AlignmentFromAssumptions.cpp 15.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
//===----------------------- AlignmentFromAssumptions.cpp -----------------===//
//                  Set Load/Store Alignments From Assumptions
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a ScalarEvolution-based transformation to set
// the alignments of load, stores and memory intrinsics based on the truth
// expressions of assume intrinsics. The primary motivation is to handle
// complex alignment assumptions that apply to vector loads and stores that
// appear after vectorization and unrolling.
//
//===----------------------------------------------------------------------===//

#include "llvm/InitializePasses.h"
#define AA_NAME "alignment-from-assumptions"
#define DEBUG_TYPE AA_NAME
#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;

STATISTIC(NumLoadAlignChanged,
  "Number of loads changed by alignment assumptions");
STATISTIC(NumStoreAlignChanged,
  "Number of stores changed by alignment assumptions");
STATISTIC(NumMemIntAlignChanged,
  "Number of memory intrinsics changed by alignment assumptions");

namespace {
struct AlignmentFromAssumptions : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid
  AlignmentFromAssumptions() : FunctionPass(ID) {
    initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();

    AU.setPreservesCFG();
    AU.addPreserved<AAResultsWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<ScalarEvolutionWrapperPass>();
  }

  AlignmentFromAssumptionsPass Impl;
};
}

char AlignmentFromAssumptions::ID = 0;
static const char aip_name[] = "Alignment from assumptions";
INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
                      aip_name, false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
                    aip_name, false, false)

FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
  return new AlignmentFromAssumptions();
}

// Given an expression for the (constant) alignment, AlignSCEV, and an
// expression for the displacement between a pointer and the aligned address,
// DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
// to a constant. Using SCEV to compute alignment handles the case where
// DiffSCEV is a recurrence with constant start such that the aligned offset
// is constant. e.g. {16,+,32} % 32 -> 16.
static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
                                    const SCEV *AlignSCEV,
                                    ScalarEvolution *SE) {
  // DiffUnits = Diff % int64_t(Alignment)
  const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);

  LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
                    << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");

  if (const SCEVConstant *ConstDUSCEV =
      dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
    int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();

    // If the displacement is an exact multiple of the alignment, then the
    // displaced pointer has the same alignment as the aligned pointer, so
    // return the alignment value.
    if (!DiffUnits)
      return (unsigned)
        cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();

    // If the displacement is not an exact multiple, but the remainder is a
    // constant, then return this remainder (but only if it is a power of 2).
    uint64_t DiffUnitsAbs = std::abs(DiffUnits);
    if (isPowerOf2_64(DiffUnitsAbs))
      return (unsigned) DiffUnitsAbs;
  }

  return 0;
}

// There is an address given by an offset OffSCEV from AASCEV which has an
// alignment AlignSCEV. Use that information, if possible, to compute a new
// alignment for Ptr.
static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
                                const SCEV *OffSCEV, Value *Ptr,
                                ScalarEvolution *SE) {
  const SCEV *PtrSCEV = SE->getSCEV(Ptr);
  const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);

  // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
  // sign-extended OffSCEV to i64, so make sure they agree again.
  DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());

  // What we really want to know is the overall offset to the aligned
  // address. This address is displaced by the provided offset.
  DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);

  LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
                    << *AlignSCEV << " and offset " << *OffSCEV
                    << " using diff " << *DiffSCEV << "\n");

  unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
  LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");

  if (NewAlignment) {
    return NewAlignment;
  } else if (const SCEVAddRecExpr *DiffARSCEV =
             dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
    // The relative offset to the alignment assumption did not yield a constant,
    // but we should try harder: if we assume that a is 32-byte aligned, then in
    // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
    // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
    // As a result, the new alignment will not be a constant, but can still
    // be improved over the default (of 4) to 16.

    const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
    const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);

    LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
                      << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");

    // Now compute the new alignment using the displacement to the value in the
    // first iteration, and also the alignment using the per-iteration delta.
    // If these are the same, then use that answer. Otherwise, use the smaller
    // one, but only if it divides the larger one.
    NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
    unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);

    LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
    LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");

    if (!NewAlignment || !NewIncAlignment) {
      return 0;
    } else if (NewAlignment > NewIncAlignment) {
      if (NewAlignment % NewIncAlignment == 0) {
        LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment
                          << "\n");
        return NewIncAlignment;
      }
    } else if (NewIncAlignment > NewAlignment) {
      if (NewIncAlignment % NewAlignment == 0) {
        LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
                          << "\n");
        return NewAlignment;
      }
    } else if (NewIncAlignment == NewAlignment) {
      LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
                        << "\n");
      return NewAlignment;
    }
  }

  return 0;
}

bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
                                                        Value *&AAPtr,
                                                        const SCEV *&AlignSCEV,
                                                        const SCEV *&OffSCEV) {
  // An alignment assume must be a statement about the least-significant
  // bits of the pointer being zero, possibly with some offset.
  ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
  if (!ICI)
    return false;

  // This must be an expression of the form: x & m == 0.
  if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
    return false;

