ArgumentPromotion.cpp
44.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass promotes "by reference" arguments to be "by value" arguments. In
// practice, this means looking for internal functions that have pointer
// arguments. If it can prove, through the use of alias analysis, that an
// argument is *only* loaded, then it can pass the value into the function
// instead of the address of the value. This can cause recursive simplification
// of code and lead to the elimination of allocas (especially in C++ template
// code like the STL).
//
// This pass also handles aggregate arguments that are passed into a function,
// scalarizing them if the elements of the aggregate are only loaded. Note that
// by default it refuses to scalarize aggregates which would require passing in
// more than three operands to the function, because passing thousands of
// operands for a large array or structure is unprofitable! This limit can be
// configured or disabled, however.
//
// Note that this transformation could also be done for arguments that are only
// stored to (returning the value instead), but does not currently. This case
// would be best handled when and if LLVM begins supporting multiple return
// values from functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/ArgumentPromotion.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "argpromotion"
STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
/// A vector used to hold the indices of a single GEP instruction
using IndicesVector = std::vector<uint64_t>;
/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function. At this point, we know that it's
/// safe to do so.
static Function *
doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
ReplaceCallSite) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but has modified arguments.
FunctionType *FTy = F->getFunctionType();
std::vector<Type *> Params;
using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
// ScalarizedElements - If we are promoting a pointer that has elements
// accessed out of it, keep track of which elements are accessed so that we
// can add one argument for each.
//
// Arguments that are directly loaded will have a zero element value here, to
// handle cases where there are both a direct load and GEP accesses.
std::map<Argument *, ScalarizeTable> ScalarizedElements;
// OriginalLoads - Keep track of a representative load instruction from the
// original function so that we can tell the alias analysis implementation
// what the new GEP/Load instructions we are inserting look like.
// We need to keep the original loads for each argument and the elements
// of the argument that are accessed.
std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
// Attribute - Keep track of the parameter attributes for the arguments
// that we are *not* promoting. For the ones that we do promote, the parameter
// attributes are lost
SmallVector<AttributeSet, 8> ArgAttrVec;
AttributeList PAL = F->getAttributes();
// First, determine the new argument list
unsigned ArgNo = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++ArgNo) {
if (ByValArgsToTransform.count(&*I)) {
// Simple byval argument? Just add all the struct element types.
Type *AgTy = cast<PointerType>(I->getType())->getElementType();
StructType *STy = cast<StructType>(AgTy);
Params.insert(Params.end(), STy->element_begin(), STy->element_end());
ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
AttributeSet());
++NumByValArgsPromoted;
} else if (!ArgsToPromote.count(&*I)) {
// Unchanged argument
Params.push_back(I->getType());
ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
} else if (I->use_empty()) {
// Dead argument (which are always marked as promotable)
++NumArgumentsDead;
// There may be remaining metadata uses of the argument for things like
// llvm.dbg.value. Replace them with undef.
I->replaceAllUsesWith(UndefValue::get(I->getType()));
} else {
// Okay, this is being promoted. This means that the only uses are loads
// or GEPs which are only used by loads
// In this table, we will track which indices are loaded from the argument
// (where direct loads are tracked as no indices).
ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
for (User *U : I->users()) {
Instruction *UI = cast<Instruction>(U);
Type *SrcTy;
if (LoadInst *L = dyn_cast<LoadInst>(UI))
SrcTy = L->getType();
else
SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
IndicesVector Indices;
Indices.reserve(UI->getNumOperands() - 1);
// Since loads will only have a single operand, and GEPs only a single
// non-index operand, this will record direct loads without any indices,
// and gep+loads with the GEP indices.
