HashedNameToDIE.cpp 20.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
//===-- HashedNameToDIE.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "HashedNameToDIE.h"
#include "llvm/ADT/StringRef.h"

void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array,
                                      DIEArray &die_offsets) {
  const size_t count = die_info_array.size();
  for (size_t i = 0; i < count; ++i)
    die_offsets.emplace_back(die_info_array[i]);
}

void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array,
                                      const dw_tag_t tag,
                                      DIEArray &die_offsets) {
  if (tag == 0) {
    ExtractDIEArray(die_info_array, die_offsets);
  } else {
    const size_t count = die_info_array.size();
    for (size_t i = 0; i < count; ++i) {
      const dw_tag_t die_tag = die_info_array[i].tag;
      bool tag_matches = die_tag == 0 || tag == die_tag;
      if (!tag_matches) {
        if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
          tag_matches =
              tag == DW_TAG_structure_type || tag == DW_TAG_class_type;
      }
      if (tag_matches)
        die_offsets.emplace_back(die_info_array[i]);
    }
  }
}

void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array,
                                      const dw_tag_t tag,
                                      const uint32_t qualified_name_hash,
                                      DIEArray &die_offsets) {
  if (tag == 0) {
    ExtractDIEArray(die_info_array, die_offsets);
  } else {
    const size_t count = die_info_array.size();
    for (size_t i = 0; i < count; ++i) {
      if (qualified_name_hash != die_info_array[i].qualified_name_hash)
        continue;
      const dw_tag_t die_tag = die_info_array[i].tag;
      bool tag_matches = die_tag == 0 || tag == die_tag;
      if (!tag_matches) {
        if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
          tag_matches =
              tag == DW_TAG_structure_type || tag == DW_TAG_class_type;
      }
      if (tag_matches)
        die_offsets.emplace_back(die_info_array[i]);
    }
  }
}

void DWARFMappedHash::ExtractClassOrStructDIEArray(
    const DIEInfoArray &die_info_array,
    bool return_implementation_only_if_available, DIEArray &die_offsets) {
  const size_t count = die_info_array.size();
  for (size_t i = 0; i < count; ++i) {
    const dw_tag_t die_tag = die_info_array[i].tag;
    if (die_tag == 0 || die_tag == DW_TAG_class_type ||
        die_tag == DW_TAG_structure_type) {
      if (die_info_array[i].type_flags & eTypeFlagClassIsImplementation) {
        if (return_implementation_only_if_available) {
          // We found the one true definition for this class, so only return
          // that
          die_offsets.clear();
          die_offsets.emplace_back(die_info_array[i]);
          return;
        } else {
          // Put the one true definition as the first entry so it matches first
          die_offsets.emplace(die_offsets.begin(), die_info_array[i]);
        }
      } else {
        die_offsets.emplace_back(die_info_array[i]);
      }
    }
  }
}

void DWARFMappedHash::ExtractTypesFromDIEArray(
    const DIEInfoArray &die_info_array, uint32_t type_flag_mask,
    uint32_t type_flag_value, DIEArray &die_offsets) {
  const size_t count = die_info_array.size();
  for (size_t i = 0; i < count; ++i) {
    if ((die_info_array[i].type_flags & type_flag_mask) == type_flag_value)
      die_offsets.emplace_back(die_info_array[i]);
  }
}

const char *DWARFMappedHash::GetAtomTypeName(uint16_t atom) {
  switch (atom) {
  case eAtomTypeNULL:
    return "NULL";
  case eAtomTypeDIEOffset:
    return "die-offset";
  case eAtomTypeCUOffset:
    return "cu-offset";
  case eAtomTypeTag:
    return "die-tag";
  case eAtomTypeNameFlags:
    return "name-flags";
  case eAtomTypeTypeFlags:
    return "type-flags";
  case eAtomTypeQualNameHash:
    return "qualified-name-hash";
  }
  return "<invalid>";
}

DWARFMappedHash::DIEInfo::DIEInfo(dw_offset_t o, dw_tag_t t, uint32_t f,
                                  uint32_t h)
    : die_offset(o), tag(t), type_flags(f), qualified_name_hash(h) {}

