ArgumentPromotion.cpp 44.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass promotes "by reference" arguments to be "by value" arguments.  In
// practice, this means looking for internal functions that have pointer
// arguments.  If it can prove, through the use of alias analysis, that an
// argument is *only* loaded, then it can pass the value into the function
// instead of the address of the value.  This can cause recursive simplification
// of code and lead to the elimination of allocas (especially in C++ template
// code like the STL).
//
// This pass also handles aggregate arguments that are passed into a function,
// scalarizing them if the elements of the aggregate are only loaded.  Note that
// by default it refuses to scalarize aggregates which would require passing in
// more than three operands to the function, because passing thousands of
// operands for a large array or structure is unprofitable! This limit can be
// configured or disabled, however.
//
// Note that this transformation could also be done for arguments that are only
// stored to (returning the value instead), but does not currently.  This case
// would be best handled when and if LLVM begins supporting multiple return
// values from functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/ArgumentPromotion.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "argpromotion"

STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");

/// A vector used to hold the indices of a single GEP instruction
using IndicesVector = std::vector<uint64_t>;

/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function.  At this point, we know that it's
/// safe to do so.
static Function *
doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
            SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
            Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
                ReplaceCallSite) {
  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has modified arguments.
  FunctionType *FTy = F->getFunctionType();
  std::vector<Type *> Params;

  using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;

  // ScalarizedElements - If we are promoting a pointer that has elements
  // accessed out of it, keep track of which elements are accessed so that we
  // can add one argument for each.
  //
  // Arguments that are directly loaded will have a zero element value here, to
  // handle cases where there are both a direct load and GEP accesses.
  std::map<Argument *, ScalarizeTable> ScalarizedElements;

  // OriginalLoads - Keep track of a representative load instruction from the
  // original function so that we can tell the alias analysis implementation
  // what the new GEP/Load instructions we are inserting look like.
  // We need to keep the original loads for each argument and the elements
  // of the argument that are accessed.
  std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;

  // Attribute - Keep track of the parameter attributes for the arguments
  // that we are *not* promoting. For the ones that we do promote, the parameter
  // attributes are lost
  SmallVector<AttributeSet, 8> ArgAttrVec;
  AttributeList PAL = F->getAttributes();

  // First, determine the new argument list
  unsigned ArgNo = 0;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
       ++I, ++ArgNo) {
    if (ByValArgsToTransform.count(&*I)) {
      // Simple byval argument? Just add all the struct element types.
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      StructType *STy = cast<StructType>(AgTy);
      Params.insert(Params.end(), STy->element_begin(), STy->element_end());
      ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
                        AttributeSet());
      ++NumByValArgsPromoted;
    } else if (!ArgsToPromote.count(&*I)) {
      // Unchanged argument
      Params.push_back(I->getType());
      ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
    } else if (I->use_empty()) {
      // Dead argument (which are always marked as promotable)
      ++NumArgumentsDead;

      // There may be remaining metadata uses of the argument for things like
      // llvm.dbg.value. Replace them with undef.
      I->replaceAllUsesWith(UndefValue::get(I->getType()));
    } else {
      // Okay, this is being promoted. This means that the only uses are loads
      // or GEPs which are only used by loads

      // In this table, we will track which indices are loaded from the argument
      // (where direct loads are tracked as no indices).
      ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
      for (User *U : I->users()) {
        Instruction *UI = cast<Instruction>(U);
        Type *SrcTy;
        if (LoadInst *L = dyn_cast<LoadInst>(UI))
          SrcTy = L->getType();
        else
          SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
        IndicesVector Indices;
        Indices.reserve(UI->getNumOperands() - 1);
        // Since loads will only have a single operand, and GEPs only a single
        // non-index operand, this will record direct loads without any indices,
        // and gep+loads with the GEP indices.
        for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
             II != IE; ++II)
          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
        // GEPs with a single 0 index can be merged with direct loads
        if (Indices.size() == 1 && Indices.front() == 0)
          Indices.clear();
        ArgIndices.insert(std::make_pair(SrcTy, Indices));
        LoadInst *OrigLoad;
        if (LoadInst *L = dyn_cast<LoadInst>(UI))
          OrigLoad = L;
        else
          // Take any load, we will use it only to update Alias Analysis
          OrigLoad = cast<LoadInst>(UI->user_back());
        OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
      }