for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
II != IE; ++II)
Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
// GEPs with a single 0 index can be merged with direct loads
if (Indices.size() == 1 && Indices.front() == 0)
Indices.clear();
ArgIndices.insert(std::make_pair(SrcTy, Indices));
LoadInst *OrigLoad;
if (LoadInst *L = dyn_cast<LoadInst>(UI))
OrigLoad = L;
else
// Take any load, we will use it only to update Alias Analysis
OrigLoad = cast<LoadInst>(UI->user_back());
OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
}
// Add a parameter to the function for each element passed in.
for (const auto &ArgIndex : ArgIndices) {
// not allowed to dereference ->begin() if size() is 0
Params.push_back(GetElementPtrInst::getIndexedType(
cast<PointerType>(I->getType()->getScalarType())->getElementType(),
ArgIndex.second));
ArgAttrVec.push_back(AttributeSet());
assert(Params.back());
}
if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
++NumArgumentsPromoted;
else
++NumAggregatesPromoted;
}
}
Type *RetTy = FTy->getReturnType();
// Construct the new function type using the new arguments.
FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
// Create the new function body and insert it into the module.
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
F->getName());
NF->copyAttributesFrom(F);
// Patch the pointer to LLVM function in debug info descriptor.
NF->setSubprogram(F->getSubprogram());
F->setSubprogram(nullptr);
LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
<< "From: " << *F);
// Recompute the parameter attributes list based on the new arguments for
// the function.
NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
PAL.getRetAttributes(), ArgAttrVec));
ArgAttrVec.clear();
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
NF->takeName(F);
// Loop over all of the callers of the function, transforming the call sites
// to pass in the loaded pointers.
//
SmallVector<Value *, 16> Args;
while (!F->use_empty()) {
CallSite CS(F->user_back());
assert(CS.getCalledFunction() == F);
Instruction *Call = CS.getInstruction();
const AttributeList &CallPAL = CS.getAttributes();
IRBuilder<NoFolder> IRB(Call);
// Loop over the operands, inserting GEP and loads in the caller as
// appropriate.
CallSite::arg_iterator AI = CS.arg_begin();
ArgNo = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++AI, ++ArgNo)
if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
Args.push_back(*AI); // Unmodified argument
ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
} else if (ByValArgsToTransform.count(&*I)) {
// Emit a GEP and load for each element of the struct.
Type *AgTy = cast<PointerType>(I->getType())->getElementType();
StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = {
ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
auto *Idx =
IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
// TODO: Tell AA about the new values?
Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
Idx->getName() + ".val"));
ArgAttrVec.push_back(AttributeSet());
}
} else if (!I->use_empty()) {
// Non-dead argument: insert GEPs and loads as appropriate.
ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
// Store the Value* version of the indices in here, but declare it now
// for reuse.
std::vector<Value *> Ops;
for (const auto &ArgIndex : ArgIndices) {
Value *V = *AI;
LoadInst *OrigLoad =
OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
if (!ArgIndex.second.empty()) {
Ops.reserve(ArgIndex.second.size());
Type *ElTy = V->getType();
for (auto II : ArgIndex.second) {
// Use i32 to index structs, and i64 for others (pointers/arrays).
// This satisfies GEP constraints.
Type *IdxTy =
(ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
: Type::getInt64Ty(F->getContext()));
Ops.push_back(ConstantInt::get(IdxTy, II));
// Keep track of the type we're currently indexing.
if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
ElTy = ElPTy->getElementType();
else
ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
}
// And create a GEP to extract those indices.
V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
Ops.clear();
}
// Since we're replacing a load make sure we take the alignment
// of the previous load.
LoadInst *newLoad =
IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
newLoad->setAlignment(MaybeAlign(OrigLoad->getAlignment()));
// Transfer the AA info too.