  // Swap things around so that the RHS is 0.
  Value *CmpLHS = ICI->getOperand(0);
  Value *CmpRHS = ICI->getOperand(1);
  const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
  const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
  if (CmpLHSSCEV->isZero())
    std::swap(CmpLHS, CmpRHS);
  else if (!CmpRHSSCEV->isZero())
    return false;

  BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
  if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
    return false;

  // Swap things around so that the right operand of the and is a constant
  // (the mask); we cannot deal with variable masks.
  Value *AndLHS = CmpBO->getOperand(0);
  Value *AndRHS = CmpBO->getOperand(1);
  const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
  const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
  if (isa<SCEVConstant>(AndLHSSCEV)) {
    std::swap(AndLHS, AndRHS);
    std::swap(AndLHSSCEV, AndRHSSCEV);
  }

  const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
  if (!MaskSCEV)
    return false;

  // The mask must have some trailing ones (otherwise the condition is
  // trivial and tells us nothing about the alignment of the left operand).
  unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
  if (!TrailingOnes)
    return false;

  // Cap the alignment at the maximum with which LLVM can deal (and make sure
  // we don't overflow the shift).
  uint64_t Alignment;
  TrailingOnes = std::min(TrailingOnes,
    unsigned(sizeof(unsigned) * CHAR_BIT - 1));
  Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);

  Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
  AlignSCEV = SE->getConstant(Int64Ty, Alignment);

  // The LHS might be a ptrtoint instruction, or it might be the pointer
  // with an offset.
  AAPtr = nullptr;
  OffSCEV = nullptr;
  if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
    AAPtr = PToI->getPointerOperand();
    OffSCEV = SE->getZero(Int64Ty);
  } else if (const SCEVAddExpr* AndLHSAddSCEV =
             dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
    // Try to find the ptrtoint; subtract it and the rest is the offset.
    for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
         JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
      if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
        if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
          AAPtr = PToI->getPointerOperand();
          OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
          break;
        }
  }

  if (!AAPtr)
    return false;

  // Sign extend the offset to 64 bits (so that it is like all of the other
  // expressions).
  unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
  if (OffSCEVBits < 64)
    OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
  else if (OffSCEVBits > 64)
    return false;

  AAPtr = AAPtr->stripPointerCasts();
  return true;
}

bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
  Value *AAPtr;
  const SCEV *AlignSCEV, *OffSCEV;
  if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
    return false;

  // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
  // affect other users.
  if (isa<ConstantData>(AAPtr))
    return false;

  const SCEV *AASCEV = SE->getSCEV(AAPtr);

  // Apply the assumption to all other users of the specified pointer.
  SmallPtrSet<Instruction *, 32> Visited;
  SmallVector<Instruction*, 16> WorkList;
  for (User *J : AAPtr->users()) {
    if (J == ACall)
      continue;

    if (Instruction *K = dyn_cast<Instruction>(J))
      if (isValidAssumeForContext(ACall, K, DT))
        WorkList.push_back(K);
  }

  while (!WorkList.empty()) {
    Instruction *J = WorkList.pop_back_val();

    if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
      unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
        LI->getPointerOperand(), SE);

      if (NewAlignment > LI->getAlignment()) {
        LI->setAlignment(MaybeAlign(NewAlignment));
        ++NumLoadAlignChanged;
      }
    } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
      unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
        SI->getPointerOperand(), SE);

      if (NewAlignment > SI->getAlignment()) {
        SI->setAlignment(MaybeAlign(NewAlignment));
        ++NumStoreAlignChanged;
      }
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
      unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
        MI->getDest(), SE);

      LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";);
      if (NewDestAlignment > MI->getDestAlignment()) {
        MI->setDestAlignment(NewDestAlignment);
        ++NumMemIntAlignChanged;
      }

      // For memory transfers, there is also a source alignment that
      // can be set.
      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
        unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
          MTI->getSource(), SE);

        LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";);

        if (NewSrcAlignment > MTI->getSourceAlignment()) {
          MTI->setSourceAlignment(NewSrcAlignment);
          ++NumMemIntAlignChanged;
        }
      }
    }

    // Now that we've updated that use of the pointer, look for other uses of
    // the pointer to update.
    Visited.insert(J);
    for (User *UJ : J->users()) {
      Instruction *K = cast<Instruction>(UJ);
      if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
        WorkList.push_back(K);
    }
  }

  return true;
}

bool AlignmentFromAssumptions::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  return Impl.runImpl(F, AC, SE, DT);
}

bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
                                           ScalarEvolution *SE_,
                                           DominatorTree *DT_) {
  SE = SE_;
  DT = DT_;

  bool Changed = false;
  for (auto &AssumeVH : AC.assumptions())
    if (AssumeVH)
      Changed |= processAssumption(cast<CallInst>(AssumeVH));

  return Changed;
}

PreservedAnalyses
AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {

  AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
  ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
  if (!runImpl(F, AC, &SE, &DT))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<AAManager>();
  PA.preserve<ScalarEvolutionAnalysis>();
  PA.preserve<GlobalsAA>();
  return PA;
}