UnwindAssemblyInstEmulation.cpp 26.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
//===-- UnwindAssemblyInstEmulation.cpp --------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "UnwindAssemblyInstEmulation.h"

#include "lldb/Core/Address.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/DumpDataExtractor.h"
#include "lldb/Core/DumpRegisterValue.h"
#include "lldb/Core/FormatEntity.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/StreamString.h"

using namespace lldb;
using namespace lldb_private;

//  UnwindAssemblyInstEmulation method definitions

bool UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly(
    AddressRange &range, Thread &thread, UnwindPlan &unwind_plan) {
  std::vector<uint8_t> function_text(range.GetByteSize());
  ProcessSP process_sp(thread.GetProcess());
  if (process_sp) {
    Status error;
    const bool prefer_file_cache = true;
    if (process_sp->GetTarget().ReadMemory(
            range.GetBaseAddress(), prefer_file_cache, function_text.data(),
            range.GetByteSize(), error) != range.GetByteSize()) {
      return false;
    }
  }
  return GetNonCallSiteUnwindPlanFromAssembly(
      range, function_text.data(), function_text.size(), unwind_plan);
}

bool UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly(
    AddressRange &range, uint8_t *opcode_data, size_t opcode_size,
    UnwindPlan &unwind_plan) {
  if (opcode_data == nullptr || opcode_size == 0)
    return false;

  if (range.GetByteSize() > 0 && range.GetBaseAddress().IsValid() &&
      m_inst_emulator_up.get()) {

    // The instruction emulation subclass setup the unwind plan for the first
    // instruction.
    m_inst_emulator_up->CreateFunctionEntryUnwind(unwind_plan);

    // CreateFunctionEntryUnwind should have created the first row. If it
    // doesn't, then we are done.
    if (unwind_plan.GetRowCount() == 0)
      return false;

    const bool prefer_file_cache = true;
    DisassemblerSP disasm_sp(Disassembler::DisassembleBytes(
        m_arch, nullptr, nullptr, range.GetBaseAddress(), opcode_data,
        opcode_size, 99999, prefer_file_cache));

    Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));

    if (disasm_sp) {

      m_range_ptr = &range;
      m_unwind_plan_ptr = &unwind_plan;

      const uint32_t addr_byte_size = m_arch.GetAddressByteSize();
      const bool show_address = true;
      const bool show_bytes = true;
      m_inst_emulator_up->GetRegisterInfo(unwind_plan.GetRegisterKind(),
                                          unwind_plan.GetInitialCFARegister(),
                                          m_cfa_reg_info);

      m_fp_is_cfa = false;
      m_register_values.clear();
      m_pushed_regs.clear();

      // Initialize the CFA with a known value. In the 32 bit case it will be
      // 0x80000000, and in the 64 bit case 0x8000000000000000. We use the
      // address byte size to be safe for any future address sizes
      m_initial_sp = (1ull << ((addr_byte_size * 8) - 1));
      RegisterValue cfa_reg_value;
      cfa_reg_value.SetUInt(m_initial_sp, m_cfa_reg_info.byte_size);
      SetRegisterValue(m_cfa_reg_info, cfa_reg_value);

      const InstructionList &inst_list = disasm_sp->GetInstructionList();
      const size_t num_instructions = inst_list.GetSize();

      if (num_instructions > 0) {
        Instruction *inst = inst_list.GetInstructionAtIndex(0).get();
        const lldb::addr_t base_addr = inst->GetAddress().GetFileAddress();

        // Map for storing the unwind plan row and the value of the registers
        // at a given offset. When we see a forward branch we add a new entry
        // to this map with the actual unwind plan row and register context for
        // the target address of the branch as the current data have to be
        // valid for the target address of the branch too if we are in the same
        // function.
        std::map<lldb::addr_t, std::pair<UnwindPlan::RowSP, RegisterValueMap>>
            saved_unwind_states;

        // Make a copy of the current instruction Row and save it in m_curr_row
        // so we can add updates as we process the instructions.
        UnwindPlan::RowSP last_row = unwind_plan.GetLastRow();
        UnwindPlan::Row *newrow = new UnwindPlan::Row;
        if (last_row.get())
          *newrow = *last_row.get();
        m_curr_row.reset(newrow);

        // Add the initial state to the save list with offset 0.
        saved_unwind_states.insert({0, {last_row, m_register_values}});

