DeadArgumentElimination.cpp 42.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
//===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass deletes dead arguments from internal functions.  Dead argument
// elimination removes arguments which are directly dead, as well as arguments
// only passed into function calls as dead arguments of other functions.  This
// pass also deletes dead return values in a similar way.
//
// This pass is often useful as a cleanup pass to run after aggressive
// interprocedural passes, which add possibly-dead arguments or return values.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "deadargelim"

STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
STATISTIC(NumArgumentsReplacedWithUndef,
          "Number of unread args replaced with undef");

namespace {

  /// DAE - The dead argument elimination pass.
  class DAE : public ModulePass {
  protected:
    // DAH uses this to specify a different ID.
    explicit DAE(char &ID) : ModulePass(ID) {}

  public:
    static char ID; // Pass identification, replacement for typeid

    DAE() : ModulePass(ID) {
      initializeDAEPass(*PassRegistry::getPassRegistry());
    }

    bool runOnModule(Module &M) override {
      if (skipModule(M))
        return false;
      DeadArgumentEliminationPass DAEP(ShouldHackArguments());
      ModuleAnalysisManager DummyMAM;
      PreservedAnalyses PA = DAEP.run(M, DummyMAM);
      return !PA.areAllPreserved();
    }

    virtual bool ShouldHackArguments() const { return false; }
  };

} // end anonymous namespace

char DAE::ID = 0;

INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)

namespace {

  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
  /// deletes arguments to functions which are external.  This is only for use
  /// by bugpoint.
  struct DAH : public DAE {
    static char ID;

    DAH() : DAE(ID) {}

    bool ShouldHackArguments() const override { return true; }
  };

} // end anonymous namespace

char DAH::ID = 0;

INITIALIZE_PASS(DAH, "deadarghaX0r",
                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
                false, false)

/// createDeadArgEliminationPass - This pass removes arguments from functions
/// which are not used by the body of the function.
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }

ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }

/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
/// llvm.vastart is never called, the varargs list is dead for the function.
bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;

  // Ensure that the function is only directly called.
  if (Fn.hasAddressTaken())
    return false;

  // Don't touch naked functions. The assembly might be using an argument, or
  // otherwise rely on the frame layout in a way that this analysis will not
  // see.
  if (Fn.hasFnAttribute(Attribute::Naked)) {
    return false;
  }

  // Okay, we know we can transform this function if safe.  Scan its body
  // looking for calls marked musttail or calls to llvm.vastart.
  for (BasicBlock &BB : Fn) {
    for (Instruction &I : BB) {
      CallInst *CI = dyn_cast<CallInst>(&I);
      if (!CI)
        continue;
      if (CI->isMustTailCall())
        return false;
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
        if (II->getIntrinsicID() == Intrinsic::vastart)
          return false;
      }
    }
  }

  // If we get here, there are no calls to llvm.vastart in the function body,
  // remove the "..." and adjust all the calls.

  // Start by computing a new prototype for the function, which is the same as
  // the old function, but doesn't have isVarArg set.
  FunctionType *FTy = Fn.getFunctionType();

  std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
                                                Params, false);
  unsigned NumArgs = Params.size();

  // Create the new function body and insert it into the module...
  Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace());
  NF->copyAttributesFrom(&Fn);
  NF->setComdat(Fn.getComdat());
  Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
  NF->takeName(&Fn);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in a smaller number of arguments into the new function.
  //
  std::vector<Value *> Args;
  for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
    CallSite CS(*I++);
    if (!CS)
      continue;
    Instruction *Call = CS.getInstruction();

    // Pass all the same arguments.
    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);

    // Drop any attributes that were on the vararg arguments.
    AttributeList PAL = CS.getAttributes();
    if (!PAL.isEmpty()) {
      SmallVector<AttributeSet, 8> ArgAttrs;
      for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
        ArgAttrs.push_back(PAL.getParamAttributes(ArgNo));
      PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(),
                               PAL.getRetAttributes(), ArgAttrs);
    }

    SmallVector<OperandBundleDef, 1> OpBundles;
    CS.getOperandBundlesAsDefs(OpBundles);

