LoopRerollPass.cpp 58.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
//===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop reroller.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <map>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "loop-reroll"

STATISTIC(NumRerolledLoops, "Number of rerolled loops");

static cl::opt<unsigned>
NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
                          cl::Hidden,
                          cl::desc("The maximum number of failures to tolerate"
                                   " during fuzzy matching. (default: 400)"));

// This loop re-rolling transformation aims to transform loops like this:
//
// int foo(int a);
// void bar(int *x) {
//   for (int i = 0; i < 500; i += 3) {
//     foo(i);
//     foo(i+1);
//     foo(i+2);
//   }
// }
//
// into a loop like this:
//
// void bar(int *x) {
//   for (int i = 0; i < 500; ++i)
//     foo(i);
// }
//
// It does this by looking for loops that, besides the latch code, are composed
// of isomorphic DAGs of instructions, with each DAG rooted at some increment
// to the induction variable, and where each DAG is isomorphic to the DAG
// rooted at the induction variable (excepting the sub-DAGs which root the
// other induction-variable increments). In other words, we're looking for loop
// bodies of the form:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// f(%iv)
// %iv.1 = add %iv, 1                <-- a root increment
// f(%iv.1)
// %iv.2 = add %iv, 2                <-- a root increment
// f(%iv.2)
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
// f(%iv.scale_m_1)
// ...
// %iv.next = add %iv, scale
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit
//
// where each f(i) is a set of instructions that, collectively, are a function
// only of i (and other loop-invariant values).
//
// As a special case, we can also reroll loops like this:
//
// int foo(int);
// void bar(int *x) {
//   for (int i = 0; i < 500; ++i) {
//     x[3*i] = foo(0);
//     x[3*i+1] = foo(0);
//     x[3*i+2] = foo(0);
//   }
// }
//
// into this:
//
// void bar(int *x) {
//   for (int i = 0; i < 1500; ++i)
//     x[i] = foo(0);
// }
//
// in which case, we're looking for inputs like this:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// %scaled.iv = mul %iv, scale
// f(%scaled.iv)
// %scaled.iv.1 = add %scaled.iv, 1
// f(%scaled.iv.1)
// %scaled.iv.2 = add %scaled.iv, 2
// f(%scaled.iv.2)
// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
// f(%scaled.iv.scale_m_1)
// ...
// %iv.next = add %iv, 1
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit

namespace {

  enum IterationLimits {
    /// The maximum number of iterations that we'll try and reroll.
    IL_MaxRerollIterations = 32,
    /// The bitvector index used by loop induction variables and other
    /// instructions that belong to all iterations.
    IL_All,
    IL_End
  };

  class LoopReroll : public LoopPass {
  public:
    static char ID; // Pass ID, replacement for typeid

    LoopReroll() : LoopPass(ID) {
      initializeLoopRerollPass(*PassRegistry::getPassRegistry());
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<TargetLibraryInfoWrapperPass>();
      getLoopAnalysisUsage(AU);
    }

  protected:
    AliasAnalysis *AA;
    LoopInfo *LI;
    ScalarEvolution *SE;
    TargetLibraryInfo *TLI;
    DominatorTree *DT;
    bool PreserveLCSSA;

    using SmallInstructionVector = SmallVector<Instruction *, 16>;
    using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;

    // Map between induction variable and its increment
    DenseMap<Instruction *, int64_t> IVToIncMap;

    // For loop with multiple induction variable, remember the one used only to
    // control the loop.
    Instruction *LoopControlIV;

    // A chain of isomorphic instructions, identified by a single-use PHI
    // representing a reduction. Only the last value may be used outside the
    // loop.
    struct SimpleLoopReduction {
      SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
        add(L);
      }

      bool valid() const {
        return Valid;
      }

      Instruction *getPHI() const {
        assert(Valid && "Using invalid reduction");
        return Instructions.front();
      }

      Instruction *getReducedValue() const {
        assert(Valid && "Using invalid reduction");
        return Instructions.back();
      }

      Instruction *get(size_t i) const {
        assert(Valid && "Using invalid reduction");
        return Instructions[i+1];
      }

      Instruction *operator [] (size_t i) const { return get(i); }

      // The size, ignoring the initial PHI.
      size_t size() const {
        assert(Valid && "Using invalid reduction");
        return Instructions.size()-1;
      }

      using iterator = SmallInstructionVector::iterator;
      using const_iterator = SmallInstructionVector::const_iterator;

      iterator begin() {
        assert(Valid && "Using invalid reduction");
        return std::next(Instructions.begin());
      }

      const_iterator begin() const {
        assert(Valid && "Using invalid reduction");
        return std::next(Instructions.begin());
      }

      iterator end() { return Instructions.end(); }
      const_iterator end() const { return Instructions.end(); }

    protected:
      bool Valid = false;
      SmallInstructionVector Instructions;

      void add(Loop *L);
    };

    // The set of all reductions, and state tracking of possible reductions
    // during loop instruction processing.
    struct ReductionTracker {
      using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;

      // Add a new possible reduction.
      void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }

      // Setup to track possible reductions corresponding to the provided
      // rerolling scale. Only reductions with a number of non-PHI instructions
      // that is divisible by the scale are considered. Three instructions sets
      // are filled in:
      //   - A set of all possible instructions in eligible reductions.
      //   - A set of all PHIs in eligible reductions
      //   - A set of all reduced values (last instructions) in eligible
      //     reductions.
      void restrictToScale(uint64_t Scale,
                           SmallInstructionSet &PossibleRedSet,
                           SmallInstructionSet &PossibleRedPHISet,
                           SmallInstructionSet &PossibleRedLastSet) {
        PossibleRedIdx.clear();
        PossibleRedIter.clear();
        Reds.clear();

        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
          if (PossibleReds[i].size() % Scale == 0) {
            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
            PossibleRedPHISet.insert(PossibleReds[i].getPHI());

            PossibleRedSet.insert(PossibleReds[i].getPHI());
            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
            for (Instruction *J : PossibleReds[i]) {
              PossibleRedSet.insert(J);
              PossibleRedIdx[J] = i;
            }
          }
      }

      // The functions below are used while processing the loop instructions.