      // Add a parameter to the function for each element passed in.
      for (const auto &ArgIndex : ArgIndices) {
        // not allowed to dereference ->begin() if size() is 0
        Params.push_back(GetElementPtrInst::getIndexedType(
            cast<PointerType>(I->getType()->getScalarType())->getElementType(),
            ArgIndex.second));
        ArgAttrVec.push_back(AttributeSet());
        assert(Params.back());
      }

      if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
        ++NumArgumentsPromoted;
      else
        ++NumAggregatesPromoted;
    }
  }

  Type *RetTy = FTy->getReturnType();

  // Construct the new function type using the new arguments.
  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());

  // Create the new function body and insert it into the module.
  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
                                  F->getName());
  NF->copyAttributesFrom(F);

  // Patch the pointer to LLVM function in debug info descriptor.
  NF->setSubprogram(F->getSubprogram());
  F->setSubprogram(nullptr);

  LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
                    << "From: " << *F);

  // Recompute the parameter attributes list based on the new arguments for
  // the function.
  NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
                                       PAL.getRetAttributes(), ArgAttrVec));
  ArgAttrVec.clear();

  F->getParent()->getFunctionList().insert(F->getIterator(), NF);
  NF->takeName(F);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in the loaded pointers.
  //
  SmallVector<Value *, 16> Args;
  while (!F->use_empty()) {
    CallSite CS(F->user_back());
    assert(CS.getCalledFunction() == F);
    Instruction *Call = CS.getInstruction();
    const AttributeList &CallPAL = CS.getAttributes();
    IRBuilder<NoFolder> IRB(Call);

    // Loop over the operands, inserting GEP and loads in the caller as
    // appropriate.
    CallSite::arg_iterator AI = CS.arg_begin();
    ArgNo = 0;
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
         ++I, ++AI, ++ArgNo)
      if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
        Args.push_back(*AI); // Unmodified argument
        ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
      } else if (ByValArgsToTransform.count(&*I)) {
        // Emit a GEP and load for each element of the struct.
        Type *AgTy = cast<PointerType>(I->getType())->getElementType();
        StructType *STy = cast<StructType>(AgTy);
        Value *Idxs[2] = {
            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
          auto *Idx =
              IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
          // TODO: Tell AA about the new values?
          Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
                                        Idx->getName() + ".val"));
          ArgAttrVec.push_back(AttributeSet());
        }
      } else if (!I->use_empty()) {
        // Non-dead argument: insert GEPs and loads as appropriate.
        ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
        // Store the Value* version of the indices in here, but declare it now
        // for reuse.
        std::vector<Value *> Ops;
        for (const auto &ArgIndex : ArgIndices) {
          Value *V = *AI;
          LoadInst *OrigLoad =
              OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
          if (!ArgIndex.second.empty()) {
            Ops.reserve(ArgIndex.second.size());
            Type *ElTy = V->getType();
            for (auto II : ArgIndex.second) {
              // Use i32 to index structs, and i64 for others (pointers/arrays).
              // This satisfies GEP constraints.
              Type *IdxTy =
                  (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
                                      : Type::getInt64Ty(F->getContext()));
              Ops.push_back(ConstantInt::get(IdxTy, II));
              // Keep track of the type we're currently indexing.
              if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
                ElTy = ElPTy->getElementType();
              else
                ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
            }
            // And create a GEP to extract those indices.
            V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
            Ops.clear();
          }
          // Since we're replacing a load make sure we take the alignment
          // of the previous load.
          LoadInst *newLoad =
              IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
          newLoad->setAlignment(MaybeAlign(OrigLoad->getAlignment()));
          // Transfer the AA info too.
          AAMDNodes AAInfo;
          OrigLoad->getAAMetadata(AAInfo);
          newLoad->setAAMetadata(AAInfo);

          Args.push_back(newLoad);
          ArgAttrVec.push_back(AttributeSet());
        }
      }

    // Push any varargs arguments on the list.
    for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
      Args.push_back(*AI);
      ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
    }