    CallSite NewCS;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                                 Args, OpBundles, "", Call);
    } else {
      NewCS = CallInst::Create(NF, Args, OpBundles, "", Call);
      cast<CallInst>(NewCS.getInstruction())
          ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
    }
    NewCS.setCallingConv(CS.getCallingConv());
    NewCS.setAttributes(PAL);
    NewCS->setDebugLoc(Call->getDebugLoc());
    uint64_t W;
    if (Call->extractProfTotalWeight(W))
      NewCS->setProfWeight(W);

    Args.clear();

    if (!Call->use_empty())
      Call->replaceAllUsesWith(NewCS.getInstruction());

    NewCS->takeName(Call);

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.  While we're at
  // it, remove the dead arguments from the DeadArguments list.
  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    // Move the name and users over to the new version.
    I->replaceAllUsesWith(&*I2);
    I2->takeName(&*I);
  }

  // Clone metadatas from the old function, including debug info descriptor.
  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
  Fn.getAllMetadata(MDs);
  for (auto MD : MDs)
    NF->addMetadata(MD.first, *MD.second);

  // Fix up any BlockAddresses that refer to the function.
  Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
  // Delete the bitcast that we just created, so that NF does not
  // appear to be address-taken.
  NF->removeDeadConstantUsers();
  // Finally, nuke the old function.
  Fn.eraseFromParent();
  return true;
}

/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
/// arguments that are unused, and changes the caller parameters to be undefined
/// instead.
bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
  // We cannot change the arguments if this TU does not define the function or
  // if the linker may choose a function body from another TU, even if the
  // nominal linkage indicates that other copies of the function have the same
  // semantics. In the below example, the dead load from %p may not have been
  // eliminated from the linker-chosen copy of f, so replacing %p with undef
  // in callers may introduce undefined behavior.
  //
  // define linkonce_odr void @f(i32* %p) {
  //   %v = load i32 %p
  //   ret void
  // }
  if (!Fn.hasExactDefinition())
    return false;

  // Functions with local linkage should already have been handled, except the
  // fragile (variadic) ones which we can improve here.
  if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
    return false;

  // Don't touch naked functions. The assembly might be using an argument, or
  // otherwise rely on the frame layout in a way that this analysis will not
  // see.
  if (Fn.hasFnAttribute(Attribute::Naked))
    return false;

  if (Fn.use_empty())
    return false;

  SmallVector<unsigned, 8> UnusedArgs;
  bool Changed = false;

  for (Argument &Arg : Fn.args()) {
    if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && !Arg.hasByValOrInAllocaAttr()) {
      if (Arg.isUsedByMetadata()) {
        Arg.replaceAllUsesWith(UndefValue::get(Arg.getType()));
        Changed = true;
      }
      UnusedArgs.push_back(Arg.getArgNo());
    }
  }

  if (UnusedArgs.empty())
    return false;

  for (Use &U : Fn.uses()) {
    CallSite CS(U.getUser());
    if (!CS || !CS.isCallee(&U))
      continue;

    // Now go through all unused args and replace them with "undef".
    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
      unsigned ArgNo = UnusedArgs[I];

      Value *Arg = CS.getArgument(ArgNo);
      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
      ++NumArgumentsReplacedWithUndef;
      Changed = true;
    }
  }

  return Changed;
}

/// Convenience function that returns the number of return values. It returns 0
/// for void functions and 1 for functions not returning a struct. It returns
/// the number of struct elements for functions returning a struct.
static unsigned NumRetVals(const Function *F) {
  Type *RetTy = F->getReturnType();
  if (RetTy->isVoidTy())
    return 0;
  else if (StructType *STy = dyn_cast<StructType>(RetTy))
    return STy->getNumElements();
  else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
    return ATy->getNumElements();
  else
    return 1;
}

/// Returns the sub-type a function will return at a given Idx. Should
/// correspond to the result type of an ExtractValue instruction executed with
/// just that one Idx (i.e. only top-level structure is considered).
static Type *getRetComponentType(const Function *F, unsigned Idx) {
  Type *RetTy = F->getReturnType();
  assert(!RetTy->isVoidTy() && "void type has no subtype");

  if (StructType *STy = dyn_cast<StructType>(RetTy))
    return STy->getElementType(Idx);
  else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
    return ATy->getElementType();
  else
    return RetTy;
}

