GDBRemoteRegisterContext.cpp 56.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "GDBRemoteRegisterContext.h"

#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/StreamString.h"
#include "ProcessGDBRemote.h"
#include "ProcessGDBRemoteLog.h"
#include "ThreadGDBRemote.h"
#include "Utility/ARM_DWARF_Registers.h"
#include "Utility/ARM_ehframe_Registers.h"
#include "lldb/Utility/StringExtractorGDBRemote.h"

#include <memory>

using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_gdb_remote;

// GDBRemoteRegisterContext constructor
GDBRemoteRegisterContext::GDBRemoteRegisterContext(
    ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
    GDBRemoteDynamicRegisterInfo &reg_info, bool read_all_at_once,
    bool write_all_at_once)
    : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info),
      m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once),
      m_write_all_at_once(write_all_at_once) {
  // Resize our vector of bools to contain one bool for every register. We will
  // use these boolean values to know when a register value is valid in
  // m_reg_data.
  m_reg_valid.resize(reg_info.GetNumRegisters());

  // Make a heap based buffer that is big enough to store all registers
  DataBufferSP reg_data_sp(
      new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0));
  m_reg_data.SetData(reg_data_sp);
  m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
}

// Destructor
GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}

void GDBRemoteRegisterContext::InvalidateAllRegisters() {
  SetAllRegisterValid(false);
}

void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
  std::vector<bool>::iterator pos, end = m_reg_valid.end();
  for (pos = m_reg_valid.begin(); pos != end; ++pos)
    *pos = b;
}

size_t GDBRemoteRegisterContext::GetRegisterCount() {
  return m_reg_info.GetNumRegisters();
}

const RegisterInfo *
GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
  RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg);

  if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
    const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
    uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
    reg_info->byte_size = reg_size;
  }
  return reg_info;
}

size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
  return m_reg_info.GetNumRegisterSets();
}

const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
  return m_reg_info.GetRegisterSet(reg_set);
}

bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
                                            RegisterValue &value) {
  // Read the register
  if (ReadRegisterBytes(reg_info, m_reg_data)) {
    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
    if (m_reg_valid[reg] == false)
      return false;
    const bool partial_data_ok = false;
    Status error(value.SetValueFromData(
        reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
    return error.Success();
  }
  return false;
}

bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
    uint32_t reg, llvm::ArrayRef<uint8_t> data) {
  const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
  if (reg_info == nullptr)
    return false;

  // Invalidate if needed
  InvalidateIfNeeded(false);

  const size_t reg_byte_size = reg_info->byte_size;
  memcpy(const_cast<uint8_t *>(
             m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
         data.data(), std::min(data.size(), reg_byte_size));
  bool success = data.size() >= reg_byte_size;
  if (success) {
    SetRegisterIsValid(reg, true);
  } else if (data.size() > 0) {
    // Only set register is valid to false if we copied some bytes, else leave
    // it as it was.
    SetRegisterIsValid(reg, false);
  }
  return success;
}

bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
                                                       uint64_t new_reg_val) {
  const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
  if (reg_info == nullptr)
    return false;

  // Early in process startup, we can get a thread that has an invalid byte
  // order because the process hasn't been completely set up yet (see the ctor
  // where the byte order is setfrom the process).  If that's the case, we
  // can't set the value here.
  if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
    return false;
  }

  // Invalidate if needed
  InvalidateIfNeeded(false);

  DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
  DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));

  // If our register context and our register info disagree, which should never
  // happen, don't overwrite past the end of the buffer.
  if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
    return false;

  // Grab a pointer to where we are going to put this register
  uint8_t *dst = const_cast<uint8_t *>(
      m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));

  if (dst == nullptr)
    return false;

  if (data.CopyByteOrderedData(0,                          // src offset
                               reg_info->byte_size,        // src length
                               dst,                        // dst
                               reg_info->byte_size,        // dst length
                               m_reg_data.GetByteOrder())) // dst byte order
  {
    SetRegisterIsValid(reg, true);
    return true;
  }
  return false;
}

// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
bool GDBRemoteRegisterContext::GetPrimordialRegister(
    const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
  const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
  const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];

  if (DataBufferSP buffer_sp =
          gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
    return PrivateSetRegisterValue(
        lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
                                          buffer_sp->GetByteSize()));
  return false;
}

bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
                                                 DataExtractor &data) {
  ExecutionContext exe_ctx(CalculateThread());