      // Are the two instructions both from reductions, and furthermore, from
      // the same reduction?
      bool isPairInSame(Instruction *J1, Instruction *J2) {
        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
        if (J1I != PossibleRedIdx.end()) {
          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
            return true;
        }

        return false;
      }

      // The two provided instructions, the first from the base iteration, and
      // the second from iteration i, form a matched pair. If these are part of
      // a reduction, record that fact.
      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
        if (PossibleRedIdx.count(J1)) {
          assert(PossibleRedIdx.count(J2) &&
                 "Recording reduction vs. non-reduction instruction?");

          PossibleRedIter[J1] = 0;
          PossibleRedIter[J2] = i;

          int Idx = PossibleRedIdx[J1];
          assert(Idx == PossibleRedIdx[J2] &&
                 "Recording pair from different reductions?");
          Reds.insert(Idx);
        }
      }

      // The functions below can be called after we've finished processing all
      // instructions in the loop, and we know which reductions were selected.

      bool validateSelected();
      void replaceSelected();

    protected:
      // The vector of all possible reductions (for any scale).
      SmallReductionVector PossibleReds;

      DenseMap<Instruction *, int> PossibleRedIdx;
      DenseMap<Instruction *, int> PossibleRedIter;
      DenseSet<int> Reds;
    };

    // A DAGRootSet models an induction variable being used in a rerollable
    // loop. For example,
    //
    //   x[i*3+0] = y1
    //   x[i*3+1] = y2
    //   x[i*3+2] = y3
    //
    //   Base instruction -> i*3
    //                    +---+----+
    //                   /    |     \
    //               ST[y1]  +1     +2  <-- Roots
    //                        |      |
    //                      ST[y2] ST[y3]
    //
    // There may be multiple DAGRoots, for example:
    //
    //   x[i*2+0] = ...   (1)
    //   x[i*2+1] = ...   (1)
    //   x[i*2+4] = ...   (2)
    //   x[i*2+5] = ...   (2)
    //   x[(i+1234)*2+5678] = ... (3)
    //   x[(i+1234)*2+5679] = ... (3)
    //
    // The loop will be rerolled by adding a new loop induction variable,
    // one for the Base instruction in each DAGRootSet.
    //
    struct DAGRootSet {
      Instruction *BaseInst;
      SmallInstructionVector Roots;

      // The instructions between IV and BaseInst (but not including BaseInst).
      SmallInstructionSet SubsumedInsts;
    };

    // The set of all DAG roots, and state tracking of all roots
    // for a particular induction variable.
    struct DAGRootTracker {
      DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
                     ScalarEvolution *SE, AliasAnalysis *AA,
                     TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
                     bool PreserveLCSSA,
                     DenseMap<Instruction *, int64_t> &IncrMap,
                     Instruction *LoopCtrlIV)
          : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
            PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
            LoopControlIV(LoopCtrlIV) {}

      /// Stage 1: Find all the DAG roots for the induction variable.
      bool findRoots();

      /// Stage 2: Validate if the found roots are valid.
      bool validate(ReductionTracker &Reductions);

      /// Stage 3: Assuming validate() returned true, perform the
      /// replacement.
      /// @param BackedgeTakenCount The backedge-taken count of L.
      void replace(const SCEV *BackedgeTakenCount);

    protected:
      using UsesTy = MapVector<Instruction *, BitVector>;

      void findRootsRecursive(Instruction *IVU,
                              SmallInstructionSet SubsumedInsts);
      bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
      bool collectPossibleRoots(Instruction *Base,
                                std::map<int64_t,Instruction*> &Roots);
      bool validateRootSet(DAGRootSet &DRS);

      bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
      void collectInLoopUserSet(const SmallInstructionVector &Roots,
                                const SmallInstructionSet &Exclude,
                                const SmallInstructionSet &Final,
                                DenseSet<Instruction *> &Users);
      void collectInLoopUserSet(Instruction *Root,
                                const SmallInstructionSet &Exclude,
                                const SmallInstructionSet &Final,
                                DenseSet<Instruction *> &Users);

      UsesTy::iterator nextInstr(int Val, UsesTy &In,
                                 const SmallInstructionSet &Exclude,
                                 UsesTy::iterator *StartI=nullptr);
      bool isBaseInst(Instruction *I);
      bool isRootInst(Instruction *I);
      bool instrDependsOn(Instruction *I,
                          UsesTy::iterator Start,
                          UsesTy::iterator End);
      void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);

      LoopReroll *Parent;

      // Members of Parent, replicated here for brevity.
      Loop *L;
      ScalarEvolution *SE;
      AliasAnalysis *AA;
      TargetLibraryInfo *TLI;
      DominatorTree *DT;
      LoopInfo *LI;
      bool PreserveLCSSA;

      // The loop induction variable.
      Instruction *IV;

      // Loop step amount.
      int64_t Inc;

      // Loop reroll count; if Inc == 1, this records the scaling applied
      // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
      // If Inc is not 1, Scale = Inc.
      uint64_t Scale;

      // The roots themselves.
      SmallVector<DAGRootSet,16> RootSets;

      // All increment instructions for IV.
      SmallInstructionVector LoopIncs;

      // Map of all instructions in the loop (in order) to the iterations
      // they are used in (or specially, IL_All for instructions
      // used in the loop increment mechanism).
      UsesTy Uses;

      // Map between induction variable and its increment
      DenseMap<Instruction *, int64_t> &IVToIncMap;

      Instruction *LoopControlIV;
    };