AAMDNodes AAInfo;
OrigLoad->getAAMetadata(AAInfo);
newLoad->setAAMetadata(AAInfo);
Args.push_back(newLoad);
ArgAttrVec.push_back(AttributeSet());
}
}
// Push any varargs arguments on the list.
for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
Args.push_back(*AI);
ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
}
SmallVector<OperandBundleDef, 1> OpBundles;
CS.getOperandBundlesAsDefs(OpBundles);
CallSite NewCS;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args, OpBundles, "", Call);
} else {
auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
NewCS = NewCall;
}
NewCS.setCallingConv(CS.getCallingConv());
NewCS.setAttributes(
AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
CallPAL.getRetAttributes(), ArgAttrVec));
NewCS->setDebugLoc(Call->getDebugLoc());
uint64_t W;
if (Call->extractProfTotalWeight(W))
NewCS->setProfWeight(W);
Args.clear();
ArgAttrVec.clear();
// Update the callgraph to know that the callsite has been transformed.
if (ReplaceCallSite)
(*ReplaceCallSite)(CS, NewCS);
if (!Call->use_empty()) {
Call->replaceAllUsesWith(NewCS.getInstruction());
NewCS->takeName(Call);
}
// Finally, remove the old call from the program, reducing the use-count of
// F.
Call->eraseFromParent();
}
const DataLayout &DL = F->getParent()->getDataLayout();
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
// Loop over the argument list, transferring uses of the old arguments over to
// the new arguments, also transferring over the names as well.
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
I2 = NF->arg_begin();
I != E; ++I) {
if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
// If this is an unmodified argument, move the name and users over to the
// new version.
I->replaceAllUsesWith(&*I2);
I2->takeName(&*I);
++I2;
continue;
}
if (ByValArgsToTransform.count(&*I)) {
// In the callee, we create an alloca, and store each of the new incoming
// arguments into the alloca.
Instruction *InsertPt = &NF->begin()->front();
// Just add all the struct element types.
Type *AgTy = cast<PointerType>(I->getType())->getElementType();
Value *TheAlloca =
new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
MaybeAlign(I->getParamAlignment()), "", InsertPt);
StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
nullptr};
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
Value *Idx = GetElementPtrInst::Create(
AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
InsertPt);
I2->setName(I->getName() + "." + Twine(i));
new StoreInst(&*I2++, Idx, InsertPt);
}
// Anything that used the arg should now use the alloca.
I->replaceAllUsesWith(TheAlloca);
TheAlloca->takeName(&*I);
// If the alloca is used in a call, we must clear the tail flag since
// the callee now uses an alloca from the caller.
for (User *U : TheAlloca->users()) {
CallInst *Call = dyn_cast<CallInst>(U);
if (!Call)
continue;
Call->setTailCall(false);
}
continue;
}
if (I->use_empty())
continue;
// Otherwise, if we promoted this argument, then all users are load
// instructions (or GEPs with only load users), and all loads should be
// using the new argument that we added.
ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
while (!I->use_empty()) {
if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
assert(ArgIndices.begin()->second.empty() &&
"Load element should sort to front!");
I2->setName(I->getName() + ".val");
LI->replaceAllUsesWith(&*I2);
LI->eraseFromParent();
LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
<< "' in function '" << F->getName() << "'\n");
} else {
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
IndicesVector Operands;
Operands.reserve(GEP->getNumIndices());
for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
II != IE; ++II)
Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
// GEPs with a single 0 index can be merged with direct loads
if (Operands.size() == 1 && Operands.front() == 0)
Operands.clear();
Function::arg_iterator TheArg = I2;
for (ScalarizeTable::iterator It = ArgIndices.begin();
It->second != Operands; ++It, ++TheArg) {
assert(It != ArgIndices.end() && "GEP not handled??");
}
std::string NewName = I->getName();
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
NewName += "." + utostr(Operands[i]);
}
NewName += ".val";
TheArg->setName(NewName);
LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
<< "' of function '" << NF->getName() << "'\n");
// All of the uses must be load instructions. Replace them all with
// the argument specified by ArgNo.
