x86AssemblyInspectionEngine.cpp
49.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
//===-- x86AssemblyInspectionEngine.cpp -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "x86AssemblyInspectionEngine.h"
#include <memory>
#include "llvm-c/Disassembler.h"
#include "lldb/Core/Address.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/UnwindAssembly.h"
using namespace lldb_private;
using namespace lldb;
x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec &arch)
: m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM),
m_machine_sp_regnum(LLDB_INVALID_REGNUM),
m_machine_fp_regnum(LLDB_INVALID_REGNUM),
m_lldb_ip_regnum(LLDB_INVALID_REGNUM),
m_lldb_sp_regnum(LLDB_INVALID_REGNUM),
m_lldb_fp_regnum(LLDB_INVALID_REGNUM),
m_reg_map(), m_arch(arch), m_cpu(k_cpu_unspecified), m_wordsize(-1),
m_register_map_initialized(false), m_disasm_context() {
m_disasm_context =
::LLVMCreateDisasm(arch.GetTriple().getTriple().c_str(), nullptr,
/*TagType=*/1, nullptr, nullptr);
}
x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() {
::LLVMDisasmDispose(m_disasm_context);
}
void x86AssemblyInspectionEngine::Initialize(RegisterContextSP ®_ctx) {
m_cpu = k_cpu_unspecified;
m_wordsize = -1;
m_register_map_initialized = false;
const llvm::Triple::ArchType cpu = m_arch.GetMachine();
if (cpu == llvm::Triple::x86)
m_cpu = k_i386;
else if (cpu == llvm::Triple::x86_64)
m_cpu = k_x86_64;
if (m_cpu == k_cpu_unspecified)
return;
if (reg_ctx.get() == nullptr)
return;
if (m_cpu == k_i386) {
m_machine_ip_regnum = k_machine_eip;
m_machine_sp_regnum = k_machine_esp;
m_machine_fp_regnum = k_machine_ebp;
m_machine_alt_fp_regnum = k_machine_ebx;
m_wordsize = 4;
struct lldb_reg_info reginfo;
reginfo.name = "eax";
m_reg_map[k_machine_eax] = reginfo;
reginfo.name = "edx";
m_reg_map[k_machine_edx] = reginfo;
reginfo.name = "esp";
m_reg_map[k_machine_esp] = reginfo;
reginfo.name = "esi";
m_reg_map[k_machine_esi] = reginfo;
reginfo.name = "eip";
m_reg_map[k_machine_eip] = reginfo;
reginfo.name = "ecx";
m_reg_map[k_machine_ecx] = reginfo;
reginfo.name = "ebx";
m_reg_map[k_machine_ebx] = reginfo;
reginfo.name = "ebp";
m_reg_map[k_machine_ebp] = reginfo;
reginfo.name = "edi";
m_reg_map[k_machine_edi] = reginfo;
} else {
m_machine_ip_regnum = k_machine_rip;
m_machine_sp_regnum = k_machine_rsp;
m_machine_fp_regnum = k_machine_rbp;
m_machine_alt_fp_regnum = k_machine_rbx;
m_wordsize = 8;
struct lldb_reg_info reginfo;
reginfo.name = "rax";
m_reg_map[k_machine_rax] = reginfo;
reginfo.name = "rdx";
m_reg_map[k_machine_rdx] = reginfo;
reginfo.name = "rsp";
m_reg_map[k_machine_rsp] = reginfo;
reginfo.name = "rsi";
m_reg_map[k_machine_rsi] = reginfo;
reginfo.name = "r8";
m_reg_map[k_machine_r8] = reginfo;
reginfo.name = "r10";
m_reg_map[k_machine_r10] = reginfo;
reginfo.name = "r12";
m_reg_map[k_machine_r12] = reginfo;
reginfo.name = "r14";
m_reg_map[k_machine_r14] = reginfo;
reginfo.name = "rip";
m_reg_map[k_machine_rip] = reginfo;
reginfo.name = "rcx";
m_reg_map[k_machine_rcx] = reginfo;
reginfo.name = "rbx";
m_reg_map[k_machine_rbx] = reginfo;
reginfo.name = "rbp";
m_reg_map[k_machine_rbp] = reginfo;
reginfo.name = "rdi";
m_reg_map[k_machine_rdi] = reginfo;
reginfo.name = "r9";
m_reg_map[k_machine_r9] = reginfo;
reginfo.name = "r11";
m_reg_map[k_machine_r11] = reginfo;
reginfo.name = "r13";
m_reg_map[k_machine_r13] = reginfo;
reginfo.name = "r15";
m_reg_map[k_machine_r15] = reginfo;
}
for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
it != m_reg_map.end(); ++it) {
const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(it->second.name);
if (ri)
it->second.lldb_regnum = ri->kinds[eRegisterKindLLDB];
}
uint32_t lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
m_lldb_sp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
m_lldb_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
m_lldb_alt_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