  Process *process = exe_ctx.GetProcessPtr();
  Thread *thread = exe_ctx.GetThreadPtr();
  if (process == nullptr || thread == nullptr)
    return false;

  GDBRemoteCommunicationClient &gdb_comm(
      ((ProcessGDBRemote *)process)->GetGDBRemote());

  InvalidateIfNeeded(false);

  const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

  if (!GetRegisterIsValid(reg)) {
    if (m_read_all_at_once) {
      if (DataBufferSP buffer_sp =
              gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
        memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
               buffer_sp->GetBytes(),
               std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
        if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
          SetAllRegisterValid(true);
          return true;
        } else if (buffer_sp->GetByteSize() > 0) {
          const int regcount = m_reg_info.GetNumRegisters();
          for (int i = 0; i < regcount; i++) {
            struct RegisterInfo *reginfo = m_reg_info.GetRegisterInfoAtIndex(i);
            if (reginfo->byte_offset + reginfo->byte_size 
                   <= buffer_sp->GetByteSize()) {
              m_reg_valid[i] = true;
            } else {
              m_reg_valid[i] = false;
            }
          }
          return true;
        } else {
          Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
                                                                GDBR_LOG_PACKETS));
          LLDB_LOGF(
              log,
              "error: GDBRemoteRegisterContext::ReadRegisterBytes tried "
              "to read the "
              "entire register context at once, expected at least %" PRId64
              " bytes "
              "but only got %" PRId64 " bytes.",
              m_reg_data.GetByteSize(), buffer_sp->GetByteSize());
        }
      }
      return false;
    }
    if (reg_info->value_regs) {
      // Process this composite register request by delegating to the
      // constituent primordial registers.

      // Index of the primordial register.
      bool success = true;
      for (uint32_t idx = 0; success; ++idx) {
        const uint32_t prim_reg = reg_info->value_regs[idx];
        if (prim_reg == LLDB_INVALID_REGNUM)
          break;
        // We have a valid primordial register as our constituent. Grab the
        // corresponding register info.
        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
        if (prim_reg_info == nullptr)
          success = false;
        else {
          // Read the containing register if it hasn't already been read
          if (!GetRegisterIsValid(prim_reg))
            success = GetPrimordialRegister(prim_reg_info, gdb_comm);
        }
      }

      if (success) {
        // If we reach this point, all primordial register requests have
        // succeeded. Validate this composite register.
        SetRegisterIsValid(reg_info, true);
      }
    } else {
      // Get each register individually
      GetPrimordialRegister(reg_info, gdb_comm);
    }

    // Make sure we got a valid register value after reading it
    if (!GetRegisterIsValid(reg))
      return false;
  }

  if (&data != &m_reg_data) {
    assert(m_reg_data.GetByteSize() >=
           reg_info->byte_offset + reg_info->byte_size);
    // If our register context and our register info disagree, which should
    // never happen, don't read past the end of the buffer.
    if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
      return false;

    // If we aren't extracting into our own buffer (which only happens when
    // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then
    // we transfer bytes from our buffer into the data buffer that was passed
    // in

    data.SetByteOrder(m_reg_data.GetByteOrder());
    data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
  }
  return true;
}

bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
                                             const RegisterValue &value) {
  DataExtractor data;
  if (value.GetData(data))
    return WriteRegisterBytes(reg_info, data, 0);
  return false;
}

// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
bool GDBRemoteRegisterContext::SetPrimordialRegister(
    const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
  StreamString packet;
  StringExtractorGDBRemote response;
  const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
  // Invalidate just this register
  SetRegisterIsValid(reg, false);

  return gdb_comm.WriteRegister(
      m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
      {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
       reg_info->byte_size});
}

bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
                                                  DataExtractor &data,
                                                  uint32_t data_offset) {
  ExecutionContext exe_ctx(CalculateThread());

  Process *process = exe_ctx.GetProcessPtr();
  Thread *thread = exe_ctx.GetThreadPtr();
  if (process == nullptr || thread == nullptr)
    return false;