    SmallVector<OperandBundleDef, 1> OpBundles;
    CS.getOperandBundlesAsDefs(OpBundles);

    CallSite NewCS;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                                 Args, OpBundles, "", Call);
    } else {
      auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
      NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
      NewCS = NewCall;
    }
    NewCS.setCallingConv(CS.getCallingConv());
    NewCS.setAttributes(
        AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
                           CallPAL.getRetAttributes(), ArgAttrVec));
    NewCS->setDebugLoc(Call->getDebugLoc());
    uint64_t W;
    if (Call->extractProfTotalWeight(W))
      NewCS->setProfWeight(W);
    Args.clear();
    ArgAttrVec.clear();

    // Update the callgraph to know that the callsite has been transformed.
    if (ReplaceCallSite)
      (*ReplaceCallSite)(CS, NewCS);

    if (!Call->use_empty()) {
      Call->replaceAllUsesWith(NewCS.getInstruction());
      NewCS->takeName(Call);
    }

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  const DataLayout &DL = F->getParent()->getDataLayout();

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
                              I2 = NF->arg_begin();
       I != E; ++I) {
    if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
      // If this is an unmodified argument, move the name and users over to the
      // new version.
      I->replaceAllUsesWith(&*I2);
      I2->takeName(&*I);
      ++I2;
      continue;
    }

    if (ByValArgsToTransform.count(&*I)) {
      // In the callee, we create an alloca, and store each of the new incoming
      // arguments into the alloca.
      Instruction *InsertPt = &NF->begin()->front();

      // Just add all the struct element types.
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      Value *TheAlloca =
          new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
                         MaybeAlign(I->getParamAlignment()), "", InsertPt);
      StructType *STy = cast<StructType>(AgTy);
      Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
                        nullptr};

      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
        Value *Idx = GetElementPtrInst::Create(
            AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
            InsertPt);
        I2->setName(I->getName() + "." + Twine(i));
        new StoreInst(&*I2++, Idx, InsertPt);
      }

      // Anything that used the arg should now use the alloca.
      I->replaceAllUsesWith(TheAlloca);
      TheAlloca->takeName(&*I);

      // If the alloca is used in a call, we must clear the tail flag since
      // the callee now uses an alloca from the caller.
      for (User *U : TheAlloca->users()) {
        CallInst *Call = dyn_cast<CallInst>(U);
        if (!Call)
          continue;
        Call->setTailCall(false);
      }
      continue;
    }

    if (I->use_empty())
      continue;

    // Otherwise, if we promoted this argument, then all users are load
    // instructions (or GEPs with only load users), and all loads should be
    // using the new argument that we added.
    ScalarizeTable &ArgIndices = ScalarizedElements[&*I];

    while (!I->use_empty()) {
      if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
        assert(ArgIndices.begin()->second.empty() &&
               "Load element should sort to front!");
        I2->setName(I->getName() + ".val");
        LI->replaceAllUsesWith(&*I2);
        LI->eraseFromParent();
        LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
                          << "' in function '" << F->getName() << "'\n");
      } else {
        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
        IndicesVector Operands;
        Operands.reserve(GEP->getNumIndices());
        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
             II != IE; ++II)
          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());

        // GEPs with a single 0 index can be merged with direct loads
        if (Operands.size() == 1 && Operands.front() == 0)
          Operands.clear();

        Function::arg_iterator TheArg = I2;
        for (ScalarizeTable::iterator It = ArgIndices.begin();
             It->second != Operands; ++It, ++TheArg) {
          assert(It != ArgIndices.end() && "GEP not handled??");
        }

        std::string NewName = I->getName();
        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
          NewName += "." + utostr(Operands[i]);
        }
        NewName += ".val";
        TheArg->setName(NewName);

        LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
                          << "' of function '" << NF->getName() << "'\n");

        // All of the uses must be load instructions.  Replace them all with
        // the argument specified by ArgNo.
        while (!GEP->use_empty()) {
          LoadInst *L = cast<LoadInst>(GEP->user_back());
          L->replaceAllUsesWith(&*TheArg);
          L->eraseFromParent();
        }
        GEP->eraseFromParent();
      }
    }