while (!GEP->use_empty()) {
LoadInst *L = cast<LoadInst>(GEP->user_back());
L->replaceAllUsesWith(&*TheArg);
L->eraseFromParent();
}
GEP->eraseFromParent();
}
}
// Increment I2 past all of the arguments added for this promoted pointer.
std::advance(I2, ArgIndices.size());
}
return NF;
}
/// Return true if we can prove that all callees pass in a valid pointer for the
/// specified function argument.
static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
Function *Callee = Arg->getParent();
const DataLayout &DL = Callee->getParent()->getDataLayout();
unsigned ArgNo = Arg->getArgNo();
// Look at all call sites of the function. At this point we know we only have
// direct callees.
for (User *U : Callee->users()) {
CallSite CS(U);
assert(CS && "Should only have direct calls!");
if (!isDereferenceablePointer(CS.getArgument(ArgNo), Ty, DL))
return false;
}
return true;
}
/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
/// that is greater than or equal to the size of prefix, and each of the
/// elements in Prefix is the same as the corresponding elements in Longer.
///
/// This means it also returns true when Prefix and Longer are equal!
static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
if (Prefix.size() > Longer.size())
return false;
return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
}
/// Checks if Indices, or a prefix of Indices, is in Set.
static bool prefixIn(const IndicesVector &Indices,
std::set<IndicesVector> &Set) {
std::set<IndicesVector>::iterator Low;
Low = Set.upper_bound(Indices);
if (Low != Set.begin())
Low--;
// Low is now the last element smaller than or equal to Indices. This means
// it points to a prefix of Indices (possibly Indices itself), if such
// prefix exists.
//
// This load is safe if any prefix of its operands is safe to load.
return Low != Set.end() && isPrefix(*Low, Indices);
}
/// Mark the given indices (ToMark) as safe in the given set of indices
/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
/// already. Furthermore, any indices that Indices is itself a prefix of, are
/// removed from Safe (since they are implicitely safe because of Indices now).
static void markIndicesSafe(const IndicesVector &ToMark,
std::set<IndicesVector> &Safe) {
std::set<IndicesVector>::iterator Low;
Low = Safe.upper_bound(ToMark);
// Guard against the case where Safe is empty
if (Low != Safe.begin())
Low--;
// Low is now the last element smaller than or equal to Indices. This
// means it points to a prefix of Indices (possibly Indices itself), if
// such prefix exists.
if (Low != Safe.end()) {
if (isPrefix(*Low, ToMark))
// If there is already a prefix of these indices (or exactly these
// indices) marked a safe, don't bother adding these indices
return;
// Increment Low, so we can use it as a "insert before" hint
++Low;
}
// Insert
Low = Safe.insert(Low, ToMark);
++Low;
// If there we're a prefix of longer index list(s), remove those
std::set<IndicesVector>::iterator End = Safe.end();
while (Low != End && isPrefix(ToMark, *Low)) {
std::set<IndicesVector>::iterator Remove = Low;
++Low;
Safe.erase(Remove);
}
}
/// isSafeToPromoteArgument - As you might guess from the name of this method,
/// it checks to see if it is both safe and useful to promote the argument.
/// This method limits promotion of aggregates to only promote up to three
/// elements of the aggregate in order to avoid exploding the number of
/// arguments passed in.
static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
unsigned MaxElements) {
using GEPIndicesSet = std::set<IndicesVector>;
// Quick exit for unused arguments
if (Arg->use_empty())
return true;
// We can only promote this argument if all of the uses are loads, or are GEP
// instructions (with constant indices) that are subsequently loaded.
//
// Promoting the argument causes it to be loaded in the caller
// unconditionally. This is only safe if we can prove that either the load
// would have happened in the callee anyway (ie, there is a load in the entry
// block) or the pointer passed in at every call site is guaranteed to be
// valid.
// In the former case, invalid loads can happen, but would have happened
// anyway, in the latter case, invalid loads won't happen. This prevents us
// from introducing an invalid load that wouldn't have happened in the
// original code.