    // Check if it is a compare-like instruction whose user is a branch
    bool isCompareUsedByBranch(Instruction *I) {
      auto *TI = I->getParent()->getTerminator();
      if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
        return false;
      return I->hasOneUse() && TI->getOperand(0) == I;
    };

    bool isLoopControlIV(Loop *L, Instruction *IV);
    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
    void collectPossibleReductions(Loop *L,
           ReductionTracker &Reductions);
    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
                const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
  };

} // end anonymous namespace

char LoopReroll::ID = 0;

INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)

Pass *llvm::createLoopRerollPass() {
  return new LoopReroll;
}

// Returns true if the provided instruction is used outside the given loop.
// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
// non-loop blocks to be outside the loop.
static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
  for (User *U : I->users()) {
    if (!L->contains(cast<Instruction>(U)))
      return true;
  }
  return false;
}

// Check if an IV is only used to control the loop. There are two cases:
// 1. It only has one use which is loop increment, and the increment is only
// used by comparison and the PHI (could has sext with nsw in between), and the
// comparison is only used by branch.
// 2. It is used by loop increment and the comparison, the loop increment is
// only used by the PHI, and the comparison is used only by the branch.
bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
  unsigned IVUses = IV->getNumUses();
  if (IVUses != 2 && IVUses != 1)
    return false;

  for (auto *User : IV->users()) {
    int32_t IncOrCmpUses = User->getNumUses();
    bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));

    // User can only have one or two uses.
    if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
      return false;

    // Case 1
    if (IVUses == 1) {
      // The only user must be the loop increment.
      // The loop increment must have two uses.
      if (IsCompInst || IncOrCmpUses != 2)
        return false;
    }

    // Case 2
    if (IVUses == 2 && IncOrCmpUses != 1)
      return false;

    // The users of the IV must be a binary operation or a comparison
    if (auto *BO = dyn_cast<BinaryOperator>(User)) {
      if (BO->getOpcode() == Instruction::Add) {
        // Loop Increment
        // User of Loop Increment should be either PHI or CMP
        for (auto *UU : User->users()) {
          if (PHINode *PN = dyn_cast<PHINode>(UU)) {
            if (PN != IV)
              return false;
          }
          // Must be a CMP or an ext (of a value with nsw) then CMP
          else {
            Instruction *UUser = dyn_cast<Instruction>(UU);
            // Skip SExt if we are extending an nsw value
            // TODO: Allow ZExt too
            if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() &&
                isa<SExtInst>(UUser))
              UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
            if (!isCompareUsedByBranch(UUser))
              return false;
          }
        }
      } else
        return false;
      // Compare : can only have one use, and must be branch
    } else if (!IsCompInst)
      return false;
  }
  return true;
}

// Collect the list of loop induction variables with respect to which it might
// be possible to reroll the loop.
void LoopReroll::collectPossibleIVs(Loop *L,
                                    SmallInstructionVector &PossibleIVs) {
  BasicBlock *Header = L->getHeader();
  for (BasicBlock::iterator I = Header->begin(),
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    if (!isa<PHINode>(I))
      continue;
    if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
      continue;

    if (const SCEVAddRecExpr *PHISCEV =
            dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
      if (PHISCEV->getLoop() != L)
        continue;
      if (!PHISCEV->isAffine())
        continue;
      auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
      if (IncSCEV) {
        IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
        LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
                          << "\n");

        if (isLoopControlIV(L, &*I)) {
          assert(!LoopControlIV && "Found two loop control only IV");
          LoopControlIV = &(*I);
          LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
                            << " = " << *PHISCEV << "\n");
        } else
          PossibleIVs.push_back(&*I);
      }
    }
  }
}

// Add the remainder of the reduction-variable chain to the instruction vector
// (the initial PHINode has already been added). If successful, the object is
// marked as valid.
void LoopReroll::SimpleLoopReduction::add(Loop *L) {
  assert(!Valid && "Cannot add to an already-valid chain");

  // The reduction variable must be a chain of single-use instructions
  // (including the PHI), except for the last value (which is used by the PHI
  // and also outside the loop).
  Instruction *C = Instructions.front();
  if (C->user_empty())
    return;

  do {
    C = cast<Instruction>(*C->user_begin());
    if (C->hasOneUse()) {
      if (!C->isBinaryOp())
        return;

      if (!(isa<PHINode>(Instructions.back()) ||
            C->isSameOperationAs(Instructions.back())))
        return;

      Instructions.push_back(C);
    }
  } while (C->hasOneUse());

  if (Instructions.size() < 2 ||
      !C->isSameOperationAs(Instructions.back()) ||
      C->use_empty())
    return;

  // C is now the (potential) last instruction in the reduction chain.
  for (User *U : C->users()) {
    // The only in-loop user can be the initial PHI.
    if (L->contains(cast<Instruction>(U)))
      if (cast<Instruction>(U) != Instructions.front())
        return;
  }

  Instructions.push_back(C);
  Valid = true;
}

// Collect the vector of possible reduction variables.
void LoopReroll::collectPossibleReductions(Loop *L,
  ReductionTracker &Reductions) {
  BasicBlock *Header = L->getHeader();
  for (BasicBlock::iterator I = Header->begin(),
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    if (!isa<PHINode>(I))
      continue;
    if (!I->getType()->isSingleValueType())
      continue;

    SimpleLoopReduction SLR(&*I, L);
    if (!SLR.valid())
      continue;

    LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
                      << SLR.size() << " chained instructions)\n");
    Reductions.addSLR(SLR);
  }
}

