes here
int xxe = clz(p7) + 1;
p7 = bitalign(p7, p6, 32-xxe);
float q0 = as_float(sign | ((127 - (xe + 23 + xxe)) << 23) | (p7 >> 9));
// At this point, the fraction q1 + q0 is correct to at least 48 bits
// Now we need to multiply the fraction by pi/2
// This loses us about 4 bits
// pi/2 = C90 FDA A22 168 C23 4C4
const float pio2h = (float)0xc90fda / 0x1.0p+23f;
const float pio2hh = (float)0xc90 / 0x1.0p+11f;
const float pio2ht = (float)0xfda / 0x1.0p+23f;
const float pio2t = (float)0xa22168 / 0x1.0p+47f;
float rh, rt;
if (HAVE_HW_FMA32()) {
rh = q1 * pio2h;
rt = fma(q0, pio2h, fma(q1, pio2t, fma(q1, pio2h, -rh)));
} else {
float q1h = as_float(as_uint(q1) & 0xfffff000);
float q1t = q1 - q1h;
rh = q1 * pio2h;
rt = mad(q1t, pio2ht, mad(q1t, pio2hh, mad(q1h, pio2ht, mad(q1h, pio2hh, -rh))));
rt = mad(q0, pio2h, mad(q1, pio2t, rt));
}
float t = rh + rt;
rt = rt - (t - rh);
*r = t;
*rr = rt;
return ((i >> 1) + (i & 1)) & 0x3;
}
_CLC_DEF int __clc_argReductionS(float *r, float *rr, float x)
{
if (x < 0x1.0p+23f)
return __clc_argReductionSmallS(r, rr, x);
else
return __clc_argReductionLargeS(r, rr, x);
}
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
// Reduction for medium sized arguments
_CLC_DEF void __clc_remainder_piby2_medium(double x, double *r, double *rr, int *regn) {
// How many pi/2 is x a multiple of?
const double two_by_pi = 0x1.45f306dc9c883p-1;
double dnpi2 = trunc(fma(x, two_by_pi, 0.5));
const double piby2_h = -7074237752028440.0 / 0x1.0p+52;
const double piby2_m = -2483878800010755.0 / 0x1.0p+105;
const double piby2_t = -3956492004828932.0 / 0x1.0p+158;
// Compute product of npi2 with 159 bits of 2/pi
double p_hh = piby2_h * dnpi2;
double p_ht = fma(piby2_h, dnpi2, -p_hh);
double p_mh = piby2_m * dnpi2;
double p_mt = fma(piby2_m, dnpi2, -p_mh);
double p_th = piby2_t * dnpi2;
double p_tt = fma(piby2_t, dnpi2, -p_th);
// Reduce to 159 bits
double ph = p_hh;
double pm = p_ht + p_mh;
double t = p_mh - (pm - p_ht);
double pt = p_th + t + p_mt + p_tt;
t = ph + pm; pm = pm - (t - ph); ph = t;
t = pm + pt; pt = pt - (t - pm); pm = t;
// Subtract from x
t = x + ph;
double qh = t + pm;
double qt = pm - (qh - t) + pt;
*r = qh;
*rr = qt;
*regn = (int)(long)dnpi2 & 0x3;
}
// Given positive argument x, reduce it to the range [-pi/4,pi/4] using
// extra precision, and return the result in r, rr.
// Return value "regn" tells how many lots of pi/2 were subtracted
// from x to put it in the range [-pi/4,pi/4], mod 4.
_CLC_DEF void __clc_remainder_piby2_large(double x, double *r, double *rr, int *regn) {
long ux = as_long(x);
int e = (int)(ux >> 52) - 1023;
int i = max(23, (e >> 3) + 17);
int j = 150 - i;
int j16 = j & ~0xf;
double fract_temp;
// The following extracts 192 consecutive bits of 2/pi aligned on an arbitrary byte boundary
uint4 q0 = USE_TABLE(pibits_tbl, j16);
uint4 q1 = USE_TABLE(pibits_tbl, (j16 + 16));
uint4 q2 = USE_TABLE(pibits_tbl, (j16 + 32));
int k = (j >> 2) & 0x3;
int4 c = (int4)k == (int4)(0, 1, 2, 3);
uint u0, u1, u2, u3, u4, u5, u6;
u0 = c.s1 ? q0.s1 : q0.s0;
u0 = c.s2 ? q0.s2 : u0;
u0 = c.s3 ? q0.s3 : u0;
u1 = c.s1 ? q0.s2 : q0.s1;
u1 = c.s2 ? q0.s3 : u1;
u1 = c.s3 ? q1.s0 : u1;
u2 = c.s1 ? q0.s3 : q0.s2;
u2 = c.s2 ? q1.s0 : u2;
u2 = c.s3 ? q1.s1 : u2;
u3 = c.s1 ? q1.s0 : q0.s3;
u3 = c.s2 ? q1.s1 : u3;
u3 = c.s3 ? q1.s2 : u3;
u4 = c.s1 ? q1.s1 : q1.s0;
u4 = c.s2 ? q1.s2 : u4;
u4 = c.s3 ? q1.s3 : u4;
u5 = c.s1 ? q1.s2 : q1.s1;
u5 = c.s2 ? q1.s3 : u5;
u5 = c.s3 ? q2.s0 : u5;
u6 = c.s1 ? q1.s3 : q1.s2;
u6 = c.s2 ? q2.s0 : u6;
u6 = c.s3 ? q2.s1 : u6;
uint v0 = bytealign(u1, u0, j);
uint v1 = bytealign(u2, u1, j);
uint v2 = bytealign(u3, u2, j);
uint v3 = bytealign(u4, u3, j);
uint v4 = bytealign(u5, u4, j);
uint v5 = bytealign(u6, u5, j);
// Place those 192 bits in 4 48-bit doubles along with correct exponent
// If i > 1018 we would get subnormals so we scale p up and x down to get the same product
i = 2 + 8*i;
x *= i > 1018 ? 0x1.0p-136 : 1.0;