DWARFMappedHash::Prologue::Prologue(dw_offset_t _die_base_offset)
    : die_base_offset(_die_base_offset), atoms(), atom_mask(0),
      min_hash_data_byte_size(0), hash_data_has_fixed_byte_size(true) {
  // Define an array of DIE offsets by first defining an array, and then define
  // the atom type for the array, in this case we have an array of DIE offsets.
  AppendAtom(eAtomTypeDIEOffset, DW_FORM_data4);
}

void DWARFMappedHash::Prologue::ClearAtoms() {
  hash_data_has_fixed_byte_size = true;
  min_hash_data_byte_size = 0;
  atom_mask = 0;
  atoms.clear();
}

bool DWARFMappedHash::Prologue::ContainsAtom(AtomType atom_type) const {
  return (atom_mask & (1u << atom_type)) != 0;
}

void DWARFMappedHash::Prologue::Clear() {
  die_base_offset = 0;
  ClearAtoms();
}

void DWARFMappedHash::Prologue::AppendAtom(AtomType type, dw_form_t form) {
  atoms.push_back({type, form});
  atom_mask |= 1u << type;
  switch (form) {
  case DW_FORM_indirect:
  case DW_FORM_exprloc:
  case DW_FORM_flag_present:
  case DW_FORM_ref_sig8:
    llvm_unreachable("Unhandled atom form");

  case DW_FORM_addrx:
  case DW_FORM_string:
  case DW_FORM_block:
  case DW_FORM_block1:
  case DW_FORM_sdata:
  case DW_FORM_udata:
  case DW_FORM_ref_udata:
  case DW_FORM_GNU_addr_index:
  case DW_FORM_GNU_str_index:
    hash_data_has_fixed_byte_size = false;
    LLVM_FALLTHROUGH;
  case DW_FORM_flag:
  case DW_FORM_data1:
  case DW_FORM_ref1:
  case DW_FORM_sec_offset:
    min_hash_data_byte_size += 1;
    break;

  case DW_FORM_block2:
    hash_data_has_fixed_byte_size = false;
    LLVM_FALLTHROUGH;
  case DW_FORM_data2:
  case DW_FORM_ref2:
    min_hash_data_byte_size += 2;
    break;

  case DW_FORM_block4:
    hash_data_has_fixed_byte_size = false;
    LLVM_FALLTHROUGH;
  case DW_FORM_data4:
  case DW_FORM_ref4:
  case DW_FORM_addr:
  case DW_FORM_ref_addr:
  case DW_FORM_strp:
    min_hash_data_byte_size += 4;
    break;

  case DW_FORM_data8:
  case DW_FORM_ref8:
    min_hash_data_byte_size += 8;
    break;
  }
}

lldb::offset_t
DWARFMappedHash::Prologue::Read(const lldb_private::DataExtractor &data,
                                lldb::offset_t offset) {
  ClearAtoms();

  die_base_offset = data.GetU32(&offset);

  const uint32_t atom_count = data.GetU32(&offset);
  if (atom_count == 0x00060003u) {
    // Old format, deal with contents of old pre-release format.
    while (data.GetU32(&offset)) {
      /* do nothing */;
    }

    // Hardcode to the only known value for now.
    AppendAtom(eAtomTypeDIEOffset, DW_FORM_data4);
  } else {
    for (uint32_t i = 0; i < atom_count; ++i) {
      AtomType type = (AtomType)data.GetU16(&offset);
      dw_form_t form = (dw_form_t)data.GetU16(&offset);
      AppendAtom(type, form);
    }
  }
  return offset;
}

size_t DWARFMappedHash::Prologue::GetByteSize() const {
  // Add an extra count to the atoms size for the zero termination Atom that
  // gets written to disk.
  return sizeof(die_base_offset) + sizeof(uint32_t) +
         atoms.size() * sizeof(Atom);
}

size_t DWARFMappedHash::Prologue::GetMinimumHashDataByteSize() const {
  return min_hash_data_byte_size;
}

bool DWARFMappedHash::Prologue::HashDataHasFixedByteSize() const {
  return hash_data_has_fixed_byte_size;
}

size_t DWARFMappedHash::Header::GetByteSize(const HeaderData &header_data) {
  return header_data.GetByteSize();
}

lldb::offset_t DWARFMappedHash::Header::Read(lldb_private::DataExtractor &data,
                                             lldb::offset_t offset) {
  offset = MappedHash::Header<Prologue>::Read(data, offset);
  if (offset != UINT32_MAX) {
    offset = header_data.Read(data, offset);
  }
  return offset;
}

