AlignmentFromAssumptions.cpp
15.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//===----------------------- AlignmentFromAssumptions.cpp -----------------===//
// Set Load/Store Alignments From Assumptions
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a ScalarEvolution-based transformation to set
// the alignments of load, stores and memory intrinsics based on the truth
// expressions of assume intrinsics. The primary motivation is to handle
// complex alignment assumptions that apply to vector loads and stores that
// appear after vectorization and unrolling.
//
//===----------------------------------------------------------------------===//
#include "llvm/InitializePasses.h"
#define AA_NAME "alignment-from-assumptions"
#define DEBUG_TYPE AA_NAME
#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
STATISTIC(NumLoadAlignChanged,
"Number of loads changed by alignment assumptions");
STATISTIC(NumStoreAlignChanged,
"Number of stores changed by alignment assumptions");
STATISTIC(NumMemIntAlignChanged,
"Number of memory intrinsics changed by alignment assumptions");
namespace {
struct AlignmentFromAssumptions : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
AlignmentFromAssumptions() : FunctionPass(ID) {
initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.setPreservesCFG();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
}
AlignmentFromAssumptionsPass Impl;
};
}
char AlignmentFromAssumptions::ID = 0;
static const char aip_name[] = "Alignment from assumptions";
INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
aip_name, false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
aip_name, false, false)
FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
return new AlignmentFromAssumptions();
}
// Given an expression for the (constant) alignment, AlignSCEV, and an
// expression for the displacement between a pointer and the aligned address,
// DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
// to a constant. Using SCEV to compute alignment handles the case where
// DiffSCEV is a recurrence with constant start such that the aligned offset
// is constant. e.g. {16,+,32} % 32 -> 16.
static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
const SCEV *AlignSCEV,
ScalarEvolution *SE) {
// DiffUnits = Diff % int64_t(Alignment)
const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
<< *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
if (const SCEVConstant *ConstDUSCEV =
dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
// If the displacement is an exact multiple of the alignment, then the
// displaced pointer has the same alignment as the aligned pointer, so
// return the alignment value.
if (!DiffUnits)
return (unsigned)
cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
// If the displacement is not an exact multiple, but the remainder is a
// constant, then return this remainder (but only if it is a power of 2).
uint64_t DiffUnitsAbs = std::abs(DiffUnits);
if (isPowerOf2_64(DiffUnitsAbs))
return (unsigned) DiffUnitsAbs;
}
return 0;
}
// There is an address given by an offset OffSCEV from AASCEV which has an
// alignment AlignSCEV. Use that information, if possible, to compute a new
// alignment for Ptr.
static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
const SCEV *OffSCEV, Value *Ptr,
ScalarEvolution *SE) {
const SCEV *PtrSCEV = SE->getSCEV(Ptr);
const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
// On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
// sign-extended OffSCEV to i64, so make sure they agree again.
DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
// What we really want to know is the overall offset to the aligned
// address. This address is displaced by the provided offset.
DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
<< *AlignSCEV << " and offset " << *OffSCEV
<< " using diff " << *DiffSCEV << "\n");
unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
if (NewAlignment) {
return NewAlignment;
} else if (const SCEVAddRecExpr *DiffARSCEV =
dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
// The relative offset to the alignment assumption did not yield a constant,
// but we should try harder: if we assume that a is 32-byte aligned, then in
// for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
// 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
// As a result, the new alignment will not be a constant, but can still
// be improved over the default (of 4) to 16.
const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
<< *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
// Now compute the new alignment using the displacement to the value in the
// first iteration, and also the alignment using the per-iteration delta.
// If these are the same, then use that answer. Otherwise, use the smaller
// one, but only if it divides the larger one.
NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
if (!NewAlignment || !NewIncAlignment) {
return 0;
} else if (NewAlignment > NewIncAlignment) {
if (NewAlignment % NewIncAlignment == 0) {
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment
<< "\n");
return NewIncAlignment;
}
} else if (NewIncAlignment > NewAlignment) {
if (NewIncAlignment % NewAlignment == 0) {
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
<< "\n");
return NewAlignment;
}
} else if (NewIncAlignment == NewAlignment) {
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
<< "\n");
return NewAlignment;
}
}
return 0;
}
bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
Value *&AAPtr,
const SCEV *&AlignSCEV,
const SCEV *&OffSCEV) {
// An alignment assume must be a statement about the least-significant
// bits of the pointer being zero, possibly with some offset.
ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
if (!ICI)
return false;
// This must be an expression of the form: x & m == 0.
if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
return false;
// Swap things around so that the RHS is 0.