// Collect the set of all users of the provided root instruction. This set of
// users contains not only the direct users of the root instruction, but also
// all users of those users, and so on. There are two exceptions:
//
//   1. Instructions in the set of excluded instructions are never added to the
//   use set (even if they are users). This is used, for example, to exclude
//   including root increments in the use set of the primary IV.
//
//   2. Instructions in the set of final instructions are added to the use set
//   if they are users, but their users are not added. This is used, for
//   example, to prevent a reduction update from forcing all later reduction
//   updates into the use set.
void LoopReroll::DAGRootTracker::collectInLoopUserSet(
  Instruction *Root, const SmallInstructionSet &Exclude,
  const SmallInstructionSet &Final,
  DenseSet<Instruction *> &Users) {
  SmallInstructionVector Queue(1, Root);
  while (!Queue.empty()) {
    Instruction *I = Queue.pop_back_val();
    if (!Users.insert(I).second)
      continue;

    if (!Final.count(I))
      for (Use &U : I->uses()) {
        Instruction *User = cast<Instruction>(U.getUser());
        if (PHINode *PN = dyn_cast<PHINode>(User)) {
          // Ignore "wrap-around" uses to PHIs of this loop's header.
          if (PN->getIncomingBlock(U) == L->getHeader())
            continue;
        }

        if (L->contains(User) && !Exclude.count(User)) {
          Queue.push_back(User);
        }
      }

    // We also want to collect single-user "feeder" values.
    for (User::op_iterator OI = I->op_begin(),
         OIE = I->op_end(); OI != OIE; ++OI) {
      if (Instruction *Op = dyn_cast<Instruction>(*OI))
        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
            !Final.count(Op))
          Queue.push_back(Op);
    }
  }
}

// Collect all of the users of all of the provided root instructions (combined
// into a single set).
void LoopReroll::DAGRootTracker::collectInLoopUserSet(
  const SmallInstructionVector &Roots,
  const SmallInstructionSet &Exclude,
  const SmallInstructionSet &Final,
  DenseSet<Instruction *> &Users) {
  for (Instruction *Root : Roots)
    collectInLoopUserSet(Root, Exclude, Final, Users);
}

static bool isUnorderedLoadStore(Instruction *I) {
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->isUnordered();
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isUnordered();
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    return !MI->isVolatile();
  return false;
}

/// Return true if IVU is a "simple" arithmetic operation.
/// This is used for narrowing the search space for DAGRoots; only arithmetic
/// and GEPs can be part of a DAGRoot.
static bool isSimpleArithmeticOp(User *IVU) {
  if (Instruction *I = dyn_cast<Instruction>(IVU)) {
    switch (I->getOpcode()) {
    default: return false;
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::Shl:
    case Instruction::AShr:
    case Instruction::LShr:
    case Instruction::GetElementPtr:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
      return true;
    }
  }
  return false;
}

static bool isLoopIncrement(User *U, Instruction *IV) {
  BinaryOperator *BO = dyn_cast<BinaryOperator>(U);

  if ((BO && BO->getOpcode() != Instruction::Add) ||
      (!BO && !isa<GetElementPtrInst>(U)))
    return false;

  for (auto *UU : U->users()) {
    PHINode *PN = dyn_cast<PHINode>(UU);
    if (PN && PN == IV)
      return true;
  }
  return false;
}

bool LoopReroll::DAGRootTracker::
collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
  SmallInstructionVector BaseUsers;

  for (auto *I : Base->users()) {
    ConstantInt *CI = nullptr;

    if (isLoopIncrement(I, IV)) {
      LoopIncs.push_back(cast<Instruction>(I));
      continue;
    }

    // The root nodes must be either GEPs, ORs or ADDs.
    if (auto *BO = dyn_cast<BinaryOperator>(I)) {
      if (BO->getOpcode() == Instruction::Add ||
          BO->getOpcode() == Instruction::Or)
        CI = dyn_cast<ConstantInt>(BO->getOperand(1));
    } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
      Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
      CI = dyn_cast<ConstantInt>(LastOperand);
    }

    if (!CI) {
      if (Instruction *II = dyn_cast<Instruction>(I)) {
        BaseUsers.push_back(II);
        continue;
      } else {
        LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
                          << "\n");
        return false;
      }
    }

    int64_t V = std::abs(CI->getValue().getSExtValue());
    if (Roots.find(V) != Roots.end())
      // No duplicates, please.
      return false;

    Roots[V] = cast<Instruction>(I);
  }

  // Make sure we have at least two roots.
  if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
    return false;

  // If we found non-loop-inc, non-root users of Base, assume they are
  // for the zeroth root index. This is because "add %a, 0" gets optimized
  // away.
  if (BaseUsers.size()) {
    if (Roots.find(0) != Roots.end()) {
      LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
      return false;
    }
    Roots[0] = Base;
  }

  // Calculate the number of users of the base, or lowest indexed, iteration.
  unsigned NumBaseUses = BaseUsers.size();
  if (NumBaseUses == 0)
    NumBaseUses = Roots.begin()->second->getNumUses();

  // Check that every node has the same number of users.
  for (auto &KV : Roots) {
    if (KV.first == 0)
      continue;
    if (!KV.second->hasNUses(NumBaseUses)) {
      LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
                        << "#Base=" << NumBaseUses
                        << ", #Root=" << KV.second->getNumUses() << "\n");
      return false;
    }
  }

  return true;
}

void LoopReroll::DAGRootTracker::
findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
  // Does the user look like it could be part of a root set?
  // All its users must be simple arithmetic ops.
  if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
    return;

  if (I != IV && findRootsBase(I, SubsumedInsts))
    return;

  SubsumedInsts.insert(I);

  for (User *V : I->users()) {
    Instruction *I = cast<Instruction>(V);
    if (is_contained(LoopIncs, I))
      continue;

    if (!isSimpleArithmeticOp(I))
      continue;

    // The recursive call makes a copy of SubsumedInsts.
    findRootsRecursive(I, SubsumedInsts);
  }
}

bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
  if (DRS.Roots.empty())
    return false;