m_lldb_ip_regnum = lldb_regno;
m_register_map_initialized = true;
}
void x86AssemblyInspectionEngine::Initialize(
std::vector<lldb_reg_info> ®_info) {
m_cpu = k_cpu_unspecified;
m_wordsize = -1;
m_register_map_initialized = false;
const llvm::Triple::ArchType cpu = m_arch.GetMachine();
if (cpu == llvm::Triple::x86)
m_cpu = k_i386;
else if (cpu == llvm::Triple::x86_64)
m_cpu = k_x86_64;
if (m_cpu == k_cpu_unspecified)
return;
if (m_cpu == k_i386) {
m_machine_ip_regnum = k_machine_eip;
m_machine_sp_regnum = k_machine_esp;
m_machine_fp_regnum = k_machine_ebp;
m_machine_alt_fp_regnum = k_machine_ebx;
m_wordsize = 4;
struct lldb_reg_info reginfo;
reginfo.name = "eax";
m_reg_map[k_machine_eax] = reginfo;
reginfo.name = "edx";
m_reg_map[k_machine_edx] = reginfo;
reginfo.name = "esp";
m_reg_map[k_machine_esp] = reginfo;
reginfo.name = "esi";
m_reg_map[k_machine_esi] = reginfo;
reginfo.name = "eip";
m_reg_map[k_machine_eip] = reginfo;
reginfo.name = "ecx";
m_reg_map[k_machine_ecx] = reginfo;
reginfo.name = "ebx";
m_reg_map[k_machine_ebx] = reginfo;
reginfo.name = "ebp";
m_reg_map[k_machine_ebp] = reginfo;
reginfo.name = "edi";
m_reg_map[k_machine_edi] = reginfo;
} else {
m_machine_ip_regnum = k_machine_rip;
m_machine_sp_regnum = k_machine_rsp;
m_machine_fp_regnum = k_machine_rbp;
m_machine_alt_fp_regnum = k_machine_rbx;
m_wordsize = 8;
struct lldb_reg_info reginfo;
reginfo.name = "rax";
m_reg_map[k_machine_rax] = reginfo;
reginfo.name = "rdx";
m_reg_map[k_machine_rdx] = reginfo;
reginfo.name = "rsp";
m_reg_map[k_machine_rsp] = reginfo;
reginfo.name = "rsi";
m_reg_map[k_machine_rsi] = reginfo;
reginfo.name = "r8";
m_reg_map[k_machine_r8] = reginfo;
reginfo.name = "r10";
m_reg_map[k_machine_r10] = reginfo;
reginfo.name = "r12";
m_reg_map[k_machine_r12] = reginfo;
reginfo.name = "r14";
m_reg_map[k_machine_r14] = reginfo;
reginfo.name = "rip";
m_reg_map[k_machine_rip] = reginfo;
reginfo.name = "rcx";
m_reg_map[k_machine_rcx] = reginfo;
reginfo.name = "rbx";
m_reg_map[k_machine_rbx] = reginfo;
reginfo.name = "rbp";
m_reg_map[k_machine_rbp] = reginfo;
reginfo.name = "rdi";
m_reg_map[k_machine_rdi] = reginfo;
reginfo.name = "r9";
m_reg_map[k_machine_r9] = reginfo;
reginfo.name = "r11";
m_reg_map[k_machine_r11] = reginfo;
reginfo.name = "r13";
m_reg_map[k_machine_r13] = reginfo;
reginfo.name = "r15";
m_reg_map[k_machine_r15] = reginfo;
}
for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
it != m_reg_map.end(); ++it) {
for (size_t i = 0; i < reg_info.size(); ++i) {
if (::strcmp(reg_info[i].name, it->second.name) == 0) {
it->second.lldb_regnum = reg_info[i].lldb_regnum;
break;
}
}
}
uint32_t lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
m_lldb_sp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
m_lldb_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
m_lldb_alt_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
m_lldb_ip_regnum = lldb_regno;
m_register_map_initialized = true;
}
// This function expects an x86 native register number (i.e. the bits stripped
// out of the actual instruction), not an lldb register number.
//
// FIXME: This is ABI dependent, it shouldn't be hardcoded here.
bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno) {
if (m_cpu == k_i386) {
switch (machine_regno) {
case k_machine_ebx:
case k_machine_ebp: // not actually a nonvolatile but often treated as such
// by convention
case k_machine_esi:
case k_machine_edi:
case k_machine_esp:
return true;
default:
return false;
}
}
if (m_cpu == k_x86_64) {
switch (machine_regno) {
case k_machine_rbx:
case k_machine_rsp:
case k_machine_rbp: // not actually a nonvolatile but often treated as such
// by convention
case k_machine_r12:
case k_machine_r13:
case k_machine_r14:
case k_machine_r15:
return true;
default:
return false;
}
}
return false;
}
// Macro to detect if this is a REX mode prefix byte.