  GDBRemoteCommunicationClient &gdb_comm(
      ((ProcessGDBRemote *)process)->GetGDBRemote());

  assert(m_reg_data.GetByteSize() >=
         reg_info->byte_offset + reg_info->byte_size);

  // If our register context and our register info disagree, which should never
  // happen, don't overwrite past the end of the buffer.
  if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
    return false;

  // Grab a pointer to where we are going to put this register
  uint8_t *dst = const_cast<uint8_t *>(
      m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));

  if (dst == nullptr)
    return false;

  if (data.CopyByteOrderedData(data_offset,                // src offset
                               reg_info->byte_size,        // src length
                               dst,                        // dst
                               reg_info->byte_size,        // dst length
                               m_reg_data.GetByteOrder())) // dst byte order
  {
    GDBRemoteClientBase::Lock lock(gdb_comm, false);
    if (lock) {
      if (m_write_all_at_once) {
        // Invalidate all register values
        InvalidateIfNeeded(true);

        // Set all registers in one packet
        if (gdb_comm.WriteAllRegisters(
                m_thread.GetProtocolID(),
                {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))

        {
          SetAllRegisterValid(false);
          return true;
        }
      } else {
        bool success = true;

        if (reg_info->value_regs) {
          // This register is part of another register. In this case we read
          // the actual register data for any "value_regs", and once all that
          // data is read, we will have enough data in our register context
          // bytes for the value of this register

          // Invalidate this composite register first.

          for (uint32_t idx = 0; success; ++idx) {
            const uint32_t reg = reg_info->value_regs[idx];
            if (reg == LLDB_INVALID_REGNUM)
              break;
            // We have a valid primordial register as our constituent. Grab the
            // corresponding register info.
            const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
            if (value_reg_info == nullptr)
              success = false;
            else
              success = SetPrimordialRegister(value_reg_info, gdb_comm);
          }
        } else {
          // This is an actual register, write it
          success = SetPrimordialRegister(reg_info, gdb_comm);
        }

        // Check if writing this register will invalidate any other register
        // values? If so, invalidate them
        if (reg_info->invalidate_regs) {
          for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
               reg != LLDB_INVALID_REGNUM;
               reg = reg_info->invalidate_regs[++idx]) {
            SetRegisterIsValid(reg, false);
          }
        }

        return success;
      }
    } else {
      Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
                                                             GDBR_LOG_PACKETS));
      if (log) {
        if (log->GetVerbose()) {
          StreamString strm;
          gdb_comm.DumpHistory(strm);
          LLDB_LOGF(log,
                    "error: failed to get packet sequence mutex, not sending "
                    "write register for \"%s\":\n%s",
                    reg_info->name, strm.GetData());
        } else
          LLDB_LOGF(log,
                    "error: failed to get packet sequence mutex, not sending "
                    "write register for \"%s\"",
                    reg_info->name);
      }
    }
  }
  return false;
}

bool GDBRemoteRegisterContext::ReadAllRegisterValues(
    RegisterCheckpoint &reg_checkpoint) {
  ExecutionContext exe_ctx(CalculateThread());

  Process *process = exe_ctx.GetProcessPtr();
  Thread *thread = exe_ctx.GetThreadPtr();
  if (process == nullptr || thread == nullptr)
    return false;

  GDBRemoteCommunicationClient &gdb_comm(
      ((ProcessGDBRemote *)process)->GetGDBRemote());

  uint32_t save_id = 0;
  if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
    reg_checkpoint.SetID(save_id);
    reg_checkpoint.GetData().reset();
    return true;
  } else {
    reg_checkpoint.SetID(0); // Invalid save ID is zero
    return ReadAllRegisterValues(reg_checkpoint.GetData());
  }
}

bool GDBRemoteRegisterContext::WriteAllRegisterValues(
    const RegisterCheckpoint &reg_checkpoint) {
  uint32_t save_id = reg_checkpoint.GetID();
  if (save_id != 0) {
    ExecutionContext exe_ctx(CalculateThread());

    Process *process = exe_ctx.GetProcessPtr();
    Thread *thread = exe_ctx.GetThreadPtr();
    if (process == nullptr || thread == nullptr)
      return false;