bool DWARFMappedHash::Header::Read(const lldb_private::DWARFDataExtractor &data,
                                   lldb::offset_t *offset_ptr,
                                   DIEInfo &hash_data) const {
  const size_t num_atoms = header_data.atoms.size();
  if (num_atoms == 0)
    return false;

  for (size_t i = 0; i < num_atoms; ++i) {
    DWARFFormValue form_value(nullptr, header_data.atoms[i].form);

    if (!form_value.ExtractValue(data, offset_ptr))
      return false;

    switch (header_data.atoms[i].type) {
    case eAtomTypeDIEOffset: // DIE offset, check form for encoding
      hash_data.die_offset =
          DWARFFormValue::IsDataForm(form_value.Form())
              ? form_value.Unsigned()
              : form_value.Reference(header_data.die_base_offset);
      break;

    case eAtomTypeTag: // DW_TAG value for the DIE
      hash_data.tag = (dw_tag_t)form_value.Unsigned();
      break;

    case eAtomTypeTypeFlags: // Flags from enum TypeFlags
      hash_data.type_flags = (uint32_t)form_value.Unsigned();
      break;

    case eAtomTypeQualNameHash: // Flags from enum TypeFlags
      hash_data.qualified_name_hash = form_value.Unsigned();
      break;

    default:
      // We can always skip atoms we don't know about.
      break;
    }
  }
  return hash_data.die_offset != DW_INVALID_OFFSET;
}

DWARFMappedHash::MemoryTable::MemoryTable(
    lldb_private::DWARFDataExtractor &table_data,
    const lldb_private::DWARFDataExtractor &string_table, const char *name)
    : MappedHash::MemoryTable<uint32_t, Header, DIEInfoArray>(table_data),
      m_data(table_data), m_string_table(string_table), m_name(name) {}

const char *
DWARFMappedHash::MemoryTable::GetStringForKeyType(KeyType key) const {
  // The key in the DWARF table is the .debug_str offset for the string
  return m_string_table.PeekCStr(key);
}

bool DWARFMappedHash::MemoryTable::ReadHashData(uint32_t hash_data_offset,
                                                HashData &hash_data) const {
  lldb::offset_t offset = hash_data_offset;
  // Skip string table offset that contains offset of hash name in .debug_str.
  offset += 4;
  const uint32_t count = m_data.GetU32(&offset);
  if (count > 0) {
    hash_data.resize(count);
    for (uint32_t i = 0; i < count; ++i) {
      if (!m_header.Read(m_data, &offset, hash_data[i]))
        return false;
    }
  } else
    hash_data.clear();
  return true;
}

DWARFMappedHash::MemoryTable::Result
DWARFMappedHash::MemoryTable::GetHashDataForName(
    llvm::StringRef name, lldb::offset_t *hash_data_offset_ptr,
    Pair &pair) const {
  pair.key = m_data.GetU32(hash_data_offset_ptr);
  pair.value.clear();

  // If the key is zero, this terminates our chain of HashData objects for this
  // hash value.
  if (pair.key == 0)
    return eResultEndOfHashData;

  // There definitely should be a string for this string offset, if there
  // isn't, there is something wrong, return and error.
  const char *strp_cstr = m_string_table.PeekCStr(pair.key);
  if (strp_cstr == nullptr) {
    *hash_data_offset_ptr = UINT32_MAX;
    return eResultError;
  }

  const uint32_t count = m_data.GetU32(hash_data_offset_ptr);
  const size_t min_total_hash_data_size =
      count * m_header.header_data.GetMinimumHashDataByteSize();
  if (count > 0 && m_data.ValidOffsetForDataOfSize(*hash_data_offset_ptr,
                                                   min_total_hash_data_size)) {
    // We have at least one HashData entry, and we have enough data to parse at
    // least "count" HashData entries.