    // Increment I2 past all of the arguments added for this promoted pointer.
    std::advance(I2, ArgIndices.size());
  }

  return NF;
}

/// Return true if we can prove that all callees pass in a valid pointer for the
/// specified function argument.
static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
  Function *Callee = Arg->getParent();
  const DataLayout &DL = Callee->getParent()->getDataLayout();

  unsigned ArgNo = Arg->getArgNo();

  // Look at all call sites of the function.  At this point we know we only have
  // direct callees.
  for (User *U : Callee->users()) {
    CallSite CS(U);
    assert(CS && "Should only have direct calls!");

    if (!isDereferenceablePointer(CS.getArgument(ArgNo), Ty, DL))
      return false;
  }
  return true;
}

/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
/// that is greater than or equal to the size of prefix, and each of the
/// elements in Prefix is the same as the corresponding elements in Longer.
///
/// This means it also returns true when Prefix and Longer are equal!
static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
  if (Prefix.size() > Longer.size())
    return false;
  return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
}

/// Checks if Indices, or a prefix of Indices, is in Set.
static bool prefixIn(const IndicesVector &Indices,
                     std::set<IndicesVector> &Set) {
  std::set<IndicesVector>::iterator Low;
  Low = Set.upper_bound(Indices);
  if (Low != Set.begin())
    Low--;
  // Low is now the last element smaller than or equal to Indices. This means
  // it points to a prefix of Indices (possibly Indices itself), if such
  // prefix exists.
  //
  // This load is safe if any prefix of its operands is safe to load.
  return Low != Set.end() && isPrefix(*Low, Indices);
}

/// Mark the given indices (ToMark) as safe in the given set of indices
/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
/// already. Furthermore, any indices that Indices is itself a prefix of, are
/// removed from Safe (since they are implicitely safe because of Indices now).
static void markIndicesSafe(const IndicesVector &ToMark,
                            std::set<IndicesVector> &Safe) {
  std::set<IndicesVector>::iterator Low;
  Low = Safe.upper_bound(ToMark);
  // Guard against the case where Safe is empty
  if (Low != Safe.begin())
    Low--;
  // Low is now the last element smaller than or equal to Indices. This
  // means it points to a prefix of Indices (possibly Indices itself), if
  // such prefix exists.
  if (Low != Safe.end()) {
    if (isPrefix(*Low, ToMark))
      // If there is already a prefix of these indices (or exactly these
      // indices) marked a safe, don't bother adding these indices
      return;

    // Increment Low, so we can use it as a "insert before" hint
    ++Low;
  }
  // Insert
  Low = Safe.insert(Low, ToMark);
  ++Low;
  // If there we're a prefix of longer index list(s), remove those
  std::set<IndicesVector>::iterator End = Safe.end();
  while (Low != End && isPrefix(ToMark, *Low)) {
    std::set<IndicesVector>::iterator Remove = Low;
    ++Low;
    Safe.erase(Remove);
  }
}

/// isSafeToPromoteArgument - As you might guess from the name of this method,
/// it checks to see if it is both safe and useful to promote the argument.
/// This method limits promotion of aggregates to only promote up to three
/// elements of the aggregate in order to avoid exploding the number of
/// arguments passed in.
static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
                                    unsigned MaxElements) {
  using GEPIndicesSet = std::set<IndicesVector>;

  // Quick exit for unused arguments
  if (Arg->use_empty())
    return true;

  // We can only promote this argument if all of the uses are loads, or are GEP
  // instructions (with constant indices) that are subsequently loaded.
  //
  // Promoting the argument causes it to be loaded in the caller
  // unconditionally. This is only safe if we can prove that either the load
  // would have happened in the callee anyway (ie, there is a load in the entry
  // block) or the pointer passed in at every call site is guaranteed to be
  // valid.
  // In the former case, invalid loads can happen, but would have happened
  // anyway, in the latter case, invalid loads won't happen. This prevents us
  // from introducing an invalid load that wouldn't have happened in the
  // original code.
  //
  // This set will contain all sets of indices that are loaded in the entry
  // block, and thus are safe to unconditionally load in the caller.
  GEPIndicesSet SafeToUnconditionallyLoad;