/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
/// liveness of Use.
DeadArgumentEliminationPass::Liveness
DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
                                           UseVector &MaybeLiveUses) {
  // We're live if our use or its Function is already marked as live.
  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
    return Live;

  // We're maybe live otherwise, but remember that we must become live if
  // Use becomes live.
  MaybeLiveUses.push_back(Use);
  return MaybeLive;
}

/// SurveyUse - This looks at a single use of an argument or return value
/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
/// if it causes the used value to become MaybeLive.
///
/// RetValNum is the return value number to use when this use is used in a
/// return instruction. This is used in the recursion, you should always leave
/// it at 0.
DeadArgumentEliminationPass::Liveness
DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
                                       unsigned RetValNum) {
    const User *V = U->getUser();
    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
      // The value is returned from a function. It's only live when the
      // function's return value is live. We use RetValNum here, for the case
      // that U is really a use of an insertvalue instruction that uses the
      // original Use.
      const Function *F = RI->getParent()->getParent();
      if (RetValNum != -1U) {
        RetOrArg Use = CreateRet(F, RetValNum);
        // We might be live, depending on the liveness of Use.
        return MarkIfNotLive(Use, MaybeLiveUses);
      } else {
        DeadArgumentEliminationPass::Liveness Result = MaybeLive;
        for (unsigned i = 0; i < NumRetVals(F); ++i) {
          RetOrArg Use = CreateRet(F, i);
          // We might be live, depending on the liveness of Use. If any
          // sub-value is live, then the entire value is considered live. This
          // is a conservative choice, and better tracking is possible.
          DeadArgumentEliminationPass::Liveness SubResult =
              MarkIfNotLive(Use, MaybeLiveUses);
          if (Result != Live)
            Result = SubResult;
        }
        return Result;
      }
    }
    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
      if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
          && IV->hasIndices())
        // The use we are examining is inserted into an aggregate. Our liveness
        // depends on all uses of that aggregate, but if it is used as a return
        // value, only index at which we were inserted counts.
        RetValNum = *IV->idx_begin();

      // Note that if we are used as the aggregate operand to the insertvalue,
      // we don't change RetValNum, but do survey all our uses.

      Liveness Result = MaybeLive;
      for (const Use &UU : IV->uses()) {
        Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
        if (Result == Live)
          break;
      }
      return Result;
    }

    if (auto CS = ImmutableCallSite(V)) {
      const Function *F = CS.getCalledFunction();
      if (F) {
        // Used in a direct call.

        // The function argument is live if it is used as a bundle operand.
        if (CS.isBundleOperand(U))
          return Live;

        // Find the argument number. We know for sure that this use is an
        // argument, since if it was the function argument this would be an
        // indirect call and the we know can't be looking at a value of the
        // label type (for the invoke instruction).
        unsigned ArgNo = CS.getArgumentNo(U);

        if (ArgNo >= F->getFunctionType()->getNumParams())
          // The value is passed in through a vararg! Must be live.
          return Live;

        assert(CS.getArgument(ArgNo)
               == CS->getOperand(U->getOperandNo())
               && "Argument is not where we expected it");

        // Value passed to a normal call. It's only live when the corresponding
        // argument to the called function turns out live.
        RetOrArg Use = CreateArg(F, ArgNo);
        return MarkIfNotLive(Use, MaybeLiveUses);
      }
    }
    // Used in any other way? Value must be live.
    return Live;
}

/// SurveyUses - This looks at all the uses of the given value
/// Returns the Liveness deduced from the uses of this value.
///
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
/// the result is Live, MaybeLiveUses might be modified but its content should
/// be ignored (since it might not be complete).
DeadArgumentEliminationPass::Liveness
DeadArgumentEliminationPass::SurveyUses(const Value *V,
                                        UseVector &MaybeLiveUses) {
  // Assume it's dead (which will only hold if there are no uses at all..).
  Liveness Result = MaybeLive;
  // Check each use.
  for (const Use &U : V->uses()) {
    Result = SurveyUse(&U, MaybeLiveUses);
    if (Result == Live)
      break;
  }
  return Result;
}