        // cache the pc register number (in whatever register numbering this
        // UnwindPlan uses) for quick reference during instruction parsing.
        RegisterInfo pc_reg_info;
        m_inst_emulator_up->GetRegisterInfo(
            eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc_reg_info);

        // cache the return address register number (in whatever register
        // numbering this UnwindPlan uses) for quick reference during
        // instruction parsing.
        RegisterInfo ra_reg_info;
        m_inst_emulator_up->GetRegisterInfo(
            eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, ra_reg_info);

        // The architecture dependent condition code of the last processed
        // instruction.
        EmulateInstruction::InstructionCondition last_condition =
            EmulateInstruction::UnconditionalCondition;
        lldb::addr_t condition_block_start_offset = 0;

        for (size_t idx = 0; idx < num_instructions; ++idx) {
          m_curr_row_modified = false;
          m_forward_branch_offset = 0;

          inst = inst_list.GetInstructionAtIndex(idx).get();
          if (inst) {
            lldb::addr_t current_offset =
                inst->GetAddress().GetFileAddress() - base_addr;
            auto it = saved_unwind_states.upper_bound(current_offset);
            assert(it != saved_unwind_states.begin() &&
                   "Unwind row for the function entry missing");
            --it; // Move it to the row corresponding to the current offset

            // If the offset of m_curr_row don't match with the offset we see
            // in saved_unwind_states then we have to update m_curr_row and
            // m_register_values based on the saved values. It is happening
            // after we processed an epilogue and a return to caller
            // instruction.
            if (it->second.first->GetOffset() != m_curr_row->GetOffset()) {
              UnwindPlan::Row *newrow = new UnwindPlan::Row;
              *newrow = *it->second.first;
              m_curr_row.reset(newrow);
              m_register_values = it->second.second;
            }

            m_inst_emulator_up->SetInstruction(inst->GetOpcode(),
                                               inst->GetAddress(), nullptr);

            if (last_condition !=
                m_inst_emulator_up->GetInstructionCondition()) {
              if (m_inst_emulator_up->GetInstructionCondition() !=
                      EmulateInstruction::UnconditionalCondition &&
                  saved_unwind_states.count(current_offset) == 0) {
                // If we don't have a saved row for the current offset then
                // save our current state because we will have to restore it
                // after the conditional block.
                auto new_row =
                    std::make_shared<UnwindPlan::Row>(*m_curr_row.get());
                saved_unwind_states.insert(
                    {current_offset, {new_row, m_register_values}});
              }

              // If the last instruction was conditional with a different
              // condition then the then current condition then restore the
              // condition.
              if (last_condition !=
                  EmulateInstruction::UnconditionalCondition) {
                const auto &saved_state =
                    saved_unwind_states.at(condition_block_start_offset);
                m_curr_row =
                    std::make_shared<UnwindPlan::Row>(*saved_state.first);
                m_curr_row->SetOffset(current_offset);
                m_register_values = saved_state.second;
                bool replace_existing =
                    true; // The last instruction might already
                          // created a row for this offset and
                          // we want to overwrite it.
                unwind_plan.InsertRow(
                    std::make_shared<UnwindPlan::Row>(*m_curr_row),
                    replace_existing);
              }

              // We are starting a new conditional block at the actual offset
              condition_block_start_offset = current_offset;
            }

            if (log && log->GetVerbose()) {
              StreamString strm;
              lldb_private::FormatEntity::Entry format;
              FormatEntity::Parse("${frame.pc}: ", format);
              inst->Dump(&strm, inst_list.GetMaxOpcocdeByteSize(), show_address,
                         show_bytes, nullptr, nullptr, nullptr, &format, 0);
              log->PutString(strm.GetString());
            }

            last_condition = m_inst_emulator_up->GetInstructionCondition();

            m_inst_emulator_up->EvaluateInstruction(
                eEmulateInstructionOptionIgnoreConditions);

            // If the current instruction is a branch forward then save the
            // current CFI information for the offset where we are branching.
            if (m_forward_branch_offset != 0 &&
                range.ContainsFileAddress(inst->GetAddress().GetFileAddress() +
                                          m_forward_branch_offset)) {
              auto newrow =
                  std::make_shared<UnwindPlan::Row>(*m_curr_row.get());
              newrow->SetOffset(current_offset + m_forward_branch_offset);
              saved_unwind_states.insert(
                  {current_offset + m_forward_branch_offset,
                   {newrow, m_register_values}});
              unwind_plan.InsertRow(newrow);
            }