  // This set contains all the sets of indices that we are planning to promote.
  // This makes it possible to limit the number of arguments added.
  GEPIndicesSet ToPromote;

  // If the pointer is always valid, any load with first index 0 is valid.

  if (ByValTy)
    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));

  // Whenever a new underlying type for the operand is found, make sure it's
  // consistent with the GEPs and loads we've already seen and, if necessary,
  // use it to see if all incoming pointers are valid (which implies the 0-index
  // is safe).
  Type *BaseTy = ByValTy;
  auto UpdateBaseTy = [&](Type *NewBaseTy) {
    if (BaseTy)
      return BaseTy == NewBaseTy;

    BaseTy = NewBaseTy;
    if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
      assert(SafeToUnconditionallyLoad.empty());
      SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
    }

    return true;
  };

  // First, iterate the entry block and mark loads of (geps of) arguments as
  // safe.
  BasicBlock &EntryBlock = Arg->getParent()->front();
  // Declare this here so we can reuse it
  IndicesVector Indices;
  for (Instruction &I : EntryBlock)
    if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
      Value *V = LI->getPointerOperand();
      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
        V = GEP->getPointerOperand();
        if (V == Arg) {
          // This load actually loads (part of) Arg? Check the indices then.
          Indices.reserve(GEP->getNumIndices());
          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
               II != IE; ++II)
            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
              Indices.push_back(CI->getSExtValue());
            else
              // We found a non-constant GEP index for this argument? Bail out
              // right away, can't promote this argument at all.
              return false;

          if (!UpdateBaseTy(GEP->getSourceElementType()))
            return false;

          // Indices checked out, mark them as safe
          markIndicesSafe(Indices, SafeToUnconditionallyLoad);
          Indices.clear();
        }
      } else if (V == Arg) {
        // Direct loads are equivalent to a GEP with a single 0 index.
        markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);

        if (BaseTy && LI->getType() != BaseTy)
          return false;

        BaseTy = LI->getType();
      }
    }

  // Now, iterate all uses of the argument to see if there are any uses that are
  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
  SmallVector<LoadInst *, 16> Loads;
  IndicesVector Operands;
  for (Use &U : Arg->uses()) {
    User *UR = U.getUser();
    Operands.clear();
    if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
      // Don't hack volatile/atomic loads
      if (!LI->isSimple())
        return false;
      Loads.push_back(LI);
      // Direct loads are equivalent to a GEP with a zero index and then a load.
      Operands.push_back(0);

      if (!UpdateBaseTy(LI->getType()))
        return false;
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
      if (GEP->use_empty()) {
        // Dead GEP's cause trouble later.  Just remove them if we run into
        // them.
        GEP->eraseFromParent();
        // TODO: This runs the above loop over and over again for dead GEPs
        // Couldn't we just do increment the UI iterator earlier and erase the
        // use?
        return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements);
      }

      if (!UpdateBaseTy(GEP->getSourceElementType()))
        return false;

      // Ensure that all of the indices are constants.
      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
           ++i)
        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
          Operands.push_back(C->getSExtValue());
        else
          return false; // Not a constant operand GEP!

      // Ensure that the only users of the GEP are load instructions.
      for (User *GEPU : GEP->users())
        if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
          // Don't hack volatile/atomic loads
          if (!LI->isSimple())
            return false;
          Loads.push_back(LI);
        } else {
          // Other uses than load?
          return false;
        }
    } else {
      return false; // Not a load or a GEP.
    }

    // Now, see if it is safe to promote this load / loads of this GEP. Loading
    // is safe if Operands, or a prefix of Operands, is marked as safe.
    if (!prefixIn(Operands, SafeToUnconditionallyLoad))
      return false;

    // See if we are already promoting a load with these indices. If not, check
    // to make sure that we aren't promoting too many elements.  If so, nothing
    // to do.
    if (ToPromote.find(Operands) == ToPromote.end()) {
      if (MaxElements > 0 && ToPromote.size() == MaxElements) {
        LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
                          << Arg->getName()
                          << "' because it would require adding more "
                          << "than " << MaxElements
                          << " arguments to the function.\n");
        // We limit aggregate promotion to only promoting up to a fixed number
        // of elements of the aggregate.
        return false;
      }
      ToPromote.insert(std::move(Operands));
    }
  }

  if (Loads.empty())
    return true; // No users, this is a dead argument.