    // First make sure the entire C string matches...
    const bool match = name == strp_cstr;

    if (!match && m_header.header_data.HashDataHasFixedByteSize()) {
      // If the string doesn't match and we have fixed size data, we can just
      // add the total byte size of all HashData objects to the hash data
      // offset and be done...
      *hash_data_offset_ptr += min_total_hash_data_size;
    } else {
      // If the string does match, or we don't have fixed size data then we
      // need to read the hash data as a stream. If the string matches we also
      // append all HashData objects to the value array.
      for (uint32_t i = 0; i < count; ++i) {
        DIEInfo die_info;
        if (m_header.Read(m_data, hash_data_offset_ptr, die_info)) {
          // Only happened if the HashData of the string matched...
          if (match)
            pair.value.push_back(die_info);
        } else {
          // Something went wrong while reading the data.
          *hash_data_offset_ptr = UINT32_MAX;
          return eResultError;
        }
      }
    }
    // Return the correct response depending on if the string matched or not...
    if (match) {
      // The key (cstring) matches and we have lookup results!
      return eResultKeyMatch;
    } else {
      // The key doesn't match, this function will get called again for the
      // next key/value or the key terminator which in our case is a zero
      // .debug_str offset.
      return eResultKeyMismatch;
    }
  } else {
    *hash_data_offset_ptr = UINT32_MAX;
    return eResultError;
  }
}

DWARFMappedHash::MemoryTable::Result
DWARFMappedHash::MemoryTable::AppendHashDataForRegularExpression(
    const lldb_private::RegularExpression &regex,
    lldb::offset_t *hash_data_offset_ptr, Pair &pair) const {
  pair.key = m_data.GetU32(hash_data_offset_ptr);
  // If the key is zero, this terminates our chain of HashData objects for this
  // hash value.
  if (pair.key == 0)
    return eResultEndOfHashData;

  // There definitely should be a string for this string offset, if there
  // isn't, there is something wrong, return and error.
  const char *strp_cstr = m_string_table.PeekCStr(pair.key);
  if (strp_cstr == nullptr)
    return eResultError;

  const uint32_t count = m_data.GetU32(hash_data_offset_ptr);
  const size_t min_total_hash_data_size =
      count * m_header.header_data.GetMinimumHashDataByteSize();
  if (count > 0 && m_data.ValidOffsetForDataOfSize(*hash_data_offset_ptr,
                                                   min_total_hash_data_size)) {
    const bool match = regex.Execute(llvm::StringRef(strp_cstr));

    if (!match && m_header.header_data.HashDataHasFixedByteSize()) {
      // If the regex doesn't match and we have fixed size data, we can just
      // add the total byte size of all HashData objects to the hash data
      // offset and be done...
      *hash_data_offset_ptr += min_total_hash_data_size;
    } else {
      // If the string does match, or we don't have fixed size data then we
      // need to read the hash data as a stream. If the string matches we also
      // append all HashData objects to the value array.
      for (uint32_t i = 0; i < count; ++i) {
        DIEInfo die_info;
        if (m_header.Read(m_data, hash_data_offset_ptr, die_info)) {
          // Only happened if the HashData of the string matched...
          if (match)
            pair.value.push_back(die_info);
        } else {
          // Something went wrong while reading the data
          *hash_data_offset_ptr = UINT32_MAX;
          return eResultError;
        }
      }
    }
    // Return the correct response depending on if the string matched or not...
    if (match) {
      // The key (cstring) matches and we have lookup results!
      return eResultKeyMatch;
    } else {
      // The key doesn't match, this function will get called again for the
      // next key/value or the key terminator which in our case is a zero
      // .debug_str offset.
      return eResultKeyMismatch;
    }
  } else {
    *hash_data_offset_ptr = UINT32_MAX;
    return eResultError;
  }
}

size_t DWARFMappedHash::MemoryTable::AppendAllDIEsThatMatchingRegex(
    const lldb_private::RegularExpression &regex,
    DIEInfoArray &die_info_array) const {
  const uint32_t hash_count = m_header.hashes_count;
  Pair pair;
  for (uint32_t offset_idx = 0; offset_idx < hash_count; ++offset_idx) {
    lldb::offset_t hash_data_offset = GetHashDataOffset(offset_idx);
    while (hash_data_offset != UINT32_MAX) {
      const lldb::offset_t prev_hash_data_offset = hash_data_offset;
      Result hash_result =
          AppendHashDataForRegularExpression(regex, &hash_data_offset, pair);
      if (prev_hash_data_offset == hash_data_offset)
        break;