i -= i > 1018 ? 136 : 0;
uint ua = (uint)(1023 + 52 - i) << 20;
double a = as_double((uint2)(0, ua));
double p0 = as_double((uint2)(v0, ua | (v1 & 0xffffU))) - a;
ua += 0x03000000U;
a = as_double((uint2)(0, ua));
double p1 = as_double((uint2)((v2 << 16) | (v1 >> 16), ua | (v2 >> 16))) - a;
ua += 0x03000000U;
a = as_double((uint2)(0, ua));
double p2 = as_double((uint2)(v3, ua | (v4 & 0xffffU))) - a;
ua += 0x03000000U;
a = as_double((uint2)(0, ua));
double p3 = as_double((uint2)((v5 << 16) | (v4 >> 16), ua | (v5 >> 16))) - a;
// Exact multiply
double f0h = p0 * x;
double f0l = fma(p0, x, -f0h);
double f1h = p1 * x;
double f1l = fma(p1, x, -f1h);
double f2h = p2 * x;
double f2l = fma(p2, x, -f2h);
double f3h = p3 * x;
double f3l = fma(p3, x, -f3h);
// Accumulate product into 4 doubles
double s, t;
double f3 = f3h + f2h;
t = f2h - (f3 - f3h);
s = f3l + t;
t = t - (s - f3l);
double f2 = s + f1h;
t = f1h - (f2 - s) + t;
s = f2l + t;
t = t - (s - f2l);
double f1 = s + f0h;
t = f0h - (f1 - s) + t;
s = f1l + t;
double f0 = s + f0l;
// Strip off unwanted large integer bits
f3 = 0x1.0p+10 * fract(f3 * 0x1.0p-10, &fract_temp);
f3 += f3 + f2 < 0.0 ? 0x1.0p+10 : 0.0;
// Compute least significant integer bits
t = f3 + f2;
double di = t - fract(t, &fract_temp);
i = (float)di;
// Shift out remaining integer part
f3 -= di;
s = f3 + f2; t = f2 - (s - f3); f3 = s; f2 = t;
s = f2 + f1; t = f1 - (s - f2); f2 = s; f1 = t;
f1 += f0;
// Subtract 1 if fraction is >= 0.5, and update regn
int g = f3 >= 0.5;
i += g;
f3 -= (float)g;
// Shift up bits
s = f3 + f2; t = f2 -(s - f3); f3 = s; f2 = t + f1;
// Multiply precise fraction by pi/2 to get radians
const double p2h = 7074237752028440.0 / 0x1.0p+52;
const double p2t = 4967757600021510.0 / 0x1.0p+106;
double rhi = f3 * p2h;
double rlo = fma(f2, p2h, fma(f3, p2t, fma(f3, p2h, -rhi)));
*r = rhi + rlo;
*rr = rlo - (*r - rhi);
*regn = i & 0x3;
}
_CLC_DEF double2 __clc_sincos_piby4(double x, double xx) {
// Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
// = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
// = x * f(w)
// where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
// We use a minimax approximation of (f(w) - 1) / w
// because this produces an expansion in even powers of x.
// If xx (the tail of x) is non-zero, we add a correction
// term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx)
// is an approximation to cos(x)*sin(xx) valid because
// xx is tiny relative to x.
// Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
// = f(w)
// where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
// We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
// because this produces an expansion in even powers of x.
// If xx (the tail of x) is non-zero, we subtract a correction
// term g(x,xx) = x*xx to the result, where g(x,xx)
// is an approximation to sin(x)*sin(xx) valid because
// xx is tiny relative to x.
const double sc1 = -0.166666666666666646259241729;
const double sc2 = 0.833333333333095043065222816e-2;
const double sc3 = -0.19841269836761125688538679e-3;
const double sc4 = 0.275573161037288022676895908448e-5;
const double sc5 = -0.25051132068021699772257377197e-7;
const double sc6 = 0.159181443044859136852668200e-9;
const double cc1 = 0.41666666666666665390037e-1;
const double cc2 = -0.13888888888887398280412e-2;
const double cc3 = 0.248015872987670414957399e-4;
const double cc4 = -0.275573172723441909470836e-6;
const double cc5 = 0.208761463822329611076335e-8;
const double cc6 = -0.113826398067944859590880e-10;
double x2 = x * x;
double x3 = x2 * x;
double r = 0.5 * x2;
double t = 1.0 - r;
double sp = fma(fma(fma(fma(sc6, x2, sc5), x2, sc4), x2, sc3), x2, sc2);
double cp = t + fma(fma(fma(fma(fma(fma(cc6, x2, cc5), x2, cc4), x2, cc3), x2, cc2), x2, cc1),
x2*x2, fma(x, xx, (1.0 - t) - r));
double2 ret;
ret.lo = x - fma(-x3, sc1, fma(fma(-x3, sp, 0.5*xx), x2, -xx));
ret.hi = cp;
return ret;
}
#endif