            // Were there any changes to the CFI while evaluating this
            // instruction?
            if (m_curr_row_modified) {
              // Save the modified row if we don't already have a CFI row in
              // the current address
              if (saved_unwind_states.count(
                      current_offset + inst->GetOpcode().GetByteSize()) == 0) {
                m_curr_row->SetOffset(current_offset +
                                      inst->GetOpcode().GetByteSize());
                unwind_plan.InsertRow(m_curr_row);
                saved_unwind_states.insert(
                    {current_offset + inst->GetOpcode().GetByteSize(),
                     {m_curr_row, m_register_values}});

                // Allocate a new Row for m_curr_row, copy the current state
                // into it
                UnwindPlan::Row *newrow = new UnwindPlan::Row;
                *newrow = *m_curr_row.get();
                m_curr_row.reset(newrow);
              }
            }
          }
        }
      }
    }

    if (log && log->GetVerbose()) {
      StreamString strm;
      lldb::addr_t base_addr = range.GetBaseAddress().GetFileAddress();
      strm.Printf("Resulting unwind rows for [0x%" PRIx64 " - 0x%" PRIx64 "):",
                  base_addr, base_addr + range.GetByteSize());
      unwind_plan.Dump(strm, nullptr, base_addr);
      log->PutString(strm.GetString());
    }
    return unwind_plan.GetRowCount() > 0;
  }
  return false;
}

bool UnwindAssemblyInstEmulation::AugmentUnwindPlanFromCallSite(
    AddressRange &func, Thread &thread, UnwindPlan &unwind_plan) {
  return false;
}

bool UnwindAssemblyInstEmulation::GetFastUnwindPlan(AddressRange &func,
                                                    Thread &thread,
                                                    UnwindPlan &unwind_plan) {
  return false;
}

bool UnwindAssemblyInstEmulation::FirstNonPrologueInsn(
    AddressRange &func, const ExecutionContext &exe_ctx,
    Address &first_non_prologue_insn) {
  return false;
}

UnwindAssembly *
UnwindAssemblyInstEmulation::CreateInstance(const ArchSpec &arch) {
  std::unique_ptr<EmulateInstruction> inst_emulator_up(
      EmulateInstruction::FindPlugin(arch, eInstructionTypePrologueEpilogue,
                                     nullptr));
  // Make sure that all prologue instructions are handled
  if (inst_emulator_up)
    return new UnwindAssemblyInstEmulation(arch, inst_emulator_up.release());
  return nullptr;
}

// PluginInterface protocol in UnwindAssemblyParser_x86
ConstString UnwindAssemblyInstEmulation::GetPluginName() {
  return GetPluginNameStatic();
}

uint32_t UnwindAssemblyInstEmulation::GetPluginVersion() { return 1; }

void UnwindAssemblyInstEmulation::Initialize() {
  PluginManager::RegisterPlugin(GetPluginNameStatic(),
                                GetPluginDescriptionStatic(), CreateInstance);
}

void UnwindAssemblyInstEmulation::Terminate() {
  PluginManager::UnregisterPlugin(CreateInstance);
}

ConstString UnwindAssemblyInstEmulation::GetPluginNameStatic() {
  static ConstString g_name("inst-emulation");
  return g_name;
}

const char *UnwindAssemblyInstEmulation::GetPluginDescriptionStatic() {
  return "Instruction emulation based unwind information.";
}

uint64_t UnwindAssemblyInstEmulation::MakeRegisterKindValuePair(
    const RegisterInfo &reg_info) {
  lldb::RegisterKind reg_kind;
  uint32_t reg_num;
  if (EmulateInstruction::GetBestRegisterKindAndNumber(&reg_info, reg_kind,
                                                       reg_num))
    return (uint64_t)reg_kind << 24 | reg_num;
  return 0ull;
}

void UnwindAssemblyInstEmulation::SetRegisterValue(
    const RegisterInfo &reg_info, const RegisterValue &reg_value) {
  m_register_values[MakeRegisterKindValuePair(reg_info)] = reg_value;
}

bool UnwindAssemblyInstEmulation::GetRegisterValue(const RegisterInfo &reg_info,
                                                   RegisterValue &reg_value) {
  const uint64_t reg_id = MakeRegisterKindValuePair(reg_info);
  RegisterValueMap::const_iterator pos = m_register_values.find(reg_id);
  if (pos != m_register_values.end()) {
    reg_value = pos->second;
    return true; // We had a real value that comes from an opcode that wrote
                 // to it...
  }
  // We are making up a value that is recognizable...
  reg_value.SetUInt(reg_id, reg_info.byte_size);
  return false;
}