// SurveyFunction - This performs the initial survey of the specified function,
// checking out whether or not it uses any of its incoming arguments or whether
// any callers use the return value.  This fills in the LiveValues set and Uses
// map.
//
// We consider arguments of non-internal functions to be intrinsically alive as
// well as arguments to functions which have their "address taken".
void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
  // Functions with inalloca parameters are expecting args in a particular
  // register and memory layout.
  if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
    MarkLive(F);
    return;
  }

  // Don't touch naked functions. The assembly might be using an argument, or
  // otherwise rely on the frame layout in a way that this analysis will not
  // see.
  if (F.hasFnAttribute(Attribute::Naked)) {
    MarkLive(F);
    return;
  }

  unsigned RetCount = NumRetVals(&F);

  // Assume all return values are dead
  using RetVals = SmallVector<Liveness, 5>;

  RetVals RetValLiveness(RetCount, MaybeLive);

  using RetUses = SmallVector<UseVector, 5>;

  // These vectors map each return value to the uses that make it MaybeLive, so
  // we can add those to the Uses map if the return value really turns out to be
  // MaybeLive. Initialized to a list of RetCount empty lists.
  RetUses MaybeLiveRetUses(RetCount);

  bool HasMustTailCalls = false;

  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
          != F.getFunctionType()->getReturnType()) {
        // We don't support old style multiple return values.
        MarkLive(F);
        return;
      }
    }

    // If we have any returns of `musttail` results - the signature can't
    // change
    if (BB->getTerminatingMustTailCall() != nullptr)
      HasMustTailCalls = true;
  }

  if (HasMustTailCalls) {
    LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
                      << " has musttail calls\n");
  }

  if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
    MarkLive(F);
    return;
  }

  LLVM_DEBUG(
      dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
             << F.getName() << "\n");
  // Keep track of the number of live retvals, so we can skip checks once all
  // of them turn out to be live.
  unsigned NumLiveRetVals = 0;

  bool HasMustTailCallers = false;

  // Loop all uses of the function.
  for (const Use &U : F.uses()) {
    // If the function is PASSED IN as an argument, its address has been
    // taken.
    ImmutableCallSite CS(U.getUser());
    if (!CS || !CS.isCallee(&U)) {
      MarkLive(F);
      return;
    }

    // The number of arguments for `musttail` call must match the number of
    // arguments of the caller
    if (CS.isMustTailCall())
      HasMustTailCallers = true;

    // If this use is anything other than a call site, the function is alive.
    const Instruction *TheCall = CS.getInstruction();
    if (!TheCall) {   // Not a direct call site?
      MarkLive(F);
      return;
    }

    // If we end up here, we are looking at a direct call to our function.

    // Now, check how our return value(s) is/are used in this caller. Don't
    // bother checking return values if all of them are live already.
    if (NumLiveRetVals == RetCount)
      continue;

    // Check all uses of the return value.
    for (const Use &U : TheCall->uses()) {
      if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
        // This use uses a part of our return value, survey the uses of
        // that part and store the results for this index only.
        unsigned Idx = *Ext->idx_begin();
        if (RetValLiveness[Idx] != Live) {
          RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
          if (RetValLiveness[Idx] == Live)
            NumLiveRetVals++;
        }
      } else {
        // Used by something else than extractvalue. Survey, but assume that the
        // result applies to all sub-values.
        UseVector MaybeLiveAggregateUses;
        if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
          NumLiveRetVals = RetCount;
          RetValLiveness.assign(RetCount, Live);
          break;
        } else {
          for (unsigned i = 0; i != RetCount; ++i) {
            if (RetValLiveness[i] != Live)
              MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
                                         MaybeLiveAggregateUses.end());
          }
        }
      }
    }
  }

  if (HasMustTailCallers) {
    LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
                      << " has musttail callers\n");
  }