//
// This set will contain all sets of indices that are loaded in the entry
// block, and thus are safe to unconditionally load in the caller.
GEPIndicesSet SafeToUnconditionallyLoad;
// This set contains all the sets of indices that we are planning to promote.
// This makes it possible to limit the number of arguments added.
GEPIndicesSet ToPromote;
// If the pointer is always valid, any load with first index 0 is valid.
if (ByValTy)
SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
// Whenever a new underlying type for the operand is found, make sure it's
// consistent with the GEPs and loads we've already seen and, if necessary,
// use it to see if all incoming pointers are valid (which implies the 0-index
// is safe).
Type *BaseTy = ByValTy;
auto UpdateBaseTy = [&](Type *NewBaseTy) {
if (BaseTy)
return BaseTy == NewBaseTy;
BaseTy = NewBaseTy;
if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
assert(SafeToUnconditionallyLoad.empty());
SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
}
return true;
};
// First, iterate the entry block and mark loads of (geps of) arguments as
// safe.
BasicBlock &EntryBlock = Arg->getParent()->front();
// Declare this here so we can reuse it
IndicesVector Indices;
for (Instruction &I : EntryBlock)
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
Value *V = LI->getPointerOperand();
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
V = GEP->getPointerOperand();
if (V == Arg) {
// This load actually loads (part of) Arg? Check the indices then.
Indices.reserve(GEP->getNumIndices());
for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
II != IE; ++II)
if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
Indices.push_back(CI->getSExtValue());
else
// We found a non-constant GEP index for this argument? Bail out
// right away, can't promote this argument at all.
return false;
if (!UpdateBaseTy(GEP->getSourceElementType()))
return false;
// Indices checked out, mark them as safe
markIndicesSafe(Indices, SafeToUnconditionallyLoad);
Indices.clear();
}
} else if (V == Arg) {
// Direct loads are equivalent to a GEP with a single 0 index.
markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
if (BaseTy && LI->getType() != BaseTy)
return false;
BaseTy = LI->getType();
}
}
// Now, iterate all uses of the argument to see if there are any uses that are
// not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
SmallVector<LoadInst *, 16> Loads;
IndicesVector Operands;
for (Use &U : Arg->uses()) {
User *UR = U.getUser();
Operands.clear();
if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
// Don't hack volatile/atomic loads
if (!LI->isSimple())
return false;
Loads.push_back(LI);
// Direct loads are equivalent to a GEP with a zero index and then a load.
Operands.push_back(0);
if (!UpdateBaseTy(LI->getType()))
return false;
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
if (GEP->use_empty()) {
// Dead GEP's cause trouble later. Just remove them if we run into
// them.
GEP->eraseFromParent();
// TODO: This runs the above loop over and over again for dead GEPs
// Couldn't we just do increment the UI iterator earlier and erase the
// use?
return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements);
}
if (!UpdateBaseTy(GEP->getSourceElementType()))
return false;
// Ensure that all of the indices are constants.
for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
++i)
if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
Operands.push_back(C->getSExtValue());
else
return false; // Not a constant operand GEP!
// Ensure that the only users of the GEP are load instructions.
for (User *GEPU : GEP->users())
if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
// Don't hack volatile/atomic loads
if (!LI->isSimple())
return false;
Loads.push_back(LI);
} else {
// Other uses than load?
return false;
}
} else {
return false; // Not a load or a GEP.
}
// Now, see if it is safe to promote this load / loads of this GEP. Loading
// is safe if Operands, or a prefix of Operands, is marked as safe.
if (!prefixIn(Operands, SafeToUnconditionallyLoad))
return false;
// See if we are already promoting a load with these indices. If not, check
// to make sure that we aren't promoting too many elements. If so, nothing
// to do.
if (ToPromote.find(Operands) == ToPromote.end()) {
if (MaxElements > 0 && ToPromote.size() == MaxElements) {
LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
<< Arg->getName()
<< "' because it would require adding more "
<< "than " << MaxElements
<< " arguments to the function.\n");
// We limit aggregate promotion to only promoting up to a fixed number
// of elements of the aggregate.
return false;
}
ToPromote.insert(std::move(Operands));
}
}
if (Loads.empty())
return true; // No users, this is a dead argument.