#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
// The high bit which should be added to the source register number (the "R"
// bit)
#define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)
// The high bit which should be added to the destination register number (the
// "B" bit)
#define REX_W_DSTREG(opcode) ((opcode)&0x1)
// pushq %rbp [0x55]
bool x86AssemblyInspectionEngine::push_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0x55;
}
// pushq $0 ; the first instruction in start() [0x6a 0x00]
bool x86AssemblyInspectionEngine::push_0_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0x6a && *(p + 1) == 0x0;
}
// pushq $0
// pushl $0
bool x86AssemblyInspectionEngine::push_imm_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0x68 || *p == 0x6a;
}
// pushl imm8(%esp)
//
// e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)' (same byte pattern for 'pushq
// 0x20(%rsp)' in an x86_64 program)
//
// 0xff (with opcode bits '6' in next byte, PUSH r/m32) 0x74 (ModR/M byte with
// three bits used to specify the opcode)
// mod == b01, opcode == b110, R/M == b100
// "+disp8"
// 0x24 (SIB byte - scaled index = 0, r32 == esp) 0x20 imm8 value
bool x86AssemblyInspectionEngine::push_extended_pattern_p() {
if (*m_cur_insn == 0xff) {
// Get the 3 opcode bits from the ModR/M byte
uint8_t opcode = (*(m_cur_insn + 1) >> 3) & 7;
if (opcode == 6) {
// I'm only looking for 0xff /6 here - I
// don't really care what value is being pushed, just that we're pushing
// a 32/64 bit value on to the stack is enough.
return true;
}
}
return false;
}
// instructions only valid in 32-bit mode:
// 0x0e - push cs
// 0x16 - push ss
// 0x1e - push ds
// 0x06 - push es
bool x86AssemblyInspectionEngine::push_misc_reg_p() {
uint8_t p = *m_cur_insn;
if (m_wordsize == 4) {
if (p == 0x0e || p == 0x16 || p == 0x1e || p == 0x06)
return true;
}
return false;
}
// pushq %rbx
// pushl %ebx
bool x86AssemblyInspectionEngine::push_reg_p(int ®no) {
uint8_t *p = m_cur_insn;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
regno_prefix_bit = (*p & 1) << 3;
p++;
}
if (*p >= 0x50 && *p <= 0x57) {
regno = (*p - 0x50) | regno_prefix_bit;
return true;
}
return false;
}
// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5] movl %esp, %ebp [0x8b
// 0xec] or [0x89 0xe5]
bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xec)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xe5)
return true;
return false;
}
// movq %rsp, %rbx [0x48 0x8b 0xdc] or [0x48 0x89 0xe3]
// movl %esp, %ebx [0x8b 0xdc] or [0x89 0xe3]
bool x86AssemblyInspectionEngine::mov_rsp_rbx_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xdc)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xe3)
return true;
return false;
}
// movq %rbp, %rsp [0x48 0x8b 0xe5] or [0x48 0x89 0xec]
// movl %ebp, %esp [0x8b 0xe5] or [0x89 0xec]
bool x86AssemblyInspectionEngine::mov_rbp_rsp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xe5)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xec)
return true;
return false;
}
// movq %rbx, %rsp [0x48 0x8b 0xe3] or [0x48 0x89 0xdc]
// movl %ebx, %esp [0x8b 0xe3] or [0x89 0xdc]
bool x86AssemblyInspectionEngine::mov_rbx_rsp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xe3)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xdc)
return true;
return false;
}
// subq $0x20, %rsp
bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xec) {
amount = (int8_t) * (p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xec) {
amount = (int32_t)extract_4(p + 2);
return true;
}
return false;
}
// addq $0x20, %rsp
bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xc4) {
amount = (int8_t) * (p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xc4) {
amount = (int32_t)extract_4(p + 2);
return true;
}
return false;
}
// lea esp, [esp - 0x28]
// lea esp, [esp + 0x28]
bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
// 8 bit displacement
if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) {
amount = (int8_t) * (p + 3);
return true;
}
// 32 bit displacement
if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) {
amount = (int32_t)extract_4(p + 3);
return true;
}
return false;
}
// lea -0x28(%ebp), %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::lea_rbp_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
++p;
// 8 bit displacement
if (*p == 0x65) {
amount = (int8_t)p[1];
return true;
}
// 32 bit displacement
if (*p == 0xa5) {
amount = (int32_t)extract_4(p + 1);
return true;
}
return false;
}
// lea -0x28(%ebx), %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::lea_rbx_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
++p;
// 8 bit displacement
if (*p == 0x63) {
amount = (int8_t)p[1];
return true;
}
// 32 bit displacement
if (*p == 0xa3) {
amount = (int32_t)extract_4(p + 1);
return true;
}
return false;
}
// and -0xfffffff0, %esp
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
bool x86AssemblyInspectionEngine::and_rsp_pattern_p() {
uint8_t *p = m_cur_insn;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*p != 0x81 && *p != 0x83)
return false;
return *++p == 0xe4;
}
// popq %rbx
// popl %ebx
bool x86AssemblyInspectionEngine::pop_reg_p(int ®no) {
uint8_t *p = m_cur_insn;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
regno_prefix_bit = (*p & 1) << 3;
p++;
}
if (*p >= 0x58 && *p <= 0x5f) {
regno = (*p - 0x58) | regno_prefix_bit;
return true;
}
return false;
}
// popq %rbp [0x5d]
// popl %ebp [0x5d]
bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0x5d);
}
// instructions valid only in 32-bit mode:
// 0x1f - pop ds
// 0x07 - pop es
// 0x17 - pop ss
bool x86AssemblyInspectionEngine::pop_misc_reg_p() {
uint8_t p = *m_cur_insn;
if (m_wordsize == 4) {
if (p == 0x1f || p == 0x07 || p == 0x17)
return true;
}
return false;
}
// leave [0xc9]
bool x86AssemblyInspectionEngine::leave_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0xc9);
}
// call $0 [0xe8 0x0 0x0 0x0 0x0]
bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() {
uint8_t *p = m_cur_insn;
return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) &&
(*(p + 3) == 0x0) && (*(p + 4) == 0x0);
}
// Look for an instruction sequence storing a nonvolatile register on to the
// stack frame.
// movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
// movl %eax, -0xc(%ebp) [0x89 0x45 0xf4]
// The offset value returned in rbp_offset will be positive -- but it must be
// subtraced from the frame base register to get the actual location. The
// positive value returned for the offset is a convention used elsewhere for
// CFA offsets et al.
bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p(
int ®no, int &rbp_offset) {
uint8_t *p = m_cur_insn;
int src_reg_prefix_bit = 0;
int target_reg_prefix_bit = 0;
if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) {
src_reg_prefix_bit = REX_W_SRCREG(*p) << 3;
target_reg_prefix_bit = REX_W_DSTREG(*p) << 3;
if (target_reg_prefix_bit == 1) {
// rbp/ebp don't need a prefix bit - we know this isn't the reg we care
// about.
return false;
}
p++;
}
if (*p == 0x89) {
/* Mask off the 3-5 bits which indicate the destination register
if this is a ModR/M byte. */
int opcode_destreg_masked_out = *(p + 1) & (~0x38);
/* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
and three bits between them, e.g. 01nnn101
We're looking for a destination of ebp-disp8 or ebp-disp32. */
int immsize;
if (opcode_destreg_masked_out == 0x45)
immsize = 2;
else if (opcode_destreg_masked_out == 0x85)
immsize = 4;
else
return false;
int offset = 0;
if (immsize == 2)
offset = (int8_t) * (p + 2);
if (immsize == 4)
offset = (uint32_t)extract_4(p + 2);
if (offset > 0)
return false;
regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
rbp_offset = offset > 0 ? offset : -offset;
return true;
}
return false;
}
// Returns true if this is a jmp instruction where we can't
// know the destination address statically.
//
// ff e0 jmpq *%rax
// ff e1 jmpq *%rcx
// ff 60 28 jmpq *0x28(%rax)
// ff 60 60 jmpq *0x60(%rax)
bool x86AssemblyInspectionEngine::jmp_to_reg_p() {
if (*m_cur_insn != 0xff)
return false;
// The second byte is a ModR/M /4 byte, strip off the registers
uint8_t second_byte_sans_reg = *(m_cur_insn + 1) & ~7;
// Don't handle 0x24 disp32, because the target address is
// knowable statically - pc_rel_branch_or_jump_p() will
// return the target address.
// [reg]
if (second_byte_sans_reg == 0x20)
return true;
// [reg]+disp8
if (second_byte_sans_reg == 0x60)
return true;
// [reg]+disp32
if (second_byte_sans_reg == 0xa0)
return true;
// reg
if (second_byte_sans_reg == 0xe0)
return true;
// disp32
// jumps to an address stored in memory, the value can't be cached
// in an unwind plan.
if (second_byte_sans_reg == 0x24)
return true;
// use SIB byte
// ff 24 fe jmpq *(%rsi,%rdi,8)
if (second_byte_sans_reg == 0x24)
return true;
return false;
}
// Detect branches to fixed pc-relative offsets.
// Returns the offset from the address of the next instruction
// that may be branch/jumped to.
//
// Cannot determine the offset of a JMP that jumps to the address in
// a register ("jmpq *%rax") or offset from a register value
// ("jmpq *0x28(%rax)"), this method will return false on those
// instructions.
//
// These instructions all end in either a relative 8/16/32 bit value
// depending on the instruction and the current execution mode of the
// inferior process. Once we know the size of the opcode instruction,
// we can use the total instruction length to determine the size of
// the relative offset without having to compute it correctly.