  // Now we've inspected all callers, record the liveness of our return values.
  for (unsigned i = 0; i != RetCount; ++i)
    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);

  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
                    << F.getName() << "\n");

  // Now, check all of our arguments.
  unsigned i = 0;
  UseVector MaybeLiveArgUses;
  for (Function::const_arg_iterator AI = F.arg_begin(),
       E = F.arg_end(); AI != E; ++AI, ++i) {
    Liveness Result;
    if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
        HasMustTailCalls) {
      // Variadic functions will already have a va_arg function expanded inside
      // them, making them potentially very sensitive to ABI changes resulting
      // from removing arguments entirely, so don't. For example AArch64 handles
      // register and stack HFAs very differently, and this is reflected in the
      // IR which has already been generated.
      //
      // `musttail` calls to this function restrict argument removal attempts.
      // The signature of the caller must match the signature of the function.
      //
      // `musttail` calls in this function prevents us from changing its
      // signature
      Result = Live;
    } else {
      // See what the effect of this use is (recording any uses that cause
      // MaybeLive in MaybeLiveArgUses).
      Result = SurveyUses(&*AI, MaybeLiveArgUses);
    }

    // Mark the result.
    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
    // Clear the vector again for the next iteration.
    MaybeLiveArgUses.clear();
  }
}

/// MarkValue - This function marks the liveness of RA depending on L. If L is
/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
/// such that RA will be marked live if any use in MaybeLiveUses gets marked
/// live later on.
void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
                                            const UseVector &MaybeLiveUses) {
  switch (L) {
    case Live:
      MarkLive(RA);
      break;
    case MaybeLive:
      // Note any uses of this value, so this return value can be
      // marked live whenever one of the uses becomes live.
      for (const auto &MaybeLiveUse : MaybeLiveUses)
        Uses.insert(std::make_pair(MaybeLiveUse, RA));
      break;
  }
}

/// MarkLive - Mark the given Function as alive, meaning that it cannot be
/// changed in any way. Additionally,
/// mark any values that are used as this function's parameters or by its return
/// values (according to Uses) live as well.
void DeadArgumentEliminationPass::MarkLive(const Function &F) {
  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
                    << F.getName() << "\n");
  // Mark the function as live.
  LiveFunctions.insert(&F);
  // Mark all arguments as live.
  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
    PropagateLiveness(CreateArg(&F, i));
  // Mark all return values as live.
  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
    PropagateLiveness(CreateRet(&F, i));
}

/// MarkLive - Mark the given return value or argument as live. Additionally,
/// mark any values that are used by this value (according to Uses) live as
/// well.
void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
  if (LiveFunctions.count(RA.F))
    return; // Function was already marked Live.

  if (!LiveValues.insert(RA).second)
    return; // We were already marked Live.

  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
                    << RA.getDescription() << " live\n");
  PropagateLiveness(RA);
}

/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
/// to any other values it uses (according to Uses).
void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
  // We don't use upper_bound (or equal_range) here, because our recursive call
  // to ourselves is likely to cause the upper_bound (which is the first value
  // not belonging to RA) to become erased and the iterator invalidated.
  UseMap::iterator Begin = Uses.lower_bound(RA);
  UseMap::iterator E = Uses.end();
  UseMap::iterator I;
  for (I = Begin; I != E && I->first == RA; ++I)
    MarkLive(I->second);

  // Erase RA from the Uses map (from the lower bound to wherever we ended up
  // after the loop).
  Uses.erase(Begin, I);
}

// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
// that are not in LiveValues. Transform the function and all of the callees of
// the function to not have these arguments and return values.
//
bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
  // Don't modify fully live functions
  if (LiveFunctions.count(F))
    return false;

  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has fewer arguments and a different return type.
  FunctionType *FTy = F->getFunctionType();
  std::vector<Type*> Params;

  // Keep track of if we have a live 'returned' argument
  bool HasLiveReturnedArg = false;

  // Set up to build a new list of parameter attributes.
  SmallVector<AttributeSet, 8> ArgAttrVec;
  const AttributeList &PAL = F->getAttributes();