      // Check the result of getting our hash data.
      switch (hash_result) {
      case eResultKeyMatch:
      case eResultKeyMismatch:
        // Whether we matches or not, it doesn't matter, we keep looking.
        break;

      case eResultEndOfHashData:
      case eResultError:
        hash_data_offset = UINT32_MAX;
        break;
      }
    }
  }
  die_info_array.swap(pair.value);
  return die_info_array.size();
}

size_t DWARFMappedHash::MemoryTable::AppendAllDIEsInRange(
    const uint32_t die_offset_start, const uint32_t die_offset_end,
    DIEInfoArray &die_info_array) const {
  const uint32_t hash_count = m_header.hashes_count;
  for (uint32_t offset_idx = 0; offset_idx < hash_count; ++offset_idx) {
    bool done = false;
    lldb::offset_t hash_data_offset = GetHashDataOffset(offset_idx);
    while (!done && hash_data_offset != UINT32_MAX) {
      KeyType key = m_data.GetU32(&hash_data_offset);
      // If the key is zero, this terminates our chain of HashData objects for
      // this hash value.
      if (key == 0)
        break;

      const uint32_t count = m_data.GetU32(&hash_data_offset);
      for (uint32_t i = 0; i < count; ++i) {
        DIEInfo die_info;
        if (m_header.Read(m_data, &hash_data_offset, die_info)) {
          if (die_info.die_offset == 0)
            done = true;
          if (die_offset_start <= die_info.die_offset &&
              die_info.die_offset < die_offset_end)
            die_info_array.push_back(die_info);
        }
      }
    }
  }
  return die_info_array.size();
}

size_t DWARFMappedHash::MemoryTable::FindByName(llvm::StringRef name,
                                                DIEArray &die_offsets) {
  if (name.empty())
    return 0;

  DIEInfoArray die_info_array;
  if (FindByName(name, die_info_array))
    DWARFMappedHash::ExtractDIEArray(die_info_array, die_offsets);
  return die_info_array.size();
}

size_t DWARFMappedHash::MemoryTable::FindByNameAndTag(llvm::StringRef name,
                                                      const dw_tag_t tag,
                                                      DIEArray &die_offsets) {
  DIEInfoArray die_info_array;
  if (FindByName(name, die_info_array))
    DWARFMappedHash::ExtractDIEArray(die_info_array, tag, die_offsets);
  return die_info_array.size();
}

size_t DWARFMappedHash::MemoryTable::FindByNameAndTagAndQualifiedNameHash(
    llvm::StringRef name, const dw_tag_t tag,
    const uint32_t qualified_name_hash, DIEArray &die_offsets) {
  DIEInfoArray die_info_array;
  if (FindByName(name, die_info_array))
    DWARFMappedHash::ExtractDIEArray(die_info_array, tag, qualified_name_hash,
                                     die_offsets);
  return die_info_array.size();
}

size_t DWARFMappedHash::MemoryTable::FindCompleteObjCClassByName(
    llvm::StringRef name, DIEArray &die_offsets, bool must_be_implementation) {
  DIEInfoArray die_info_array;
  if (FindByName(name, die_info_array)) {
    if (must_be_implementation &&
        GetHeader().header_data.ContainsAtom(eAtomTypeTypeFlags)) {
      // If we have two atoms, then we have the DIE offset and the type flags
      // so we can find the objective C class efficiently.
      DWARFMappedHash::ExtractTypesFromDIEArray(die_info_array, UINT32_MAX,
                                                eTypeFlagClassIsImplementation,
                                                die_offsets);
    } else {
      // We don't only want the one true definition, so try and see what we can
      // find, and only return class or struct DIEs. If we do have the full
      // implementation, then return it alone, else return all possible
      // matches.
      const bool return_implementation_only_if_available = true;
      DWARFMappedHash::ExtractClassOrStructDIEArray(
          die_info_array, return_implementation_only_if_available, die_offsets);
    }
  }
  return die_offsets.size();
}

size_t DWARFMappedHash::MemoryTable::FindByName(llvm::StringRef name,
                                                DIEInfoArray &die_info_array) {
  if (name.empty())
    return 0;

  Pair kv_pair;
  size_t old_size = die_info_array.size();
  if (Find(name, kv_pair)) {
    die_info_array.swap(kv_pair.value);
    return die_info_array.size() - old_size;
  }
  return 0;
}