// Okay, now we know that the argument is only used by load instructions and
// it is safe to unconditionally perform all of them. Use alias analysis to
// check to see if the pointer is guaranteed to not be modified from entry of
// the function to each of the load instructions.
// Because there could be several/many load instructions, remember which
// blocks we know to be transparent to the load.
df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
for (LoadInst *Load : Loads) {
// Check to see if the load is invalidated from the start of the block to
// the load itself.
BasicBlock *BB = Load->getParent();
MemoryLocation Loc = MemoryLocation::get(Load);
if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
return false; // Pointer is invalidated!
// Now check every path from the entry block to the load for transparency.
// To do this, we perform a depth first search on the inverse CFG from the
// loading block.
for (BasicBlock *P : predecessors(BB)) {
for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
if (AAR.canBasicBlockModify(*TranspBB, Loc))
return false;
}
}
// If the path from the entry of the function to each load is free of
// instructions that potentially invalidate the load, we can make the
// transformation!
return true;
}
/// Checks if a type could have padding bytes.
static bool isDenselyPacked(Type *type, const DataLayout &DL) {
// There is no size information, so be conservative.
if (!type->isSized())
return false;
// If the alloc size is not equal to the storage size, then there are padding
// bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
return false;
if (!isa<CompositeType>(type))
return true;
// For homogenous sequential types, check for padding within members.
if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
return isDenselyPacked(seqTy->getElementType(), DL);
// Check for padding within and between elements of a struct.
StructType *StructTy = cast<StructType>(type);
const StructLayout *Layout = DL.getStructLayout(StructTy);
uint64_t StartPos = 0;
for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
Type *ElTy = StructTy->getElementType(i);
if (!isDenselyPacked(ElTy, DL))
return false;
if (StartPos != Layout->getElementOffsetInBits(i))
return false;
StartPos += DL.getTypeAllocSizeInBits(ElTy);
}
return true;
}
/// Checks if the padding bytes of an argument could be accessed.
static bool canPaddingBeAccessed(Argument *arg) {
assert(arg->hasByValAttr());
// Track all the pointers to the argument to make sure they are not captured.
SmallPtrSet<Value *, 16> PtrValues;
PtrValues.insert(arg);
// Track all of the stores.
SmallVector<StoreInst *, 16> Stores;
// Scan through the uses recursively to make sure the pointer is always used
// sanely.
SmallVector<Value *, 16> WorkList;
WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
while (!WorkList.empty()) {
Value *V = WorkList.back();
WorkList.pop_back();
if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
if (PtrValues.insert(V).second)
WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
} else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
Stores.push_back(Store);
} else if (!isa<LoadInst>(V)) {
return true;
}
}
// Check to make sure the pointers aren't captured
for (StoreInst *Store : Stores)
if (PtrValues.count(Store->getValueOperand()))
return true;
return false;
}
static bool areFunctionArgsABICompatible(
const Function &F, const TargetTransformInfo &TTI,
SmallPtrSetImpl<Argument *> &ArgsToPromote,
SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
for (const Use &U : F.uses()) {
CallSite CS(U.getUser());
const Function *Caller = CS.getCaller();
const Function *Callee = CS.getCalledFunction();
if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
!TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
return false;
}
return true;
}
/// PromoteArguments - This method checks the specified function to see if there
/// are any promotable arguments and if it is safe to promote the function (for
/// example, all callers are direct). If safe to promote some arguments, it
/// calls the DoPromotion method.