  // Remember which arguments are still alive.
  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
  // Construct the new parameter list from non-dead arguments. Also construct
  // a new set of parameter attributes to correspond. Skip the first parameter
  // attribute, since that belongs to the return value.
  unsigned i = 0;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
       I != E; ++I, ++i) {
    RetOrArg Arg = CreateArg(F, i);
    if (LiveValues.erase(Arg)) {
      Params.push_back(I->getType());
      ArgAlive[i] = true;
      ArgAttrVec.push_back(PAL.getParamAttributes(i));
      HasLiveReturnedArg |= PAL.hasParamAttribute(i, Attribute::Returned);
    } else {
      ++NumArgumentsEliminated;
      LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
                        << i << " (" << I->getName() << ") from "
                        << F->getName() << "\n");
    }
  }

  // Find out the new return value.
  Type *RetTy = FTy->getReturnType();
  Type *NRetTy = nullptr;
  unsigned RetCount = NumRetVals(F);

  // -1 means unused, other numbers are the new index
  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
  std::vector<Type*> RetTypes;

  // If there is a function with a live 'returned' argument but a dead return
  // value, then there are two possible actions:
  // 1) Eliminate the return value and take off the 'returned' attribute on the
  //    argument.
  // 2) Retain the 'returned' attribute and treat the return value (but not the
  //    entire function) as live so that it is not eliminated.
  //
  // It's not clear in the general case which option is more profitable because,
  // even in the absence of explicit uses of the return value, code generation
  // is free to use the 'returned' attribute to do things like eliding
  // save/restores of registers across calls. Whether or not this happens is
  // target and ABI-specific as well as depending on the amount of register
  // pressure, so there's no good way for an IR-level pass to figure this out.
  //
  // Fortunately, the only places where 'returned' is currently generated by
  // the FE are places where 'returned' is basically free and almost always a
  // performance win, so the second option can just be used always for now.
  //
  // This should be revisited if 'returned' is ever applied more liberally.
  if (RetTy->isVoidTy() || HasLiveReturnedArg) {
    NRetTy = RetTy;
  } else {
    // Look at each of the original return values individually.
    for (unsigned i = 0; i != RetCount; ++i) {
      RetOrArg Ret = CreateRet(F, i);
      if (LiveValues.erase(Ret)) {
        RetTypes.push_back(getRetComponentType(F, i));
        NewRetIdxs[i] = RetTypes.size() - 1;
      } else {
        ++NumRetValsEliminated;
        LLVM_DEBUG(
            dbgs() << "DeadArgumentEliminationPass - Removing return value "
                   << i << " from " << F->getName() << "\n");
      }
    }
    if (RetTypes.size() > 1) {
      // More than one return type? Reduce it down to size.
      if (StructType *STy = dyn_cast<StructType>(RetTy)) {
        // Make the new struct packed if we used to return a packed struct
        // already.
        NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
      } else {
        assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
        NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
      }
    } else if (RetTypes.size() == 1)
      // One return type? Just a simple value then, but only if we didn't use to
      // return a struct with that simple value before.
      NRetTy = RetTypes.front();
    else if (RetTypes.empty())
      // No return types? Make it void, but only if we didn't use to return {}.
      NRetTy = Type::getVoidTy(F->getContext());
  }

  assert(NRetTy && "No new return type found?");

  // The existing function return attributes.
  AttrBuilder RAttrs(PAL.getRetAttributes());

  // Remove any incompatible attributes, but only if we removed all return
  // values. Otherwise, ensure that we don't have any conflicting attributes
  // here. Currently, this should not be possible, but special handling might be
  // required when new return value attributes are added.
  if (NRetTy->isVoidTy())
    RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
  else
    assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
           "Return attributes no longer compatible?");

  AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);

  // Strip allocsize attributes. They might refer to the deleted arguments.
  AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute(
      F->getContext(), Attribute::AllocSize);

  // Reconstruct the AttributesList based on the vector we constructed.
  assert(ArgAttrVec.size() == Params.size());
  AttributeList NewPAL =
      AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);

  // Create the new function type based on the recomputed parameters.
  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());

  // No change?
  if (NFTy == FTy)
    return false;