size_t UnwindAssemblyInstEmulation::ReadMemory(
    EmulateInstruction *instruction, void *baton,
    const EmulateInstruction::Context &context, lldb::addr_t addr, void *dst,
    size_t dst_len) {
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));

  if (log && log->GetVerbose()) {
    StreamString strm;
    strm.Printf(
        "UnwindAssemblyInstEmulation::ReadMemory    (addr = 0x%16.16" PRIx64
        ", dst = %p, dst_len = %" PRIu64 ", context = ",
        addr, dst, (uint64_t)dst_len);
    context.Dump(strm, instruction);
    log->PutString(strm.GetString());
  }
  memset(dst, 0, dst_len);
  return dst_len;
}

size_t UnwindAssemblyInstEmulation::WriteMemory(
    EmulateInstruction *instruction, void *baton,
    const EmulateInstruction::Context &context, lldb::addr_t addr,
    const void *dst, size_t dst_len) {
  if (baton && dst && dst_len)
    return ((UnwindAssemblyInstEmulation *)baton)
        ->WriteMemory(instruction, context, addr, dst, dst_len);
  return 0;
}

size_t UnwindAssemblyInstEmulation::WriteMemory(
    EmulateInstruction *instruction, const EmulateInstruction::Context &context,
    lldb::addr_t addr, const void *dst, size_t dst_len) {
  DataExtractor data(dst, dst_len,
                     instruction->GetArchitecture().GetByteOrder(),
                     instruction->GetArchitecture().GetAddressByteSize());

  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));

  if (log && log->GetVerbose()) {
    StreamString strm;

    strm.PutCString("UnwindAssemblyInstEmulation::WriteMemory   (");
    DumpDataExtractor(data, &strm, 0, eFormatBytes, 1, dst_len, UINT32_MAX,
                      addr, 0, 0);
    strm.PutCString(", context = ");
    context.Dump(strm, instruction);
    log->PutString(strm.GetString());
  }

  const bool cant_replace = false;

  switch (context.type) {
  default:
  case EmulateInstruction::eContextInvalid:
  case EmulateInstruction::eContextReadOpcode:
  case EmulateInstruction::eContextImmediate:
  case EmulateInstruction::eContextAdjustBaseRegister:
  case EmulateInstruction::eContextRegisterPlusOffset:
  case EmulateInstruction::eContextAdjustPC:
  case EmulateInstruction::eContextRegisterStore:
  case EmulateInstruction::eContextRegisterLoad:
  case EmulateInstruction::eContextRelativeBranchImmediate:
  case EmulateInstruction::eContextAbsoluteBranchRegister:
  case EmulateInstruction::eContextSupervisorCall:
  case EmulateInstruction::eContextTableBranchReadMemory:
  case EmulateInstruction::eContextWriteRegisterRandomBits:
  case EmulateInstruction::eContextWriteMemoryRandomBits:
  case EmulateInstruction::eContextArithmetic:
  case EmulateInstruction::eContextAdvancePC:
  case EmulateInstruction::eContextReturnFromException:
  case EmulateInstruction::eContextPopRegisterOffStack:
  case EmulateInstruction::eContextAdjustStackPointer:
    break;

  case EmulateInstruction::eContextPushRegisterOnStack: {
    uint32_t reg_num = LLDB_INVALID_REGNUM;
    uint32_t generic_regnum = LLDB_INVALID_REGNUM;
    assert(context.info_type ==
               EmulateInstruction::eInfoTypeRegisterToRegisterPlusOffset &&
           "unhandled case, add code to handle this!");
    const uint32_t unwind_reg_kind = m_unwind_plan_ptr->GetRegisterKind();
    reg_num = context.info.RegisterToRegisterPlusOffset.data_reg
                  .kinds[unwind_reg_kind];
    generic_regnum = context.info.RegisterToRegisterPlusOffset.data_reg
                         .kinds[eRegisterKindGeneric];