bool x86AssemblyInspectionEngine::pc_rel_branch_or_jump_p (
const int instruction_length, int &offset)
{
int opcode_size = 0;
uint8_t b1 = m_cur_insn[0];
switch (b1) {
case 0x77: // JA/JNBE rel8
case 0x73: // JAE/JNB/JNC rel8
case 0x72: // JB/JC/JNAE rel8
case 0x76: // JBE/JNA rel8
case 0xe3: // JCXZ/JECXZ/JRCXZ rel8
case 0x74: // JE/JZ rel8
case 0x7f: // JG/JNLE rel8
case 0x7d: // JGE/JNL rel8
case 0x7c: // JL/JNGE rel8
case 0x7e: // JNG/JLE rel8
case 0x71: // JNO rel8
case 0x7b: // JNP/JPO rel8
case 0x79: // JNS rel8
case 0x75: // JNE/JNZ rel8
case 0x70: // JO rel8
case 0x7a: // JP/JPE rel8
case 0x78: // JS rel8
case 0xeb: // JMP rel8
case 0xe9: // JMP rel16/rel32
opcode_size = 1;
break;
default:
break;
}
if (b1 == 0x0f && opcode_size == 0) {
uint8_t b2 = m_cur_insn[1];
switch (b2) {
case 0x87: // JA/JNBE rel16/rel32
case 0x86: // JBE/JNA rel16/rel32
case 0x84: // JE/JZ rel16/rel32
case 0x8f: // JG/JNLE rel16/rel32
case 0x8d: // JNL/JGE rel16/rel32
case 0x8e: // JLE rel16/rel32
case 0x82: // JB/JC/JNAE rel16/rel32
case 0x83: // JAE/JNB/JNC rel16/rel32
case 0x85: // JNE/JNZ rel16/rel32
case 0x8c: // JL/JNGE rel16/rel32
case 0x81: // JNO rel16/rel32
case 0x8b: // JNP/JPO rel16/rel32
case 0x89: // JNS rel16/rel32
case 0x80: // JO rel16/rel32
case 0x8a: // JP rel16/rel32
case 0x88: // JS rel16/rel32
opcode_size = 2;
break;
default:
break;
}
}
if (opcode_size == 0)
return false;
offset = 0;
if (instruction_length - opcode_size == 1) {
int8_t rel8 = (int8_t) *(m_cur_insn + opcode_size);
offset = rel8;
} else if (instruction_length - opcode_size == 2) {
int16_t rel16 = extract_2_signed (m_cur_insn + opcode_size);
offset = rel16;
} else if (instruction_length - opcode_size == 4) {
int32_t rel32 = extract_4_signed (m_cur_insn + opcode_size);
offset = rel32;
} else {
return false;
}
return true;
}
// Returns true if this instruction is a intra-function branch or jump -
// a branch/jump within the bounds of this same function.
// Cannot predict where a jump through a register value ("jmpq *%rax")
// will go, so it will return false on that instruction.
bool x86AssemblyInspectionEngine::local_branch_p (
const addr_t current_func_text_offset,
const AddressRange &func_range,
const int instruction_length,
addr_t &target_insn_offset) {
int offset;
if (pc_rel_branch_or_jump_p (instruction_length, offset) && offset != 0) {
addr_t next_pc_value = current_func_text_offset + instruction_length;
if (offset < 0 && addr_t(-offset) > current_func_text_offset) {
// Branch target is before the start of this function
return false;
}
if (offset + next_pc_value > func_range.GetByteSize()) {
// Branch targets outside this function's bounds
return false;
}
// This instruction branches to target_insn_offset (byte offset into the function)
target_insn_offset = next_pc_value + offset;
return true;
}
return false;
}
// Returns true if this instruction is a inter-function branch or jump - a
// branch/jump to another function.
// Cannot predict where a jump through a register value ("jmpq *%rax")
// will go, so it will return false on that instruction.
bool x86AssemblyInspectionEngine::non_local_branch_p (
const addr_t current_func_text_offset,
const AddressRange &func_range,
const int instruction_length) {
int offset;
addr_t target_insn_offset;
if (pc_rel_branch_or_jump_p (instruction_length, offset)) {
return !local_branch_p(current_func_text_offset,func_range,instruction_length,target_insn_offset);
}
return false;
}
// ret [0xc3] or [0xcb] or [0xc2 imm16] or [0xca imm16]
bool x86AssemblyInspectionEngine::ret_pattern_p() {
uint8_t *p = m_cur_insn;
return *p == 0xc3 || *p == 0xc2 || *p == 0xca || *p == 0xcb;
}
uint16_t x86AssemblyInspectionEngine::extract_2(uint8_t *b) {
uint16_t v = 0;
for (int i = 1; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
int16_t x86AssemblyInspectionEngine::extract_2_signed(uint8_t *b) {
int16_t v = 0;
for (int i = 1; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b) {
uint32_t v = 0;
for (int i = 3; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
int32_t x86AssemblyInspectionEngine::extract_4_signed(uint8_t *b) {
int32_t v = 0;
for (int i = 3; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p,
int &length,
uint32_t buffer_remaining_bytes) {
uint32_t max_op_byte_size = std::min(buffer_remaining_bytes, m_arch.GetMaximumOpcodeByteSize());
llvm::SmallVector<uint8_t, 32> opcode_data;
opcode_data.resize(max_op_byte_size);
char out_string[512];
const size_t inst_size =
::LLVMDisasmInstruction(m_disasm_context, insn_p, max_op_byte_size, 0,
out_string, sizeof(out_string));
length = inst_size;
return true;
}
bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno(
int machine_regno, uint32_t &lldb_regno) {
MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.find(machine_regno);
if (it != m_reg_map.end()) {
lldb_regno = it->second.lldb_regnum;
return true;
}
return false;
}
bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly(
uint8_t *data, size_t size, AddressRange &func_range,
UnwindPlan &unwind_plan) {
unwind_plan.Clear();
if (data == nullptr || size == 0)
return false;
if (!m_register_map_initialized)
return false;
addr_t current_func_text_offset = 0;
int current_sp_bytes_offset_from_fa = 0;
bool is_aligned = false;
UnwindPlan::Row::RegisterLocation initial_regloc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
unwind_plan.SetPlanValidAddressRange(func_range);
unwind_plan.SetRegisterKind(eRegisterKindLLDB);
// At the start of the function, find the CFA by adding wordsize to the SP
// register
row->SetOffset(current_func_text_offset);
row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);
// caller's stack pointer value before the call insn is the CFA address
initial_regloc.SetIsCFAPlusOffset(0);
row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc);
// saved instruction pointer can be found at CFA - wordsize.