  // Create the new function body and insert it into the module...
  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
  NF->copyAttributesFrom(F);
  NF->setComdat(F->getComdat());
  NF->setAttributes(NewPAL);
  // Insert the new function before the old function, so we won't be processing
  // it again.
  F->getParent()->getFunctionList().insert(F->getIterator(), NF);
  NF->takeName(F);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in a smaller number of arguments into the new function.
  std::vector<Value*> Args;
  while (!F->use_empty()) {
    CallSite CS(F->user_back());
    Instruction *Call = CS.getInstruction();

    ArgAttrVec.clear();
    const AttributeList &CallPAL = CS.getAttributes();

    // Adjust the call return attributes in case the function was changed to
    // return void.
    AttrBuilder RAttrs(CallPAL.getRetAttributes());
    RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
    AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);

    // Declare these outside of the loops, so we can reuse them for the second
    // loop, which loops the varargs.
    CallSite::arg_iterator I = CS.arg_begin();
    unsigned i = 0;
    // Loop over those operands, corresponding to the normal arguments to the
    // original function, and add those that are still alive.
    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
      if (ArgAlive[i]) {
        Args.push_back(*I);
        // Get original parameter attributes, but skip return attributes.
        AttributeSet Attrs = CallPAL.getParamAttributes(i);
        if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
          // If the return type has changed, then get rid of 'returned' on the
          // call site. The alternative is to make all 'returned' attributes on
          // call sites keep the return value alive just like 'returned'
          // attributes on function declaration but it's less clearly a win and
          // this is not an expected case anyway
          ArgAttrVec.push_back(AttributeSet::get(
              F->getContext(),
              AttrBuilder(Attrs).removeAttribute(Attribute::Returned)));
        } else {
          // Otherwise, use the original attributes.
          ArgAttrVec.push_back(Attrs);
        }
      }

    // Push any varargs arguments on the list. Don't forget their attributes.
    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
      Args.push_back(*I);
      ArgAttrVec.push_back(CallPAL.getParamAttributes(i));
    }

    // Reconstruct the AttributesList based on the vector we constructed.
    assert(ArgAttrVec.size() == Args.size());

    // Again, be sure to remove any allocsize attributes, since their indices
    // may now be incorrect.
    AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute(
        F->getContext(), Attribute::AllocSize);

    AttributeList NewCallPAL = AttributeList::get(
        F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);

    SmallVector<OperandBundleDef, 1> OpBundles;
    CS.getOperandBundlesAsDefs(OpBundles);

    CallSite NewCS;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                                 Args, OpBundles, "", Call->getParent());
    } else {
      NewCS = CallInst::Create(NFTy, NF, Args, OpBundles, "", Call);
      cast<CallInst>(NewCS.getInstruction())
          ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
    }
    NewCS.setCallingConv(CS.getCallingConv());
    NewCS.setAttributes(NewCallPAL);
    NewCS->setDebugLoc(Call->getDebugLoc());
    uint64_t W;
    if (Call->extractProfTotalWeight(W))
      NewCS->setProfWeight(W);
    Args.clear();
    ArgAttrVec.clear();

    Instruction *New = NewCS.getInstruction();
    if (!Call->use_empty() || Call->isUsedByMetadata()) {
      if (New->getType() == Call->getType()) {
        // Return type not changed? Just replace users then.
        Call->replaceAllUsesWith(New);
        New->takeName(Call);
      } else if (New->getType()->isVoidTy()) {
        // If the return value is dead, replace any uses of it with undef
        // (any non-debug value uses will get removed later on).
        if (!Call->getType()->isX86_MMXTy())
          Call->replaceAllUsesWith(UndefValue::get(Call->getType()));
      } else {
        assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
               "Return type changed, but not into a void. The old return type"
               " must have been a struct or an array!");
        Instruction *InsertPt = Call;
        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
          BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest());
          InsertPt = &*NewEdge->getFirstInsertionPt();
        }