  // Consider a DAGRootSet with N-1 roots (so N different values including
  //   BaseInst).
  // Define d = Roots[0] - BaseInst, which should be the same as
  //   Roots[I] - Roots[I-1] for all I in [1..N).
  // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
  //   loop iteration J.
  //
  // Now, For the loop iterations to be consecutive:
  //   D = d * N
  const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
  if (!ADR)
    return false;

  // Check that the first root is evenly spaced.
  unsigned N = DRS.Roots.size() + 1;
  const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
  const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
  if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
    return false;

  // Check that the remainling roots are evenly spaced.
  for (unsigned i = 1; i < N - 1; ++i) {
    const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
                                               SE->getSCEV(DRS.Roots[i-1]));
    if (NewStepSCEV != StepSCEV)
      return false;
  }

  return true;
}

bool LoopReroll::DAGRootTracker::
findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
  // The base of a RootSet must be an AddRec, so it can be erased.
  const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
  if (!IVU_ADR || IVU_ADR->getLoop() != L)
    return false;

  std::map<int64_t, Instruction*> V;
  if (!collectPossibleRoots(IVU, V))
    return false;

  // If we didn't get a root for index zero, then IVU must be
  // subsumed.
  if (V.find(0) == V.end())
    SubsumedInsts.insert(IVU);

  // Partition the vector into monotonically increasing indexes.
  DAGRootSet DRS;
  DRS.BaseInst = nullptr;

  SmallVector<DAGRootSet, 16> PotentialRootSets;

  for (auto &KV : V) {
    if (!DRS.BaseInst) {
      DRS.BaseInst = KV.second;
      DRS.SubsumedInsts = SubsumedInsts;
    } else if (DRS.Roots.empty()) {
      DRS.Roots.push_back(KV.second);
    } else if (V.find(KV.first - 1) != V.end()) {
      DRS.Roots.push_back(KV.second);
    } else {
      // Linear sequence terminated.
      if (!validateRootSet(DRS))
        return false;

      // Construct a new DAGRootSet with the next sequence.
      PotentialRootSets.push_back(DRS);
      DRS.BaseInst = KV.second;
      DRS.Roots.clear();
    }
  }

  if (!validateRootSet(DRS))
    return false;

  PotentialRootSets.push_back(DRS);

  RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());

  return true;
}

bool LoopReroll::DAGRootTracker::findRoots() {
  Inc = IVToIncMap[IV];

  assert(RootSets.empty() && "Unclean state!");
  if (std::abs(Inc) == 1) {
    for (auto *IVU : IV->users()) {
      if (isLoopIncrement(IVU, IV))
        LoopIncs.push_back(cast<Instruction>(IVU));
    }
    findRootsRecursive(IV, SmallInstructionSet());
    LoopIncs.push_back(IV);
  } else {
    if (!findRootsBase(IV, SmallInstructionSet()))
      return false;
  }

  // Ensure all sets have the same size.
  if (RootSets.empty()) {
    LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
    return false;
  }
  for (auto &V : RootSets) {
    if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
      LLVM_DEBUG(
          dbgs()
          << "LRR: Aborting because not all root sets have the same size\n");
      return false;
    }
  }

  Scale = RootSets[0].Roots.size() + 1;

  if (Scale > IL_MaxRerollIterations) {
    LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
                      << "#Found=" << Scale
                      << ", #Max=" << IL_MaxRerollIterations << "\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
                    << "\n");

  return true;
}

bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
  // Populate the MapVector with all instructions in the block, in order first,
  // so we can iterate over the contents later in perfect order.
  for (auto &I : *L->getHeader()) {
    Uses[&I].resize(IL_End);
  }

  SmallInstructionSet Exclude;
  for (auto &DRS : RootSets) {
    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
    Exclude.insert(DRS.BaseInst);
  }
  Exclude.insert(LoopIncs.begin(), LoopIncs.end());

  for (auto &DRS : RootSets) {
    DenseSet<Instruction*> VBase;
    collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
    for (auto *I : VBase) {
      Uses[I].set(0);
    }

    unsigned Idx = 1;
    for (auto *Root : DRS.Roots) {
      DenseSet<Instruction*> V;
      collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);

      // While we're here, check the use sets are the same size.
      if (V.size() != VBase.size()) {
        LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
        return false;
      }

      for (auto *I : V) {
        Uses[I].set(Idx);
      }
      ++Idx;
    }

    // Make sure our subsumed instructions are remembered too.
    for (auto *I : DRS.SubsumedInsts) {
      Uses[I].set(IL_All);
    }
  }

  // Make sure the loop increments are also accounted for.

  Exclude.clear();
  for (auto &DRS : RootSets) {
    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
    Exclude.insert(DRS.BaseInst);
  }

  DenseSet<Instruction*> V;
  collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
  for (auto *I : V) {
    Uses[I].set(IL_All);
  }

  return true;
}

/// Get the next instruction in "In" that is a member of set Val.
/// Start searching from StartI, and do not return anything in Exclude.
/// If StartI is not given, start from In.begin().
LoopReroll::DAGRootTracker::UsesTy::iterator
LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
                                      const SmallInstructionSet &Exclude,
                                      UsesTy::iterator *StartI) {
  UsesTy::iterator I = StartI ? *StartI : In.begin();
  while (I != In.end() && (I->second.test(Val) == 0 ||
                           Exclude.count(I->first) != 0))
    ++I;
  return I;
}

bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
  for (auto &DRS : RootSets) {
    if (DRS.BaseInst == I)
      return true;
  }
  return false;
}

bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
  for (auto &DRS : RootSets) {
    if (is_contained(DRS.Roots, I))
      return true;
  }
  return false;
}