    GDBRemoteCommunicationClient &gdb_comm(
        ((ProcessGDBRemote *)process)->GetGDBRemote());

    return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
  } else {
    return WriteAllRegisterValues(reg_checkpoint.GetData());
  }
}

bool GDBRemoteRegisterContext::ReadAllRegisterValues(
    lldb::DataBufferSP &data_sp) {
  ExecutionContext exe_ctx(CalculateThread());

  Process *process = exe_ctx.GetProcessPtr();
  Thread *thread = exe_ctx.GetThreadPtr();
  if (process == nullptr || thread == nullptr)
    return false;

  GDBRemoteCommunicationClient &gdb_comm(
      ((ProcessGDBRemote *)process)->GetGDBRemote());

  const bool use_g_packet =
      !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);

  GDBRemoteClientBase::Lock lock(gdb_comm, false);
  if (lock) {
    if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
      InvalidateAllRegisters();

    if (use_g_packet &&
        (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
      return true;

    // We're going to read each register
    // individually and store them as binary data in a buffer.
    const RegisterInfo *reg_info;

    for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
         i++) {
      if (reg_info
              ->value_regs) // skip registers that are slices of real registers
        continue;
      ReadRegisterBytes(reg_info, m_reg_data);
      // ReadRegisterBytes saves the contents of the register in to the
      // m_reg_data buffer
    }
    data_sp = std::make_shared<DataBufferHeap>(
        m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
    return true;
  } else {

    Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
                                                           GDBR_LOG_PACKETS));
    if (log) {
      if (log->GetVerbose()) {
        StreamString strm;
        gdb_comm.DumpHistory(strm);
        LLDB_LOGF(log,
                  "error: failed to get packet sequence mutex, not sending "
                  "read all registers:\n%s",
                  strm.GetData());
      } else
        LLDB_LOGF(log,
                  "error: failed to get packet sequence mutex, not sending "
                  "read all registers");
    }
  }

  data_sp.reset();
  return false;
}

bool GDBRemoteRegisterContext::WriteAllRegisterValues(
    const lldb::DataBufferSP &data_sp) {
  if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0)
    return false;

  ExecutionContext exe_ctx(CalculateThread());

  Process *process = exe_ctx.GetProcessPtr();
  Thread *thread = exe_ctx.GetThreadPtr();
  if (process == nullptr || thread == nullptr)
    return false;

  GDBRemoteCommunicationClient &gdb_comm(
      ((ProcessGDBRemote *)process)->GetGDBRemote());

  const bool use_g_packet =
      !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);

  GDBRemoteClientBase::Lock lock(gdb_comm, false);
  if (lock) {
    // The data_sp contains the G response packet.
    if (use_g_packet) {
      if (gdb_comm.WriteAllRegisters(
              m_thread.GetProtocolID(),
              {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
        return true;

      uint32_t num_restored = 0;
      // We need to manually go through all of the registers and restore them
      // manually
      DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
                                 m_reg_data.GetAddressByteSize());

      const RegisterInfo *reg_info;

      // The g packet contents may either include the slice registers
      // (registers defined in terms of other registers, e.g. eax is a subset
      // of rax) or not.  The slice registers should NOT be in the g packet,
      // but some implementations may incorrectly include them.
      //
      // If the slice registers are included in the packet, we must step over
      // the slice registers when parsing the packet -- relying on the
      // RegisterInfo byte_offset field would be incorrect. If the slice
      // registers are not included, then using the byte_offset values into the
      // data buffer is the best way to find individual register values.

      uint64_t size_including_slice_registers = 0;
      uint64_t size_not_including_slice_registers = 0;
      uint64_t size_by_highest_offset = 0;

      for (uint32_t reg_idx = 0;
           (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) {
        size_including_slice_registers += reg_info->byte_size;
        if (reg_info->value_regs == nullptr)
          size_not_including_slice_registers += reg_info->byte_size;
        if (reg_info->byte_offset >= size_by_highest_offset)
          size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
      }

      bool use_byte_offset_into_buffer;
      if (size_by_highest_offset == restore_data.GetByteSize()) {
        // The size of the packet agrees with the highest offset: + size in the
        // register file
        use_byte_offset_into_buffer = true;
      } else if (size_not_including_slice_registers ==
                 restore_data.GetByteSize()) {
        // The size of the packet is the same as concatenating all of the
        // registers sequentially, skipping the slice registers
        use_byte_offset_into_buffer = true;
      } else if (size_including_slice_registers == restore_data.GetByteSize()) {
        // The slice registers are present in the packet (when they shouldn't
        // be). Don't try to use the RegisterInfo byte_offset into the
        // restore_data, it will point to the wrong place.
        use_byte_offset_into_buffer = false;
      } else {
        // None of our expected sizes match the actual g packet data we're
        // looking at. The most conservative approach here is to use the
        // running total byte offset.
        use_byte_offset_into_buffer = false;
      }