        // We used to return a struct or array. Instead of doing smart stuff
        // with all the uses, we will just rebuild it using extract/insertvalue
        // chaining and let instcombine clean that up.
        //
        // Start out building up our return value from undef
        Value *RetVal = UndefValue::get(RetTy);
        for (unsigned i = 0; i != RetCount; ++i)
          if (NewRetIdxs[i] != -1) {
            Value *V;
            if (RetTypes.size() > 1)
              // We are still returning a struct, so extract the value from our
              // return value
              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
                                           InsertPt);
            else
              // We are now returning a single element, so just insert that
              V = New;
            // Insert the value at the old position
            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
          }
        // Now, replace all uses of the old call instruction with the return
        // struct we built
        Call->replaceAllUsesWith(RetVal);
        New->takeName(Call);
      }
    }

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.
  i = 0;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
       I2 = NF->arg_begin(); I != E; ++I, ++i)
    if (ArgAlive[i]) {
      // If this is a live argument, move the name and users over to the new
      // version.
      I->replaceAllUsesWith(&*I2);
      I2->takeName(&*I);
      ++I2;
    } else {
      // If this argument is dead, replace any uses of it with undef
      // (any non-debug value uses will get removed later on).
      if (!I->getType()->isX86_MMXTy())
        I->replaceAllUsesWith(UndefValue::get(I->getType()));
    }

  // If we change the return value of the function we must rewrite any return
  // instructions.  Check this now.
  if (F->getReturnType() != NF->getReturnType())
    for (BasicBlock &BB : *NF)
      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
        Value *RetVal;

        if (NFTy->getReturnType()->isVoidTy()) {
          RetVal = nullptr;
        } else {
          assert(RetTy->isStructTy() || RetTy->isArrayTy());
          // The original return value was a struct or array, insert
          // extractvalue/insertvalue chains to extract only the values we need
          // to return and insert them into our new result.
          // This does generate messy code, but we'll let it to instcombine to
          // clean that up.
          Value *OldRet = RI->getOperand(0);
          // Start out building up our return value from undef
          RetVal = UndefValue::get(NRetTy);
          for (unsigned i = 0; i != RetCount; ++i)
            if (NewRetIdxs[i] != -1) {
              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
                                                              "oldret", RI);
              if (RetTypes.size() > 1) {
                // We're still returning a struct, so reinsert the value into
                // our new return value at the new index

                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
                                                 "newret", RI);
              } else {
                // We are now only returning a simple value, so just return the
                // extracted value.
                RetVal = EV;
              }
            }
        }
        // Replace the return instruction with one returning the new return
        // value (possibly 0 if we became void).
        ReturnInst::Create(F->getContext(), RetVal, RI);
        BB.getInstList().erase(RI);
      }

  // Clone metadatas from the old function, including debug info descriptor.
  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
  F->getAllMetadata(MDs);
  for (auto MD : MDs)
    NF->addMetadata(MD.first, *MD.second);

  // Now that the old function is dead, delete it.
  F->eraseFromParent();

  return true;
}

PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
                                                   ModuleAnalysisManager &) {
  bool Changed = false;

  // First pass: Do a simple check to see if any functions can have their "..."
  // removed.  We can do this if they never call va_start.  This loop cannot be
  // fused with the next loop, because deleting a function invalidates
  // information computed while surveying other functions.
  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
    Function &F = *I++;
    if (F.getFunctionType()->isVarArg())
      Changed |= DeleteDeadVarargs(F);
  }

  // Second phase:loop through the module, determining which arguments are live.
  // We assume all arguments are dead unless proven otherwise (allowing us to
  // determine that dead arguments passed into recursive functions are dead).
  //
  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
  for (auto &F : M)
    SurveyFunction(F);

  // Now, remove all dead arguments and return values from each function in
  // turn.
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
    // Increment now, because the function will probably get removed (ie.
    // replaced by a new one).
    Function *F = &*I++;
    Changed |= RemoveDeadStuffFromFunction(F);
  }

  // Finally, look for any unused parameters in functions with non-local
  // linkage and replace the passed in parameters with undef.
  for (auto &F : M)
    Changed |= RemoveDeadArgumentsFromCallers(F);

  if (!Changed)
    return PreservedAnalyses::all();
  return PreservedAnalyses::none();
}