  // Okay, now we know that the argument is only used by load instructions and
  // it is safe to unconditionally perform all of them. Use alias analysis to
  // check to see if the pointer is guaranteed to not be modified from entry of
  // the function to each of the load instructions.

  // Because there could be several/many load instructions, remember which
  // blocks we know to be transparent to the load.
  df_iterator_default_set<BasicBlock *, 16> TranspBlocks;

  for (LoadInst *Load : Loads) {
    // Check to see if the load is invalidated from the start of the block to
    // the load itself.
    BasicBlock *BB = Load->getParent();

    MemoryLocation Loc = MemoryLocation::get(Load);
    if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
      return false; // Pointer is invalidated!

    // Now check every path from the entry block to the load for transparency.
    // To do this, we perform a depth first search on the inverse CFG from the
    // loading block.
    for (BasicBlock *P : predecessors(BB)) {
      for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
        if (AAR.canBasicBlockModify(*TranspBB, Loc))
          return false;
    }
  }

  // If the path from the entry of the function to each load is free of
  // instructions that potentially invalidate the load, we can make the
  // transformation!
  return true;
}

/// Checks if a type could have padding bytes.
static bool isDenselyPacked(Type *type, const DataLayout &DL) {
  // There is no size information, so be conservative.
  if (!type->isSized())
    return false;

  // If the alloc size is not equal to the storage size, then there are padding
  // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
  if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
    return false;

  if (!isa<CompositeType>(type))
    return true;

  // For homogenous sequential types, check for padding within members.
  if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
    return isDenselyPacked(seqTy->getElementType(), DL);

  // Check for padding within and between elements of a struct.
  StructType *StructTy = cast<StructType>(type);
  const StructLayout *Layout = DL.getStructLayout(StructTy);
  uint64_t StartPos = 0;
  for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
    Type *ElTy = StructTy->getElementType(i);
    if (!isDenselyPacked(ElTy, DL))
      return false;
    if (StartPos != Layout->getElementOffsetInBits(i))
      return false;
    StartPos += DL.getTypeAllocSizeInBits(ElTy);
  }

  return true;
}

/// Checks if the padding bytes of an argument could be accessed.
static bool canPaddingBeAccessed(Argument *arg) {
  assert(arg->hasByValAttr());

  // Track all the pointers to the argument to make sure they are not captured.
  SmallPtrSet<Value *, 16> PtrValues;
  PtrValues.insert(arg);

  // Track all of the stores.
  SmallVector<StoreInst *, 16> Stores;

  // Scan through the uses recursively to make sure the pointer is always used
  // sanely.
  SmallVector<Value *, 16> WorkList;
  WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
  while (!WorkList.empty()) {
    Value *V = WorkList.back();
    WorkList.pop_back();
    if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
      if (PtrValues.insert(V).second)
        WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
    } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
      Stores.push_back(Store);
    } else if (!isa<LoadInst>(V)) {
      return true;
    }
  }

  // Check to make sure the pointers aren't captured
  for (StoreInst *Store : Stores)
    if (PtrValues.count(Store->getValueOperand()))
      return true;

  return false;
}

static bool areFunctionArgsABICompatible(
    const Function &F, const TargetTransformInfo &TTI,
    SmallPtrSetImpl<Argument *> &ArgsToPromote,
    SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
  for (const Use &U : F.uses()) {
    CallSite CS(U.getUser());
    const Function *Caller = CS.getCaller();
    const Function *Callee = CS.getCalledFunction();
    if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
        !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
      return false;
  }
  return true;
}

/// PromoteArguments - This method checks the specified function to see if there
/// are any promotable arguments and if it is safe to promote the function (for
/// example, all callers are direct).  If safe to promote some arguments, it
/// calls the DoPromotion method.
static Function *
promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
                 unsigned MaxElements,
                 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
                     ReplaceCallSite,
                 const TargetTransformInfo &TTI) {
  // Don't perform argument promotion for naked functions; otherwise we can end
  // up removing parameters that are seemingly 'not used' as they are referred
  // to in the assembly.
  if(F->hasFnAttribute(Attribute::Naked))
    return nullptr;