    if (reg_num != LLDB_INVALID_REGNUM &&
        generic_regnum != LLDB_REGNUM_GENERIC_SP) {
      if (m_pushed_regs.find(reg_num) == m_pushed_regs.end()) {
        m_pushed_regs[reg_num] = addr;
        const int32_t offset = addr - m_initial_sp;
        m_curr_row->SetRegisterLocationToAtCFAPlusOffset(reg_num, offset,
                                                         cant_replace);
        m_curr_row_modified = true;
      }
    }
  } break;
  }

  return dst_len;
}

bool UnwindAssemblyInstEmulation::ReadRegister(EmulateInstruction *instruction,
                                               void *baton,
                                               const RegisterInfo *reg_info,
                                               RegisterValue &reg_value) {

  if (baton && reg_info)
    return ((UnwindAssemblyInstEmulation *)baton)
        ->ReadRegister(instruction, reg_info, reg_value);
  return false;
}
bool UnwindAssemblyInstEmulation::ReadRegister(EmulateInstruction *instruction,
                                               const RegisterInfo *reg_info,
                                               RegisterValue &reg_value) {
  bool synthetic = GetRegisterValue(*reg_info, reg_value);

  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));

  if (log && log->GetVerbose()) {

    StreamString strm;
    strm.Printf("UnwindAssemblyInstEmulation::ReadRegister  (name = \"%s\") => "
                "synthetic_value = %i, value = ",
                reg_info->name, synthetic);
    DumpRegisterValue(reg_value, &strm, reg_info, false, false, eFormatDefault);
    log->PutString(strm.GetString());
  }
  return true;
}

bool UnwindAssemblyInstEmulation::WriteRegister(
    EmulateInstruction *instruction, void *baton,
    const EmulateInstruction::Context &context, const RegisterInfo *reg_info,
    const RegisterValue &reg_value) {
  if (baton && reg_info)
    return ((UnwindAssemblyInstEmulation *)baton)
        ->WriteRegister(instruction, context, reg_info, reg_value);
  return false;
}
bool UnwindAssemblyInstEmulation::WriteRegister(
    EmulateInstruction *instruction, const EmulateInstruction::Context &context,
    const RegisterInfo *reg_info, const RegisterValue &reg_value) {
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));

  if (log && log->GetVerbose()) {

    StreamString strm;
    strm.Printf(
        "UnwindAssemblyInstEmulation::WriteRegister (name = \"%s\", value = ",
        reg_info->name);
    DumpRegisterValue(reg_value, &strm, reg_info, false, false, eFormatDefault);
    strm.PutCString(", context = ");
    context.Dump(strm, instruction);
    log->PutString(strm.GetString());
  }

  SetRegisterValue(*reg_info, reg_value);

  switch (context.type) {
  case EmulateInstruction::eContextInvalid:
  case EmulateInstruction::eContextReadOpcode:
  case EmulateInstruction::eContextImmediate:
  case EmulateInstruction::eContextAdjustBaseRegister:
  case EmulateInstruction::eContextRegisterPlusOffset:
  case EmulateInstruction::eContextAdjustPC:
  case EmulateInstruction::eContextRegisterStore:
  case EmulateInstruction::eContextSupervisorCall:
  case EmulateInstruction::eContextTableBranchReadMemory:
  case EmulateInstruction::eContextWriteRegisterRandomBits:
  case EmulateInstruction::eContextWriteMemoryRandomBits:
  case EmulateInstruction::eContextAdvancePC:
  case EmulateInstruction::eContextReturnFromException:
  case EmulateInstruction::eContextPushRegisterOnStack:
  case EmulateInstruction::eContextRegisterLoad:
    //            {
    //                const uint32_t reg_num =
    //                reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
    //                if (reg_num != LLDB_INVALID_REGNUM)
    //                {
    //                    const bool can_replace_only_if_unspecified = true;
    //
    //                    m_curr_row.SetRegisterLocationToUndefined (reg_num,
    //                                                               can_replace_only_if_unspecified,
    //                                                               can_replace_only_if_unspecified);
    //                    m_curr_row_modified = true;
    //                }
    //            }
    break;

  case EmulateInstruction::eContextArithmetic: {
    // If we adjusted the current frame pointer by a constant then adjust the
    // CFA offset
    // with the same amount.
    lldb::RegisterKind kind = m_unwind_plan_ptr->GetRegisterKind();
    if (m_fp_is_cfa && reg_info->kinds[kind] == m_cfa_reg_info.kinds[kind] &&
        context.info_type == EmulateInstruction::eInfoTypeRegisterPlusOffset &&
        context.info.RegisterPlusOffset.reg.kinds[kind] ==
            m_cfa_reg_info.kinds[kind]) {
      const int64_t offset = context.info.RegisterPlusOffset.signed_offset;
      m_curr_row->GetCFAValue().IncOffset(-1 * offset);
      m_curr_row_modified = true;
    }
  } break;