      // In case our register definitions don't include the correct offsets,
      // keep track of the size of each reg & compute offset based on that.
      uint32_t running_byte_offset = 0;
      for (uint32_t reg_idx = 0;
           (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr;
           ++reg_idx, running_byte_offset += reg_info->byte_size) {
        // Skip composite aka slice registers (e.g. eax is a slice of rax).
        if (reg_info->value_regs)
          continue;

        const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

        uint32_t register_offset;
        if (use_byte_offset_into_buffer) {
          register_offset = reg_info->byte_offset;
        } else {
          register_offset = running_byte_offset;
        }

        const uint32_t reg_byte_size = reg_info->byte_size;

        const uint8_t *restore_src =
            restore_data.PeekData(register_offset, reg_byte_size);
        if (restore_src) {
          SetRegisterIsValid(reg, false);
          if (gdb_comm.WriteRegister(
                  m_thread.GetProtocolID(),
                  reg_info->kinds[eRegisterKindProcessPlugin],
                  {restore_src, reg_byte_size}))
            ++num_restored;
        }
      }
      return num_restored > 0;
    } else {
      // For the use_g_packet == false case, we're going to write each register
      // individually.  The data buffer is binary data in this case, instead of
      // ascii characters.

      bool arm64_debugserver = false;
      if (m_thread.GetProcess().get()) {
        const ArchSpec &arch =
            m_thread.GetProcess()->GetTarget().GetArchitecture();
        if (arch.IsValid() && 
            (arch.GetMachine() == llvm::Triple::aarch64 ||
             arch.GetMachine() == llvm::Triple::aarch64_32) &&
            arch.GetTriple().getVendor() == llvm::Triple::Apple &&
            arch.GetTriple().getOS() == llvm::Triple::IOS) {
          arm64_debugserver = true;
        }
      }
      uint32_t num_restored = 0;
      const RegisterInfo *reg_info;
      for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
           i++) {
        if (reg_info->value_regs) // skip registers that are slices of real
                                  // registers
          continue;
        // Skip the fpsr and fpcr floating point status/control register
        // writing to work around a bug in an older version of debugserver that
        // would lead to register context corruption when writing fpsr/fpcr.
        if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
                                  strcmp(reg_info->name, "fpcr") == 0)) {
          continue;
        }

        SetRegisterIsValid(reg_info, false);
        if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
                                   reg_info->kinds[eRegisterKindProcessPlugin],
                                   {data_sp->GetBytes() + reg_info->byte_offset,
                                    reg_info->byte_size}))
          ++num_restored;
      }
      return num_restored > 0;
    }
  } else {
    Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
                                                           GDBR_LOG_PACKETS));
    if (log) {
      if (log->GetVerbose()) {
        StreamString strm;
        gdb_comm.DumpHistory(strm);
        LLDB_LOGF(log,
                  "error: failed to get packet sequence mutex, not sending "
                  "write all registers:\n%s",
                  strm.GetData());
      } else
        LLDB_LOGF(log,
                  "error: failed to get packet sequence mutex, not sending "
                  "write all registers");
    }
  }
  return false;
}

uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
    lldb::RegisterKind kind, uint32_t num) {
  return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num);
}