current_sp_bytes_offset_from_fa = m_wordsize;
initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc);
unwind_plan.AppendRow(row);
// Allocate a new Row, populate it with the existing Row contents.
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
// Track which registers have been saved so far in the prologue. If we see
// another push of that register, it's not part of the prologue. The register
// numbers used here are the machine register #'s (i386_register_numbers,
// x86_64_register_numbers).
std::vector<bool> saved_registers(32, false);
// Once the prologue has completed we'll save a copy of the unwind
// instructions If there is an epilogue in the middle of the function, after
// that epilogue we'll reinstate the unwind setup -- we assume that some code
// path jumps over the mid-function epilogue
UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
int prologue_completed_sp_bytes_offset_from_cfa; // The sp value before the
// epilogue started executed
bool prologue_completed_is_aligned;
std::vector<bool> prologue_completed_saved_registers;
while (current_func_text_offset < size) {
int stack_offset, insn_len;
int machine_regno; // register numbers masked directly out of instructions
uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB
// numbering scheme
bool in_epilogue = false; // we're in the middle of an epilogue sequence
bool row_updated = false; // The UnwindPlan::Row 'row' has been updated
m_cur_insn = data + current_func_text_offset;
if (!instruction_length(m_cur_insn, insn_len, size - current_func_text_offset)
|| insn_len == 0
|| insn_len > kMaxInstructionByteSize) {
// An unrecognized/junk instruction
break;
}
auto &cfa_value = row->GetCFAValue();
auto &afa_value = row->GetAFAValue();
auto fa_value_ptr = is_aligned ? &afa_value : &cfa_value;
if (mov_rsp_rbp_pattern_p()) {
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_fp_regnum, fa_value_ptr->GetOffset());
row_updated = true;
}
}
else if (mov_rsp_rbx_pattern_p()) {
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_alt_fp_regnum, fa_value_ptr->GetOffset());
row_updated = true;
}
}
else if (and_rsp_pattern_p()) {
current_sp_bytes_offset_from_fa = 0;
afa_value.SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
fa_value_ptr = &afa_value;
is_aligned = true;
row_updated = true;
}
else if (mov_rbp_rsp_pattern_p()) {
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
{
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
}
else if (mov_rbx_rsp_pattern_p()) {
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum)
{
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum)
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
}
// This is the start() function (or a pthread equivalent), it starts with a
// pushl $0x0 which puts the saved pc value of 0 on the stack. In this
// case we want to pretend we didn't see a stack movement at all --
// normally the saved pc value is already on the stack by the time the
// function starts executing.
else if (push_0_pattern_p()) {
}
else if (push_reg_p(machine_regno)) {
current_sp_bytes_offset_from_fa += m_wordsize;
// the PUSH instruction has moved the stack pointer - if the FA is set
// in terms of the stack pointer, we need to add a new row of
// instructions.
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
// record where non-volatile (callee-saved, spilled) registers are saved
// on the stack
if (nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
!saved_registers[machine_regno]) {
UnwindPlan::Row::RegisterLocation regloc;
if (is_aligned)
regloc.SetAtAFAPlusOffset(-current_sp_bytes_offset_from_fa);
else
regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
row->SetRegisterInfo(lldb_regno, regloc);
saved_registers[machine_regno] = true;
row_updated = true;
}
}
else if (pop_reg_p(machine_regno)) {
current_sp_bytes_offset_from_fa -= m_wordsize;
if (nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
saved_registers[machine_regno]) {
saved_registers[machine_regno] = false;
row->RemoveRegisterInfo(lldb_regno);
if (lldb_regno == fa_value_ptr->GetRegisterNumber()) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, fa_value_ptr->GetOffset());
}
in_epilogue = true;
row_updated = true;
}
// the POP instruction has moved the stack pointer - if the FA is set in
// terms of the stack pointer, we need to add a new row of instructions.