Value *CmpLHS = ICI->getOperand(0);
Value *CmpRHS = ICI->getOperand(1);
const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
if (CmpLHSSCEV->isZero())
std::swap(CmpLHS, CmpRHS);
else if (!CmpRHSSCEV->isZero())
return false;
BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
return false;
// Swap things around so that the right operand of the and is a constant
// (the mask); we cannot deal with variable masks.
Value *AndLHS = CmpBO->getOperand(0);
Value *AndRHS = CmpBO->getOperand(1);
const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
if (isa<SCEVConstant>(AndLHSSCEV)) {
std::swap(AndLHS, AndRHS);
std::swap(AndLHSSCEV, AndRHSSCEV);
}
const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
if (!MaskSCEV)
return false;
// The mask must have some trailing ones (otherwise the condition is
// trivial and tells us nothing about the alignment of the left operand).
unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
if (!TrailingOnes)
return false;
// Cap the alignment at the maximum with which LLVM can deal (and make sure
// we don't overflow the shift).
uint64_t Alignment;
TrailingOnes = std::min(TrailingOnes,
unsigned(sizeof(unsigned) * CHAR_BIT - 1));
Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
AlignSCEV = SE->getConstant(Int64Ty, Alignment);
// The LHS might be a ptrtoint instruction, or it might be the pointer
// with an offset.
AAPtr = nullptr;
OffSCEV = nullptr;
if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
AAPtr = PToI->getPointerOperand();
OffSCEV = SE->getZero(Int64Ty);
} else if (const SCEVAddExpr* AndLHSAddSCEV =
dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
// Try to find the ptrtoint; subtract it and the rest is the offset.
for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
AAPtr = PToI->getPointerOperand();
OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
break;
}
}
if (!AAPtr)
return false;
// Sign extend the offset to 64 bits (so that it is like all of the other
// expressions).
unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
if (OffSCEVBits < 64)
OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
else if (OffSCEVBits > 64)
return false;
AAPtr = AAPtr->stripPointerCasts();
return true;
}
bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
Value *AAPtr;
const SCEV *AlignSCEV, *OffSCEV;
if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
return false;
// Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't
// affect other users.
if (isa<ConstantData>(AAPtr))
return false;
const SCEV *AASCEV = SE->getSCEV(AAPtr);
// Apply the assumption to all other users of the specified pointer.
SmallPtrSet<Instruction *, 32> Visited;
SmallVector<Instruction*, 16> WorkList;
for (User *J : AAPtr->users()) {
if (J == ACall)
continue;
if (Instruction *K = dyn_cast<Instruction>(J))
if (isValidAssumeForContext(ACall, K, DT))
WorkList.push_back(K);
}
while (!WorkList.empty()) {
Instruction *J = WorkList.pop_back_val();
if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
LI->getPointerOperand(), SE);
if (NewAlignment > LI->getAlignment()) {
LI->setAlignment(MaybeAlign(NewAlignment));
++NumLoadAlignChanged;
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
SI->getPointerOperand(), SE);
if (NewAlignment > SI->getAlignment()) {
SI->setAlignment(MaybeAlign(NewAlignment));
++NumStoreAlignChanged;
}
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
MI->getDest(), SE);
LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";);
if (NewDestAlignment > MI->getDestAlignment()) {
MI->setDestAlignment(NewDestAlignment);
++NumMemIntAlignChanged;
}
// For memory transfers, there is also a source alignment that
// can be set.
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
MTI->getSource(), SE);
LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";);
if (NewSrcAlignment > MTI->getSourceAlignment()) {
MTI->setSourceAlignment(NewSrcAlignment);
++NumMemIntAlignChanged;
}
}
}
// Now that we've updated that use of the pointer, look for other uses of
// the pointer to update.
Visited.insert(J);
for (User *UJ : J->users()) {
Instruction *K = cast<Instruction>(UJ);
if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
WorkList.push_back(K);
}
}
return true;
}
bool AlignmentFromAssumptions::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return Impl.runImpl(F, AC, SE, DT);
}
bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
ScalarEvolution *SE_,
DominatorTree *DT_) {
SE = SE_;
DT = DT_;
bool Changed = false;
for (auto &AssumeVH : AC.assumptions())
if (AssumeVH)
Changed |= processAssumption(cast<CallInst>(AssumeVH));
return Changed;
}
PreservedAnalyses
AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!runImpl(F, AC, &SE, &DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<AAManager>();
PA.preserve<ScalarEvolutionAnalysis>();
PA.preserve<GlobalsAA>();
return PA;
}