void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
  // For Advanced SIMD and VFP register mapping.
  static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM};  // (s0, s1)
  static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM};  // (s2, s3)
  static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM};  // (s4, s5)
  static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM};  // (s6, s7)
  static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM};  // (s8, s9)
  static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM};  // (s10, s11)
  static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM};  // (s12, s13)
  static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM};  // (s14, s15)
  static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM};  // (s16, s17)
  static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM};  // (s18, s19)
  static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
  static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
  static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
  static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
  static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
  static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
  static uint32_t g_q0_regs[] = {
      26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
  static uint32_t g_q1_regs[] = {
      30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
  static uint32_t g_q2_regs[] = {
      34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
  static uint32_t g_q3_regs[] = {
      38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
  static uint32_t g_q4_regs[] = {
      42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
  static uint32_t g_q5_regs[] = {
      46, 47, 48, 49,
      LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
  static uint32_t g_q6_regs[] = {
      50, 51, 52, 53,
      LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
  static uint32_t g_q7_regs[] = {
      54, 55, 56, 57,
      LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
  static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM};  // (d16, d17)
  static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM};  // (d18, d19)
  static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
  static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
  static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
  static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
  static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
  static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)

  // This is our array of composite registers, with each element coming from
  // the above register mappings.
  static uint32_t *g_composites[] = {
      g_d0_regs,  g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,
      g_d6_regs,  g_d7_regs,  g_d8_regs,  g_d9_regs,  g_d10_regs, g_d11_regs,
      g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs,  g_q1_regs,
      g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
      g_q8_regs,  g_q9_regs,  g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
      g_q14_regs, g_q15_regs};