/// Return true if instruction I depends on any instruction between
/// Start and End.
bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
                                                UsesTy::iterator Start,
                                                UsesTy::iterator End) {
  for (auto *U : I->users()) {
    for (auto It = Start; It != End; ++It)
      if (U == It->first)
        return true;
  }
  return false;
}

static bool isIgnorableInst(const Instruction *I) {
  if (isa<DbgInfoIntrinsic>(I))
    return true;
  const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
  if (!II)
    return false;
  switch (II->getIntrinsicID()) {
    default:
      return false;
    case Intrinsic::annotation:
    case Intrinsic::ptr_annotation:
    case Intrinsic::var_annotation:
    // TODO: the following intrinsics may also be whitelisted:
    //   lifetime_start, lifetime_end, invariant_start, invariant_end
      return true;
  }
  return false;
}

bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
  // We now need to check for equivalence of the use graph of each root with
  // that of the primary induction variable (excluding the roots). Our goal
  // here is not to solve the full graph isomorphism problem, but rather to
  // catch common cases without a lot of work. As a result, we will assume
  // that the relative order of the instructions in each unrolled iteration
  // is the same (although we will not make an assumption about how the
  // different iterations are intermixed). Note that while the order must be
  // the same, the instructions may not be in the same basic block.

  // An array of just the possible reductions for this scale factor. When we
  // collect the set of all users of some root instructions, these reduction
  // instructions are treated as 'final' (their uses are not considered).
  // This is important because we don't want the root use set to search down
  // the reduction chain.
  SmallInstructionSet PossibleRedSet;
  SmallInstructionSet PossibleRedLastSet;
  SmallInstructionSet PossibleRedPHISet;
  Reductions.restrictToScale(Scale, PossibleRedSet,
                             PossibleRedPHISet, PossibleRedLastSet);

  // Populate "Uses" with where each instruction is used.
  if (!collectUsedInstructions(PossibleRedSet))
    return false;

  // Make sure we mark the reduction PHIs as used in all iterations.
  for (auto *I : PossibleRedPHISet) {
    Uses[I].set(IL_All);
  }

  // Make sure we mark loop-control-only PHIs as used in all iterations. See
  // comment above LoopReroll::isLoopControlIV for more information.
  BasicBlock *Header = L->getHeader();
  if (LoopControlIV && LoopControlIV != IV) {
    for (auto *U : LoopControlIV->users()) {
      Instruction *IVUser = dyn_cast<Instruction>(U);
      // IVUser could be loop increment or compare
      Uses[IVUser].set(IL_All);
      for (auto *UU : IVUser->users()) {
        Instruction *UUser = dyn_cast<Instruction>(UU);
        // UUser could be compare, PHI or branch
        Uses[UUser].set(IL_All);
        // Skip SExt
        if (isa<SExtInst>(UUser)) {
          UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
          Uses[UUser].set(IL_All);
        }
        // Is UUser a compare instruction?
        if (UU->hasOneUse()) {
          Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
          if (BI == cast<BranchInst>(Header->getTerminator()))
            Uses[BI].set(IL_All);
        }
      }
    }
  }

  // Make sure all instructions in the loop are in one and only one
  // set.
  for (auto &KV : Uses) {
    if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
      LLVM_DEBUG(
          dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
                 << *KV.first << " (#uses=" << KV.second.count() << ")\n");
      return false;
    }
  }

  LLVM_DEBUG(for (auto &KV
                  : Uses) {
    dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
  });

  for (unsigned Iter = 1; Iter < Scale; ++Iter) {
    // In addition to regular aliasing information, we need to look for
    // instructions from later (future) iterations that have side effects
    // preventing us from reordering them past other instructions with side
    // effects.
    bool FutureSideEffects = false;
    AliasSetTracker AST(*AA);
    // The map between instructions in f(%iv.(i+1)) and f(%iv).
    DenseMap<Value *, Value *> BaseMap;

    // Compare iteration Iter to the base.
    SmallInstructionSet Visited;
    auto BaseIt = nextInstr(0, Uses, Visited);
    auto RootIt = nextInstr(Iter, Uses, Visited);
    auto LastRootIt = Uses.begin();

    while (BaseIt != Uses.end() && RootIt != Uses.end()) {
      Instruction *BaseInst = BaseIt->first;
      Instruction *RootInst = RootIt->first;

      // Skip over the IV or root instructions; only match their users.
      bool Continue = false;
      if (isBaseInst(BaseInst)) {
        Visited.insert(BaseInst);
        BaseIt = nextInstr(0, Uses, Visited);
        Continue = true;
      }
      if (isRootInst(RootInst)) {
        LastRootIt = RootIt;
        Visited.insert(RootInst);
        RootIt = nextInstr(Iter, Uses, Visited);
        Continue = true;
      }
      if (Continue) continue;

      if (!BaseInst->isSameOperationAs(RootInst)) {
        // Last chance saloon. We don't try and solve the full isomorphism
        // problem, but try and at least catch the case where two instructions
        // *of different types* are round the wrong way. We won't be able to
        // efficiently tell, given two ADD instructions, which way around we
        // should match them, but given an ADD and a SUB, we can at least infer
        // which one is which.
        //
        // This should allow us to deal with a greater subset of the isomorphism
        // problem. It does however change a linear algorithm into a quadratic
        // one, so limit the number of probes we do.
        auto TryIt = RootIt;
        unsigned N = NumToleratedFailedMatches;
        while (TryIt != Uses.end() &&
               !BaseInst->isSameOperationAs(TryIt->first) &&
               N--) {
          ++TryIt;
          TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
        }

        if (TryIt == Uses.end() || TryIt == RootIt ||
            instrDependsOn(TryIt->first, RootIt, TryIt)) {
          LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
                            << *BaseInst << " vs. " << *RootInst << "\n");
          return false;
        }