  // Make sure that it is local to this module.
  if (!F->hasLocalLinkage())
    return nullptr;

  // Don't promote arguments for variadic functions. Adding, removing, or
  // changing non-pack parameters can change the classification of pack
  // parameters. Frontends encode that classification at the call site in the
  // IR, while in the callee the classification is determined dynamically based
  // on the number of registers consumed so far.
  if (F->isVarArg())
    return nullptr;

  // Don't transform functions that receive inallocas, as the transformation may
  // not be safe depending on calling convention.
  if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
    return nullptr;

  // First check: see if there are any pointer arguments!  If not, quick exit.
  SmallVector<Argument *, 16> PointerArgs;
  for (Argument &I : F->args())
    if (I.getType()->isPointerTy())
      PointerArgs.push_back(&I);
  if (PointerArgs.empty())
    return nullptr;

  // Second check: make sure that all callers are direct callers.  We can't
  // transform functions that have indirect callers.  Also see if the function
  // is self-recursive and check that target features are compatible.
  bool isSelfRecursive = false;
  for (Use &U : F->uses()) {
    CallSite CS(U.getUser());
    // Must be a direct call.
    if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
      return nullptr;

    // Can't change signature of musttail callee
    if (CS.isMustTailCall())
      return nullptr;

    if (CS.getInstruction()->getParent()->getParent() == F)
      isSelfRecursive = true;
  }

  // Can't change signature of musttail caller
  // FIXME: Support promoting whole chain of musttail functions
  for (BasicBlock &BB : *F)
    if (BB.getTerminatingMustTailCall())
      return nullptr;

  const DataLayout &DL = F->getParent()->getDataLayout();

  AAResults &AAR = AARGetter(*F);

  // Check to see which arguments are promotable.  If an argument is promotable,
  // add it to ArgsToPromote.
  SmallPtrSet<Argument *, 8> ArgsToPromote;
  SmallPtrSet<Argument *, 8> ByValArgsToTransform;
  for (Argument *PtrArg : PointerArgs) {
    Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();

    // Replace sret attribute with noalias. This reduces register pressure by
    // avoiding a register copy.
    if (PtrArg->hasStructRetAttr()) {
      unsigned ArgNo = PtrArg->getArgNo();
      F->removeParamAttr(ArgNo, Attribute::StructRet);
      F->addParamAttr(ArgNo, Attribute::NoAlias);
      for (Use &U : F->uses()) {
        CallSite CS(U.getUser());
        CS.removeParamAttr(ArgNo, Attribute::StructRet);
        CS.addParamAttr(ArgNo, Attribute::NoAlias);
      }
    }

    // If this is a byval argument, and if the aggregate type is small, just
    // pass the elements, which is always safe, if the passed value is densely
    // packed or if we can prove the padding bytes are never accessed.
    bool isSafeToPromote =
        PtrArg->hasByValAttr() &&
        (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
    if (isSafeToPromote) {
      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
        if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
          LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
                            << PtrArg->getName()
                            << "' because it would require adding more"
                            << " than " << MaxElements
                            << " arguments to the function.\n");
          continue;
        }

        // If all the elements are single-value types, we can promote it.
        bool AllSimple = true;
        for (const auto *EltTy : STy->elements()) {
          if (!EltTy->isSingleValueType()) {
            AllSimple = false;
            break;
          }
        }

        // Safe to transform, don't even bother trying to "promote" it.
        // Passing the elements as a scalar will allow sroa to hack on
        // the new alloca we introduce.
        if (AllSimple) {
          ByValArgsToTransform.insert(PtrArg);
          continue;
        }
      }
    }

    // If the argument is a recursive type and we're in a recursive
    // function, we could end up infinitely peeling the function argument.
    if (isSelfRecursive) {
      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
        bool RecursiveType = false;
        for (const auto *EltTy : STy->elements()) {
          if (EltTy == PtrArg->getType()) {
            RecursiveType = true;
            break;
          }
        }
        if (RecursiveType)
          continue;
      }
    }

    // Otherwise, see if we can promote the pointer to its value.
    Type *ByValTy =
        PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
    if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
      ArgsToPromote.insert(PtrArg);
  }