  // clang-format off
    static RegisterInfo g_register_infos[] = {
//   NAME     ALT     SZ   OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB    VALUE REGS    INVALIDATE REGS SIZE EXPR SIZE LEN
//   ======   ======  ===  ===  =============     ==========      ===================  ===================  ======================  =============   ====    ==========    =============== ========= ========
    { "r0",   "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },     nullptr,           nullptr,  nullptr,       0 },
    { "r1",   "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },     nullptr,           nullptr,  nullptr,       0 },
    { "r2",   "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },     nullptr,           nullptr,  nullptr,       0 },
    { "r3",   "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },     nullptr,           nullptr,  nullptr,       0 },
    { "r4",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },     nullptr,           nullptr,  nullptr,       0 },
    { "r5",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },     nullptr,           nullptr,  nullptr,       0 },
    { "r6",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },     nullptr,           nullptr,  nullptr,       0 },
    { "r7",     "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },     nullptr,           nullptr,  nullptr,       0 },
    { "r8",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },     nullptr,           nullptr,  nullptr,       0 },
    { "r9",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },     nullptr,           nullptr,  nullptr,       0 },
    { "r10", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },     nullptr,           nullptr,  nullptr,       0 },
    { "r11", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },     nullptr,           nullptr,  nullptr,       0 },
    { "r12", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },     nullptr,           nullptr,  nullptr,       0 },
    { "sp",     "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },     nullptr,           nullptr,  nullptr,       0 },
    { "lr",     "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },     nullptr,           nullptr,  nullptr,       0 },
    { "pc",     "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },     nullptr,           nullptr,  nullptr,       0 },
    { "f0",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },     nullptr,           nullptr,  nullptr,       0 },
    { "f1",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },     nullptr,           nullptr,  nullptr,       0 },
    { "f2",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },     nullptr,           nullptr,  nullptr,       0 },
    { "f3",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },     nullptr,           nullptr,  nullptr,       0 },
    { "f4",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },     nullptr,           nullptr,  nullptr,       0 },
    { "f5",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },     nullptr,           nullptr,  nullptr,       0 },
    { "f6",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },     nullptr,           nullptr,  nullptr,       0 },
    { "f7",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },     nullptr,           nullptr,  nullptr,       0 },
    { "fps", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },     nullptr,           nullptr,  nullptr,       0 },
    { "cpsr","flags",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },     nullptr,           nullptr,  nullptr,       0 },
    { "s0",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },     nullptr,           nullptr,  nullptr,       0 },
    { "s1",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },     nullptr,           nullptr,  nullptr,       0 },
    { "s2",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },     nullptr,           nullptr,  nullptr,       0 },
    { "s3",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },     nullptr,           nullptr,  nullptr,       0 },
    { "s4",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },     nullptr,           nullptr,  nullptr,       0 },
    { "s5",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },     nullptr,           nullptr,  nullptr,       0 },
    { "s6",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },     nullptr,           nullptr,  nullptr,       0 },
    { "s7",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },     nullptr,           nullptr,  nullptr,       0 },
    { "s8",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },     nullptr,           nullptr,  nullptr,       0 },
    { "s9",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },     nullptr,           nullptr,  nullptr,       0 },
    { "s10", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },     nullptr,           nullptr,  nullptr,       0 },
    { "s11", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },     nullptr,           nullptr,  nullptr,       0 },
    { "s12", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },     nullptr,           nullptr,  nullptr,       0 },
    { "s13", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },     nullptr,           nullptr,  nullptr,       0 },
    { "s14", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },     nullptr,           nullptr,  nullptr,       0 },
    { "s15", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },     nullptr,           nullptr,  nullptr,       0 },
    { "s16", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },     nullptr,           nullptr,  nullptr,       0 },
    { "s17", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },     nullptr,           nullptr,  nullptr,       0 },
    { "s18", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },     nullptr,           nullptr,  nullptr,       0 },
    { "s19", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },     nullptr,           nullptr,  nullptr,       0 },
    { "s20", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },     nullptr,           nullptr,  nullptr,       0 },
    { "s21", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },     nullptr,           nullptr,  nullptr,       0 },
    { "s22", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },     nullptr,           nullptr,  nullptr,       0 },
    { "s23", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },     nullptr,           nullptr,  nullptr,       0 },
    { "s24", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },     nullptr,           nullptr,  nullptr,       0 },
    { "s25", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },     nullptr,           nullptr,  nullptr,       0 },
    { "s26", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },     nullptr,           nullptr,  nullptr,       0 },
    { "s27", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },     nullptr,           nullptr,  nullptr,       0 },
    { "s28", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },     nullptr,           nullptr,  nullptr,       0 },
    { "s29", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },     nullptr,           nullptr,  nullptr,       0 },
    { "s30", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },     nullptr,           nullptr,  nullptr,       0 },
    { "s31", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },     nullptr,           nullptr,  nullptr,       0 },
    { "fpscr",nullptr,  4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },     nullptr,           nullptr,  nullptr,       0 },
    { "d16", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },     nullptr,           nullptr,  nullptr,       0 },
    { "d17", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },     nullptr,           nullptr,  nullptr,       0 },
    { "d18", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },     nullptr,           nullptr,  nullptr,       0 },
    { "d19", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },     nullptr,           nullptr,  nullptr,       0 },
    { "d20", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },     nullptr,           nullptr,  nullptr,       0 },
    { "d21", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },     nullptr,           nullptr,  nullptr,       0 },
    { "d22", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },     nullptr,           nullptr,  nullptr,       0 },
    { "d23", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },     nullptr,           nullptr,  nullptr,       0 },
    { "d24", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },     nullptr,           nullptr,  nullptr,       0 },
    { "d25", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },     nullptr,           nullptr,  nullptr,       0 },
    { "d26", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },     nullptr,           nullptr,  nullptr,       0 },
    { "d27", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },     nullptr,           nullptr,  nullptr,       0 },
    { "d28", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },     nullptr,           nullptr,  nullptr,       0 },
    { "d29", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },     nullptr,           nullptr,  nullptr,       0 },
    { "d30", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },     nullptr,           nullptr,  nullptr,       0 },
    { "d31", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },     nullptr,           nullptr,  nullptr,       0 },
    { "d0",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,           nullptr,  nullptr,       0 },
    { "d1",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,           nullptr,  nullptr,       0 },
    { "d2",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,           nullptr,  nullptr,       0 },
    { "d3",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,           nullptr,  nullptr,       0 },
    { "d4",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,           nullptr,  nullptr,       0 },
    { "d5",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,           nullptr,  nullptr,       0 },
    { "d6",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,           nullptr,  nullptr,       0 },
    { "d7",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,           nullptr,  nullptr,       0 },
    { "d8",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,           nullptr,  nullptr,       0 },
    { "d9",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,           nullptr,  nullptr,       0 },
    { "d10", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,           nullptr,  nullptr,       0 },
    { "d11", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,           nullptr,  nullptr,       0 },
    { "d12", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,           nullptr,  nullptr,       0 },
    { "d13", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,           nullptr,  nullptr,       0 },
    { "d14", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,           nullptr,  nullptr,       0 },
    { "d15", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,           nullptr,  nullptr,       0 },
    { "q0",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,           nullptr,  nullptr,       0 },
    { "q1",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,           nullptr,  nullptr,       0 },
    { "q2",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,           nullptr,  nullptr,       0 },
    { "q3",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,           nullptr,  nullptr,       0 },
    { "q4",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,           nullptr,  nullptr,       0 },
    { "q5",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,           nullptr,  nullptr,       0 },
    { "q6",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,           nullptr,  nullptr,       0 },
    { "q7",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,           nullptr,  nullptr,       0 },
    { "q8",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,           nullptr,  nullptr,       0 },
    { "q9",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,           nullptr,  nullptr,       0 },
    { "q10", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,           nullptr,  nullptr,       0 },
    { "q11", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,           nullptr,  nullptr,       0 },
    { "q12", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,           nullptr,  nullptr,       0 },
    { "q13", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,           nullptr,  nullptr,       0 },
    { "q14", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,           nullptr,  nullptr,       0 },
    { "q15", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,           nullptr,  nullptr,       0 }
    };
  // clang-format on