        RootIt = TryIt;
        RootInst = TryIt->first;
      }

      // All instructions between the last root and this root
      // may belong to some other iteration. If they belong to a
      // future iteration, then they're dangerous to alias with.
      //
      // Note that because we allow a limited amount of flexibility in the order
      // that we visit nodes, LastRootIt might be *before* RootIt, in which
      // case we've already checked this set of instructions so we shouldn't
      // do anything.
      for (; LastRootIt < RootIt; ++LastRootIt) {
        Instruction *I = LastRootIt->first;
        if (LastRootIt->second.find_first() < (int)Iter)
          continue;
        if (I->mayWriteToMemory())
          AST.add(I);
        // Note: This is specifically guarded by a check on isa<PHINode>,
        // which while a valid (somewhat arbitrary) micro-optimization, is
        // needed because otherwise isSafeToSpeculativelyExecute returns
        // false on PHI nodes.
        if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
            !isSafeToSpeculativelyExecute(I))
          // Intervening instructions cause side effects.
          FutureSideEffects = true;
      }

      // Make sure that this instruction, which is in the use set of this
      // root instruction, does not also belong to the base set or the set of
      // some other root instruction.
      if (RootIt->second.count() > 1) {
        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
                          << " vs. " << *RootInst << " (prev. case overlap)\n");
        return false;
      }

      // Make sure that we don't alias with any instruction in the alias set
      // tracker. If we do, then we depend on a future iteration, and we
      // can't reroll.
      if (RootInst->mayReadFromMemory())
        for (auto &K : AST) {
          if (K.aliasesUnknownInst(RootInst, *AA)) {
            LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
                              << *BaseInst << " vs. " << *RootInst
                              << " (depends on future store)\n");
            return false;
          }
        }

      // If we've past an instruction from a future iteration that may have
      // side effects, and this instruction might also, then we can't reorder
      // them, and this matching fails. As an exception, we allow the alias
      // set tracker to handle regular (unordered) load/store dependencies.
      if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
                                 !isSafeToSpeculativelyExecute(BaseInst)) ||
                                (!isUnorderedLoadStore(RootInst) &&
                                 !isSafeToSpeculativelyExecute(RootInst)))) {
        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
                          << " vs. " << *RootInst
                          << " (side effects prevent reordering)\n");
        return false;
      }

      // For instructions that are part of a reduction, if the operation is
      // associative, then don't bother matching the operands (because we
      // already know that the instructions are isomorphic, and the order
      // within the iteration does not matter). For non-associative reductions,
      // we do need to match the operands, because we need to reject
      // out-of-order instructions within an iteration!
      // For example (assume floating-point addition), we need to reject this:
      //   x += a[i]; x += b[i];
      //   x += a[i+1]; x += b[i+1];
      //   x += b[i+2]; x += a[i+2];
      bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);

      if (!(InReduction && BaseInst->isAssociative())) {
        bool Swapped = false, SomeOpMatched = false;
        for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
          Value *Op2 = RootInst->getOperand(j);

          // If this is part of a reduction (and the operation is not
          // associatve), then we match all operands, but not those that are
          // part of the reduction.
          if (InReduction)
            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
              if (Reductions.isPairInSame(RootInst, Op2I))
                continue;

          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
          if (BMI != BaseMap.end()) {
            Op2 = BMI->second;
          } else {
            for (auto &DRS : RootSets) {
              if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
                Op2 = DRS.BaseInst;
                break;
              }
            }
          }

          if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
            // If we've not already decided to swap the matched operands, and
            // we've not already matched our first operand (note that we could
            // have skipped matching the first operand because it is part of a
            // reduction above), and the instruction is commutative, then try
            // the swapped match.
            if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
                BaseInst->getOperand(!j) == Op2) {
              Swapped = true;
            } else {
              LLVM_DEBUG(dbgs()
                         << "LRR: iteration root match failed at " << *BaseInst
                         << " vs. " << *RootInst << " (operand " << j << ")\n");
              return false;
            }
          }

          SomeOpMatched = true;
        }
      }

      if ((!PossibleRedLastSet.count(BaseInst) &&
           hasUsesOutsideLoop(BaseInst, L)) ||
          (!PossibleRedLastSet.count(RootInst) &&
           hasUsesOutsideLoop(RootInst, L))) {
        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
                          << " vs. " << *RootInst << " (uses outside loop)\n");
        return false;
      }

      Reductions.recordPair(BaseInst, RootInst, Iter);
      BaseMap.insert(std::make_pair(RootInst, BaseInst));

      LastRootIt = RootIt;
      Visited.insert(BaseInst);
      Visited.insert(RootInst);
      BaseIt = nextInstr(0, Uses, Visited);
      RootIt = nextInstr(Iter, Uses, Visited);
    }
    assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
           "Mismatched set sizes!");
  }

  LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
                    << "\n");

  return true;
}

void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
  BasicBlock *Header = L->getHeader();

  // Compute the start and increment for each BaseInst before we start erasing
  // instructions.
  SmallVector<const SCEV *, 8> StartExprs;
  SmallVector<const SCEV *, 8> IncrExprs;
  for (auto &DRS : RootSets) {
    const SCEVAddRecExpr *IVSCEV =
        cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
    StartExprs.push_back(IVSCEV->getStart());
    IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
  }

  // Remove instructions associated with non-base iterations.
  for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend();
       J != JE;) {
    unsigned I = Uses[&*J].find_first();
    if (I > 0 && I < IL_All) {
      LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n");
      J++->eraseFromParent();
      continue;
    }

    ++J;
  }

  // Rewrite each BaseInst using SCEV.
  for (size_t i = 0, e = RootSets.size(); i != e; ++i)
    // Insert the new induction variable.
    replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);