  case EmulateInstruction::eContextAbsoluteBranchRegister:
  case EmulateInstruction::eContextRelativeBranchImmediate: {
    if (context.info_type == EmulateInstruction::eInfoTypeISAAndImmediate &&
        context.info.ISAAndImmediate.unsigned_data32 > 0) {
      m_forward_branch_offset =
          context.info.ISAAndImmediateSigned.signed_data32;
    } else if (context.info_type ==
                   EmulateInstruction::eInfoTypeISAAndImmediateSigned &&
               context.info.ISAAndImmediateSigned.signed_data32 > 0) {
      m_forward_branch_offset = context.info.ISAAndImmediate.unsigned_data32;
    } else if (context.info_type == EmulateInstruction::eInfoTypeImmediate &&
               context.info.unsigned_immediate > 0) {
      m_forward_branch_offset = context.info.unsigned_immediate;
    } else if (context.info_type ==
                   EmulateInstruction::eInfoTypeImmediateSigned &&
               context.info.signed_immediate > 0) {
      m_forward_branch_offset = context.info.signed_immediate;
    }
  } break;

  case EmulateInstruction::eContextPopRegisterOffStack: {
    const uint32_t reg_num =
        reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
    const uint32_t generic_regnum = reg_info->kinds[eRegisterKindGeneric];
    if (reg_num != LLDB_INVALID_REGNUM &&
        generic_regnum != LLDB_REGNUM_GENERIC_SP) {
      switch (context.info_type) {
      case EmulateInstruction::eInfoTypeAddress:
        if (m_pushed_regs.find(reg_num) != m_pushed_regs.end() &&
            context.info.address == m_pushed_regs[reg_num]) {
          m_curr_row->SetRegisterLocationToSame(reg_num,
                                                false /*must_replace*/);
          m_curr_row_modified = true;
        }
        break;
      case EmulateInstruction::eInfoTypeISA:
        assert(
            (generic_regnum == LLDB_REGNUM_GENERIC_PC ||
             generic_regnum == LLDB_REGNUM_GENERIC_FLAGS) &&
            "eInfoTypeISA used for popping a register other the PC/FLAGS");
        if (generic_regnum != LLDB_REGNUM_GENERIC_FLAGS) {
          m_curr_row->SetRegisterLocationToSame(reg_num,
                                                false /*must_replace*/);
          m_curr_row_modified = true;
        }
        break;
      default:
        assert(false && "unhandled case, add code to handle this!");
        break;
      }
    }
  } break;

  case EmulateInstruction::eContextSetFramePointer:
    if (!m_fp_is_cfa) {
      m_fp_is_cfa = true;
      m_cfa_reg_info = *reg_info;
      const uint32_t cfa_reg_num =
          reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
      assert(cfa_reg_num != LLDB_INVALID_REGNUM);
      m_curr_row->GetCFAValue().SetIsRegisterPlusOffset(
          cfa_reg_num, m_initial_sp - reg_value.GetAsUInt64());
      m_curr_row_modified = true;
    }
    break;

  case EmulateInstruction::eContextRestoreStackPointer:
    if (m_fp_is_cfa) {
      m_fp_is_cfa = false;
      m_cfa_reg_info = *reg_info;
      const uint32_t cfa_reg_num =
          reg_info->kinds[m_unwind_plan_ptr->GetRegisterKind()];
      assert(cfa_reg_num != LLDB_INVALID_REGNUM);
      m_curr_row->GetCFAValue().SetIsRegisterPlusOffset(
          cfa_reg_num, m_initial_sp - reg_value.GetAsUInt64());
      m_curr_row_modified = true;
    }
    break;

  case EmulateInstruction::eContextAdjustStackPointer:
    // If we have created a frame using the frame pointer, don't follow
    // subsequent adjustments to the stack pointer.
    if (!m_fp_is_cfa) {
      m_curr_row->GetCFAValue().SetIsRegisterPlusOffset(
          m_curr_row->GetCFAValue().GetRegisterNumber(),
          m_initial_sp - reg_value.GetAsUInt64());
      m_curr_row_modified = true;
    }
    break;
  }
  return true;
}