  // No promotable pointer arguments.
  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
    return nullptr;

  if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
                                    ByValArgsToTransform))
    return nullptr;

  return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
}

PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
                                             CGSCCAnalysisManager &AM,
                                             LazyCallGraph &CG,
                                             CGSCCUpdateResult &UR) {
  bool Changed = false, LocalChange;

  // Iterate until we stop promoting from this SCC.
  do {
    LocalChange = false;

    for (LazyCallGraph::Node &N : C) {
      Function &OldF = N.getFunction();

      FunctionAnalysisManager &FAM =
          AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
      // FIXME: This lambda must only be used with this function. We should
      // skip the lambda and just get the AA results directly.
      auto AARGetter = [&](Function &F) -> AAResults & {
        assert(&F == &OldF && "Called with an unexpected function!");
        return FAM.getResult<AAManager>(F);
      };

      const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
      Function *NewF =
          promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
      if (!NewF)
        continue;
      LocalChange = true;

      // Directly substitute the functions in the call graph. Note that this
      // requires the old function to be completely dead and completely
      // replaced by the new function. It does no call graph updates, it merely
      // swaps out the particular function mapped to a particular node in the
      // graph.
      C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
      OldF.eraseFromParent();
    }

    Changed |= LocalChange;
  } while (LocalChange);

  if (!Changed)
    return PreservedAnalyses::all();

  return PreservedAnalyses::none();
}

namespace {

/// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
struct ArgPromotion : public CallGraphSCCPass {
  // Pass identification, replacement for typeid
  static char ID;

  explicit ArgPromotion(unsigned MaxElements = 3)
      : CallGraphSCCPass(ID), MaxElements(MaxElements) {
    initializeArgPromotionPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    getAAResultsAnalysisUsage(AU);
    CallGraphSCCPass::getAnalysisUsage(AU);
  }

  bool runOnSCC(CallGraphSCC &SCC) override;

private:
  using llvm::Pass::doInitialization;

  bool doInitialization(CallGraph &CG) override;

  /// The maximum number of elements to expand, or 0 for unlimited.
  unsigned MaxElements;
};

} // end anonymous namespace

char ArgPromotion::ID = 0;

INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
                      "Promote 'by reference' arguments to scalars", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
                    "Promote 'by reference' arguments to scalars", false, false)

Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
  return new ArgPromotion(MaxElements);
}

bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
  if (skipSCC(SCC))
    return false;

  // Get the callgraph information that we need to update to reflect our
  // changes.
  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();

  LegacyAARGetter AARGetter(*this);

  bool Changed = false, LocalChange;

  // Iterate until we stop promoting from this SCC.
  do {
    LocalChange = false;
    // Attempt to promote arguments from all functions in this SCC.
    for (CallGraphNode *OldNode : SCC) {
      Function *OldF = OldNode->getFunction();
      if (!OldF)
        continue;

      auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
        Function *Caller = OldCS.getInstruction()->getParent()->getParent();
        CallGraphNode *NewCalleeNode =
            CG.getOrInsertFunction(NewCS.getCalledFunction());
        CallGraphNode *CallerNode = CG[Caller];
        CallerNode->replaceCallEdge(*cast<CallBase>(OldCS.getInstruction()),
                                    *cast<CallBase>(NewCS.getInstruction()),
                                    NewCalleeNode);
      };

      const TargetTransformInfo &TTI =
          getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
      if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
                                            {ReplaceCallSite}, TTI)) {
        LocalChange = true;

        // Update the call graph for the newly promoted function.
        CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
        NewNode->stealCalledFunctionsFrom(OldNode);
        if (OldNode->getNumReferences() == 0)
          delete CG.removeFunctionFromModule(OldNode);
        else
          OldF->setLinkage(Function::ExternalLinkage);

        // And updat ethe SCC we're iterating as well.
        SCC.ReplaceNode(OldNode, NewNode);
      }
    }
    // Remember that we changed something.
    Changed |= LocalChange;
  } while (LocalChange);

  return Changed;
}

bool ArgPromotion::doInitialization(CallGraph &CG) {
  return CallGraphSCCPass::doInitialization(CG);
}