static Function *
promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
unsigned MaxElements,
Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
ReplaceCallSite,
const TargetTransformInfo &TTI) {
// Don't perform argument promotion for naked functions; otherwise we can end
// up removing parameters that are seemingly 'not used' as they are referred
// to in the assembly.
if(F->hasFnAttribute(Attribute::Naked))
return nullptr;
// Make sure that it is local to this module.
if (!F->hasLocalLinkage())
return nullptr;
// Don't promote arguments for variadic functions. Adding, removing, or
// changing non-pack parameters can change the classification of pack
// parameters. Frontends encode that classification at the call site in the
// IR, while in the callee the classification is determined dynamically based
// on the number of registers consumed so far.
if (F->isVarArg())
return nullptr;
// Don't transform functions that receive inallocas, as the transformation may
// not be safe depending on calling convention.
if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
return nullptr;
// First check: see if there are any pointer arguments! If not, quick exit.
SmallVector<Argument *, 16> PointerArgs;
for (Argument &I : F->args())
if (I.getType()->isPointerTy())
PointerArgs.push_back(&I);
if (PointerArgs.empty())
return nullptr;
// Second check: make sure that all callers are direct callers. We can't
// transform functions that have indirect callers. Also see if the function
// is self-recursive and check that target features are compatible.
bool isSelfRecursive = false;
for (Use &U : F->uses()) {
CallSite CS(U.getUser());
// Must be a direct call.
if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
return nullptr;
// Can't change signature of musttail callee
if (CS.isMustTailCall())
return nullptr;
if (CS.getInstruction()->getParent()->getParent() == F)
isSelfRecursive = true;
}
// Can't change signature of musttail caller
// FIXME: Support promoting whole chain of musttail functions
for (BasicBlock &BB : *F)
if (BB.getTerminatingMustTailCall())
return nullptr;
const DataLayout &DL = F->getParent()->getDataLayout();
AAResults &AAR = AARGetter(*F);
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.
SmallPtrSet<Argument *, 8> ArgsToPromote;
SmallPtrSet<Argument *, 8> ByValArgsToTransform;
for (Argument *PtrArg : PointerArgs) {
Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
// Replace sret attribute with noalias. This reduces register pressure by
// avoiding a register copy.
if (PtrArg->hasStructRetAttr()) {
unsigned ArgNo = PtrArg->getArgNo();
F->removeParamAttr(ArgNo, Attribute::StructRet);
F->addParamAttr(ArgNo, Attribute::NoAlias);
for (Use &U : F->uses()) {
CallSite CS(U.getUser());
CS.removeParamAttr(ArgNo, Attribute::StructRet);
CS.addParamAttr(ArgNo, Attribute::NoAlias);
}
}
// If this is a byval argument, and if the aggregate type is small, just
// pass the elements, which is always safe, if the passed value is densely
// packed or if we can prove the padding bytes are never accessed.
bool isSafeToPromote =
PtrArg->hasByValAttr() &&
(isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
if (isSafeToPromote) {
if (StructType *STy = dyn_cast<StructType>(AgTy)) {
if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
<< PtrArg->getName()
<< "' because it would require adding more"
<< " than " << MaxElements
<< " arguments to the function.\n");
continue;
}
// If all the elements are single-value types, we can promote it.
bool AllSimple = true;
for (const auto *EltTy : STy->elements()) {
if (!EltTy->isSingleValueType()) {
AllSimple = false;
break;
}
}
// Safe to transform, don't even bother trying to "promote" it.
// Passing the elements as a scalar will allow sroa to hack on
// the new alloca we introduce.
if (AllSimple) {
ByValArgsToTransform.insert(PtrArg);
continue;
}
}
}
// If the argument is a recursive type and we're in a recursive
// function, we could end up infinitely peeling the function argument.
if (isSelfRecursive) {
if (StructType *STy = dyn_cast<StructType>(AgTy)) {
bool RecursiveType = false;
for (const auto *EltTy : STy->elements()) {
if (EltTy == PtrArg->getType()) {
RecursiveType = true;
break;
}
}
if (RecursiveType)
continue;
}
}
// Otherwise, see if we can promote the pointer to its value.