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
else if (pop_misc_reg_p()) {
current_sp_bytes_offset_from_fa -= m_wordsize;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
// The LEAVE instruction moves the value from rbp into rsp and pops a value
// off the stack into rbp (restoring the caller's rbp value). It is the
// opposite of ENTER, or 'push rbp, mov rsp rbp'.
else if (leave_pattern_p()) {
if (saved_registers[m_machine_fp_regnum]) {
saved_registers[m_machine_fp_regnum] = false;
row->RemoveRegisterInfo(m_lldb_fp_regnum);
row_updated = true;
}
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
{
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
{
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, fa_value_ptr->GetOffset());
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
}
current_sp_bytes_offset_from_fa -= m_wordsize;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
row_updated = true;
}
in_epilogue = true;
}
else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) &&
nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
!saved_registers[machine_regno]) {
saved_registers[machine_regno] = true;
UnwindPlan::Row::RegisterLocation regloc;
// stack_offset for 'movq %r15, -80(%rbp)' will be 80. In the Row, we
// want to express this as the offset from the FA. If the frame base is
// rbp (like the above instruction), the FA offset for rbp is probably
// 16. So we want to say that the value is stored at the FA address -
// 96.
if (is_aligned)
regloc.SetAtAFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
else
regloc.SetAtCFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
row->SetRegisterInfo(lldb_regno, regloc);
row_updated = true;
}
else if (sub_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_fa += stack_offset;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
else if (add_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_fa -= stack_offset;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
in_epilogue = true;
}
else if (push_extended_pattern_p() || push_imm_pattern_p() ||
push_misc_reg_p()) {
current_sp_bytes_offset_from_fa += m_wordsize;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
else if (lea_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_fa -= stack_offset;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
if (stack_offset > 0)
in_epilogue = true;
}
else if (lea_rbp_rsp_pattern_p(stack_offset)) {
if (is_aligned &&
cfa_value.GetRegisterNumber() == m_lldb_fp_regnum) {
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum) {
current_sp_bytes_offset_from_fa =
fa_value_ptr->GetOffset() - stack_offset;
}
}
else if (lea_rbx_rsp_pattern_p(stack_offset)) {
if (is_aligned &&
cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum) {
is_aligned = false;
fa_value_ptr = &cfa_value;
afa_value.SetUnspecified();
row_updated = true;
}
if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum) {
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset() - stack_offset;
}
}
else if (prologue_completed_row.get() &&
(ret_pattern_p() ||
non_local_branch_p (current_func_text_offset, func_range, insn_len) ||
jmp_to_reg_p())) {
// Check if the current instruction is the end of an epilogue sequence,
// and if so, re-instate the prologue-completed unwind state.
// The current instruction is a branch/jump outside this function,
// a ret, or a jump through a register value which we cannot
// determine the effcts of. Verify that the stack frame state
// has been unwound to the same as it was at function entry to avoid
// mis-identifying a JMP instruction as an epilogue.
UnwindPlan::Row::RegisterLocation sp, pc;
if (row->GetRegisterInfo(m_lldb_sp_regnum, sp) &&
row->GetRegisterInfo(m_lldb_ip_regnum, pc)) {
// Any ret instruction variant is definitely indicative of an
// epilogue; for other insn patterns verify that we're back to
// the original unwind state.
if (ret_pattern_p() ||
(sp.IsCFAPlusOffset() && sp.GetOffset() == 0 &&
pc.IsAtCFAPlusOffset() && pc.GetOffset() == -m_wordsize)) {
// Reinstate the saved prologue setup for any instructions that come
// after the epilogue
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *prologue_completed_row.get();
row.reset(newrow);
current_sp_bytes_offset_from_fa =
prologue_completed_sp_bytes_offset_from_cfa;
is_aligned = prologue_completed_is_aligned;
saved_registers.clear();
saved_registers.resize(prologue_completed_saved_registers.size(), false);
for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) {
saved_registers[i] = prologue_completed_saved_registers[i];
}
in_epilogue = true;
row_updated = true;
}
}
}
// call next instruction
// call 0
// => pop %ebx
// This is used in i386 programs to get the PIC base address for finding
// global data
else if (call_next_insn_pattern_p()) {
current_sp_bytes_offset_from_fa += m_wordsize;
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
row_updated = true;
}
}
if (row_updated) {
if (current_func_text_offset + insn_len < size) {
row->SetOffset(current_func_text_offset + insn_len);
unwind_plan.AppendRow(row);
// Allocate a new Row, populate it with the existing Row contents.
newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
}
}
if (!in_epilogue && row_updated) {
// If we're not in an epilogue sequence, save the updated Row
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
prologue_completed_row.reset(newrow);
prologue_completed_saved_registers.clear();
prologue_completed_saved_registers.resize(saved_registers.size(), false);
for (size_t i = 0; i < saved_registers.size(); ++i) {
prologue_completed_saved_registers[i] = saved_registers[i];
}
}
// We may change the sp value without adding a new Row necessarily -- keep
// track of it either way.
if (!in_epilogue) {
prologue_completed_sp_bytes_offset_from_cfa =
current_sp_bytes_offset_from_fa;
prologue_completed_is_aligned = is_aligned;
}
m_cur_insn = m_cur_insn + insn_len;
current_func_text_offset += insn_len;
}
unwind_plan.SetSourceName("assembly insn profiling");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
return true;
}
bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite(
uint8_t *data, size_t size, AddressRange &func_range,
UnwindPlan &unwind_plan, RegisterContextSP ®_ctx) {
Address addr_start = func_range.GetBaseAddress();
if (!addr_start.IsValid())
return false;
// We either need a live RegisterContext, or we need the UnwindPlan to
// already be in the lldb register numbering scheme.
if (reg_ctx.get() == nullptr &&
unwind_plan.GetRegisterKind() != eRegisterKindLLDB)
return false;
// Is original unwind_plan valid?