  static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
  static ConstString gpr_reg_set("General Purpose Registers");
  static ConstString sfp_reg_set("Software Floating Point Registers");
  static ConstString vfp_reg_set("Floating Point Registers");
  size_t i;
  if (from_scratch) {
    // Calculate the offsets of the registers
    // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
    // which comes after the "primordial" registers is important.  This enables
    // us to calculate the offset of the composite register by using the offset
    // of its first primordial register.  For example, to calculate the offset
    // of q0, use s0's offset.
    if (g_register_infos[2].byte_offset == 0) {
      uint32_t byte_offset = 0;
      for (i = 0; i < num_registers; ++i) {
        // For primordial registers, increment the byte_offset by the byte_size
        // to arrive at the byte_offset for the next register.  Otherwise, we
        // have a composite register whose offset can be calculated by
        // consulting the offset of its first primordial register.
        if (!g_register_infos[i].value_regs) {
          g_register_infos[i].byte_offset = byte_offset;
          byte_offset += g_register_infos[i].byte_size;
        } else {
          const uint32_t first_primordial_reg =
              g_register_infos[i].value_regs[0];
          g_register_infos[i].byte_offset =
              g_register_infos[first_primordial_reg].byte_offset;
        }
      }
    }
    for (i = 0; i < num_registers; ++i) {
      ConstString name;
      ConstString alt_name;
      if (g_register_infos[i].name && g_register_infos[i].name[0])
        name.SetCString(g_register_infos[i].name);
      if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
        alt_name.SetCString(g_register_infos[i].alt_name);

      if (i <= 15 || i == 25)
        AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
      else if (i <= 24)
        AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
      else
        AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
    }
  } else {
    // Add composite registers to our primordial registers, then.
    const size_t num_composites = llvm::array_lengthof(g_composites);
    const size_t num_dynamic_regs = GetNumRegisters();
    const size_t num_common_regs = num_registers - num_composites;
    RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;

    // First we need to validate that all registers that we already have match
    // the non composite regs. If so, then we can add the registers, else we
    // need to bail
    bool match = true;
    if (num_dynamic_regs == num_common_regs) {
      for (i = 0; match && i < num_dynamic_regs; ++i) {
        // Make sure all register names match
        if (m_regs[i].name && g_register_infos[i].name) {
          if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
            match = false;
            break;
          }
        }

        // Make sure all register byte sizes match
        if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
          match = false;
          break;
        }
      }
    } else {
      // Wrong number of registers.
      match = false;
    }
    // If "match" is true, then we can add extra registers.
    if (match) {
      for (i = 0; i < num_composites; ++i) {
        ConstString name;
        ConstString alt_name;
        const uint32_t first_primordial_reg =
            g_comp_register_infos[i].value_regs[0];
        const char *reg_name = g_register_infos[first_primordial_reg].name;
        if (reg_name && reg_name[0]) {
          for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
            const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
            // Find a matching primordial register info entry.
            if (reg_info && reg_info->name &&
                ::strcasecmp(reg_info->name, reg_name) == 0) {
              // The name matches the existing primordial entry. Find and
              // assign the offset, and then add this composite register entry.
              g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
              name.SetCString(g_comp_register_infos[i].name);
              AddRegister(g_comp_register_infos[i], name, alt_name,
                          vfp_reg_set);
            }
          }
        }
      }
    }
  }
}