Type *ByValTy =
PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
ArgsToPromote.insert(PtrArg);
}
// No promotable pointer arguments.
if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
return nullptr;
if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
ByValArgsToTransform))
return nullptr;
return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
}
PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
bool Changed = false, LocalChange;
// Iterate until we stop promoting from this SCC.
do {
LocalChange = false;
for (LazyCallGraph::Node &N : C) {
Function &OldF = N.getFunction();
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
// FIXME: This lambda must only be used with this function. We should
// skip the lambda and just get the AA results directly.
auto AARGetter = [&](Function &F) -> AAResults & {
assert(&F == &OldF && "Called with an unexpected function!");
return FAM.getResult<AAManager>(F);
};
const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
Function *NewF =
promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
if (!NewF)
continue;
LocalChange = true;
// Directly substitute the functions in the call graph. Note that this
// requires the old function to be completely dead and completely
// replaced by the new function. It does no call graph updates, it merely
// swaps out the particular function mapped to a particular node in the
// graph.
C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
OldF.eraseFromParent();
}
Changed |= LocalChange;
} while (LocalChange);
if (!Changed)
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
namespace {
/// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
struct ArgPromotion : public CallGraphSCCPass {
// Pass identification, replacement for typeid
static char ID;
explicit ArgPromotion(unsigned MaxElements = 3)
: CallGraphSCCPass(ID), MaxElements(MaxElements) {
initializeArgPromotionPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
getAAResultsAnalysisUsage(AU);
CallGraphSCCPass::getAnalysisUsage(AU);
}
bool runOnSCC(CallGraphSCC &SCC) override;
private:
using llvm::Pass::doInitialization;
bool doInitialization(CallGraph &CG) override;
/// The maximum number of elements to expand, or 0 for unlimited.
unsigned MaxElements;
};
} // end anonymous namespace
char ArgPromotion::ID = 0;
INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
"Promote 'by reference' arguments to scalars", false,
false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
"Promote 'by reference' arguments to scalars", false, false)
Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
return new ArgPromotion(MaxElements);
}
bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
if (skipSCC(SCC))
return false;
// Get the callgraph information that we need to update to reflect our
// changes.
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
LegacyAARGetter AARGetter(*this);
bool Changed = false, LocalChange;
// Iterate until we stop promoting from this SCC.
do {
LocalChange = false;
// Attempt to promote arguments from all functions in this SCC.
for (CallGraphNode *OldNode : SCC) {
Function *OldF = OldNode->getFunction();
if (!OldF)
continue;
auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
Function *Caller = OldCS.getInstruction()->getParent()->getParent();
CallGraphNode *NewCalleeNode =
CG.getOrInsertFunction(NewCS.getCalledFunction());
CallGraphNode *CallerNode = CG[Caller];
CallerNode->replaceCallEdge(*cast<CallBase>(OldCS.getInstruction()),
*cast<CallBase>(NewCS.getInstruction()),
NewCalleeNode);
};
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
{ReplaceCallSite}, TTI)) {
LocalChange = true;
// Update the call graph for the newly promoted function.
CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
NewNode->stealCalledFunctionsFrom(OldNode);
if (OldNode->getNumReferences() == 0)
delete CG.removeFunctionFromModule(OldNode);
else
OldF->setLinkage(Function::ExternalLinkage);
// And updat ethe SCC we're iterating as well.
SCC.ReplaceNode(OldNode, NewNode);
}
}
// Remember that we changed something.
Changed |= LocalChange;
} while (LocalChange);
return Changed;
}
bool ArgPromotion::doInitialization(CallGraph &CG) {
return CallGraphSCCPass::doInitialization(CG);
}