// unwind_plan should have at least one row which is ABI-default (CFA
// register is sp), and another row in mid-function.
if (unwind_plan.GetRowCount() < 2)
return false;
UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0);
if (first_row->GetOffset() != 0)
return false;
uint32_t cfa_reg = first_row->GetCFAValue().GetRegisterNumber();
if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
unwind_plan.GetRegisterKind(),
first_row->GetCFAValue().GetRegisterNumber());
}
if (cfa_reg != m_lldb_sp_regnum ||
first_row->GetCFAValue().GetOffset() != m_wordsize)
return false;
UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1);
size_t offset = 0;
int row_id = 1;
bool unwind_plan_updated = false;
UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row));
// After a mid-function epilogue we will need to re-insert the original
// unwind rules so unwinds work for the remainder of the function. These
// aren't common with clang/gcc on x86 but it is possible.
bool reinstate_unwind_state = false;
while (offset < size) {
m_cur_insn = data + offset;
int insn_len;
if (!instruction_length(m_cur_insn, insn_len, size - offset) ||
insn_len == 0 || insn_len > kMaxInstructionByteSize) {
// An unrecognized/junk instruction.
break;
}
// Advance offsets.
offset += insn_len;
// offset is pointing beyond the bounds of the function; stop looping.
if (offset >= size)
continue;
if (reinstate_unwind_state) {
UnwindPlan::RowSP new_row(new UnwindPlan::Row());
*new_row = *original_last_row;
new_row->SetOffset(offset);
unwind_plan.AppendRow(new_row);
row = std::make_shared<UnwindPlan::Row>();
*row = *new_row;
reinstate_unwind_state = false;
unwind_plan_updated = true;
continue;
}
// If we already have one row for this instruction, we can continue.
while (row_id < unwind_plan.GetRowCount() &&
unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) {
row_id++;
}
UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1);
if (original_row->GetOffset() == offset) {
*row = *original_row;
continue;
}
if (row_id == 0) {
// If we are here, compiler didn't generate CFI for prologue. This won't
// happen to GCC or clang. In this case, bail out directly.
return false;
}
// Inspect the instruction to check if we need a new row for it.
cfa_reg = row->GetCFAValue().GetRegisterNumber();
if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
unwind_plan.GetRegisterKind(),
row->GetCFAValue().GetRegisterNumber());
}
if (cfa_reg == m_lldb_sp_regnum) {
// CFA register is sp.
// call next instruction
// call 0
// => pop %ebx
if (call_next_insn_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push/pop register
int regno;
if (push_reg_p(regno)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (pop_reg_p(regno)) {
// Technically, this might be a nonvolatile register recover in
// epilogue. We should reset RegisterInfo for the register. But in
// practice, previous rule for the register is still valid... So we
// ignore this case.
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (pop_misc_reg_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push imm
if (push_imm_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push extended
if (push_extended_pattern_p() || push_misc_reg_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// add/sub %rsp/%esp
int amount;
if (add_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (sub_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// lea %rsp, [%rsp + $offset]
if (lea_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (ret_pattern_p()) {
reinstate_unwind_state = true;
continue;
}
} else if (cfa_reg == m_lldb_fp_regnum) {
// CFA register is fp.
// The only case we care about is epilogue:
// [0x5d] pop %rbp/%ebp
// => [0xc3] ret
if (pop_rbp_pattern_p() || leave_pattern_p()) {
m_cur_insn++;
if (ret_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().SetIsRegisterPlusOffset(
first_row->GetCFAValue().GetRegisterNumber(), m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
reinstate_unwind_state = true;
continue;
}
}
} else {
// CFA register is not sp or fp.
// This must be hand-written assembly.
// Just trust eh_frame and assume we have finished.
break;
}
}
unwind_plan.SetPlanValidAddressRange(func_range);
if (unwind_plan_updated) {
std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString());
unwind_plan_source += " plus augmentation from assembly parsing";
unwind_plan.SetSourceName(unwind_plan_source.c_str());
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
}
return true;
}
bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction(
uint8_t *data, size_t size, size_t &offset) {
offset = 0;
if (!m_register_map_initialized)
return false;
while (offset < size) {
int regno;
int insn_len;
int scratch;
m_cur_insn = data + offset;
if (!instruction_length(m_cur_insn, insn_len, size - offset)
|| insn_len > kMaxInstructionByteSize
|| insn_len == 0) {
// An error parsing the instruction, i.e. probably data/garbage - stop
// scanning
break;
}
if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
sub_rsp_pattern_p(scratch) || push_reg_p(regno) ||
mov_reg_to_local_stack_frame_p(regno, scratch) ||
(lea_rsp_pattern_p(scratch) && offset == 0)) {
offset += insn_len;
continue;
}
//
// Unknown non-prologue instruction - stop scanning
break;
}
return true;
}