  { // Limit the lifetime of SCEVExpander.
    BranchInst *BI = cast<BranchInst>(Header->getTerminator());
    const DataLayout &DL = Header->getModule()->getDataLayout();
    SCEVExpander Expander(*SE, DL, "reroll");
    auto Zero = SE->getZero(BackedgeTakenCount->getType());
    auto One = SE->getOne(BackedgeTakenCount->getType());
    auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
    Value *NewIV =
        Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
                               Header->getFirstNonPHIOrDbg());
    // FIXME: This arithmetic can overflow.
    auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
    auto ScaledTripCount = SE->getMulExpr(
        TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
    auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
    Value *TakenCount =
        Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
                               Header->getFirstNonPHIOrDbg());
    Value *Cond =
        new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
    BI->setCondition(Cond);

    if (BI->getSuccessor(1) != Header)
      BI->swapSuccessors();
  }

  SimplifyInstructionsInBlock(Header, TLI);
  DeleteDeadPHIs(Header, TLI);
}

void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
                                           const SCEV *Start,
                                           const SCEV *IncrExpr) {
  BasicBlock *Header = L->getHeader();
  Instruction *Inst = DRS.BaseInst;

  const SCEV *NewIVSCEV =
      SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);

  { // Limit the lifetime of SCEVExpander.
    const DataLayout &DL = Header->getModule()->getDataLayout();
    SCEVExpander Expander(*SE, DL, "reroll");
    Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
                                          Header->getFirstNonPHIOrDbg());

    for (auto &KV : Uses)
      if (KV.second.find_first() == 0)
        KV.first->replaceUsesOfWith(Inst, NewIV);
  }
}

// Validate the selected reductions. All iterations must have an isomorphic
// part of the reduction chain and, for non-associative reductions, the chain
// entries must appear in order.
bool LoopReroll::ReductionTracker::validateSelected() {
  // For a non-associative reduction, the chain entries must appear in order.
  for (int i : Reds) {
    int PrevIter = 0, BaseCount = 0, Count = 0;
    for (Instruction *J : PossibleReds[i]) {
      // Note that all instructions in the chain must have been found because
      // all instructions in the function must have been assigned to some
      // iteration.
      int Iter = PossibleRedIter[J];
      if (Iter != PrevIter && Iter != PrevIter + 1 &&
          !PossibleReds[i].getReducedValue()->isAssociative()) {
        LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
                          << J << "\n");
        return false;
      }

      if (Iter != PrevIter) {
        if (Count != BaseCount) {
          LLVM_DEBUG(dbgs()
                     << "LRR: Iteration " << PrevIter << " reduction use count "
                     << Count << " is not equal to the base use count "
                     << BaseCount << "\n");
          return false;
        }

        Count = 0;
      }

      ++Count;
      if (Iter == 0)
        ++BaseCount;

      PrevIter = Iter;
    }
  }

  return true;
}

// For all selected reductions, remove all parts except those in the first
// iteration (and the PHI). Replace outside uses of the reduced value with uses
// of the first-iteration reduced value (in other words, reroll the selected
// reductions).
void LoopReroll::ReductionTracker::replaceSelected() {
  // Fixup reductions to refer to the last instruction associated with the
  // first iteration (not the last).
  for (int i : Reds) {
    int j = 0;
    for (int e = PossibleReds[i].size(); j != e; ++j)
      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
        --j;
        break;
      }

    // Replace users with the new end-of-chain value.
    SmallInstructionVector Users;
    for (User *U : PossibleReds[i].getReducedValue()->users()) {
      Users.push_back(cast<Instruction>(U));
    }

    for (Instruction *User : Users)
      User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
                              PossibleReds[i][j]);
  }
}

// Reroll the provided loop with respect to the provided induction variable.
// Generally, we're looking for a loop like this:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// f(%iv)
// %iv.1 = add %iv, 1                <-- a root increment
// f(%iv.1)
// %iv.2 = add %iv, 2                <-- a root increment
// f(%iv.2)
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
// f(%iv.scale_m_1)
// ...
// %iv.next = add %iv, scale
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit
//
// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
// be intermixed with eachother. The restriction imposed by this algorithm is
// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
// etc. be the same.
//
// First, we collect the use set of %iv, excluding the other increment roots.
// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
// times, having collected the use set of f(%iv.(i+1)), during which we:
//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
//     the next unmatched instruction in f(%iv.(i+1)).
//   - Ensure that both matched instructions don't have any external users
//     (with the exception of last-in-chain reduction instructions).
//   - Track the (aliasing) write set, and other side effects, of all
//     instructions that belong to future iterations that come before the matched
//     instructions. If the matched instructions read from that write set, then
//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
//     if any of these future instructions had side effects (could not be
//     speculatively executed), and so do the matched instructions, when we
//     cannot reorder those side-effect-producing instructions, and rerolling
//     fails.
//
// Finally, we make sure that all loop instructions are either loop increment
// roots, belong to simple latch code, parts of validated reductions, part of
// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
// have been validated), then we reroll the loop.
bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
                        const SCEV *BackedgeTakenCount,
                        ReductionTracker &Reductions) {
  DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
                          IVToIncMap, LoopControlIV);

  if (!DAGRoots.findRoots())
    return false;
  LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
                    << "\n");

  if (!DAGRoots.validate(Reductions))
    return false;
  if (!Reductions.validateSelected())
    return false;
  // At this point, we've validated the rerolling, and we're committed to
  // making changes!

  Reductions.replaceSelected();
  DAGRoots.replace(BackedgeTakenCount);

  ++NumRerolledLoops;
  return true;
}

bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
  if (skipLoop(L))
    return false;

  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
      *L->getHeader()->getParent());
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);

  BasicBlock *Header = L->getHeader();
  LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
                    << Header->getName() << " (" << L->getNumBlocks()
                    << " block(s))\n");

  // For now, we'll handle only single BB loops.
  if (L->getNumBlocks() > 1)
    return false;

  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
    return false;

  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
  LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
  LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
               << "\n");

  // First, we need to find the induction variable with respect to which we can
  // reroll (there may be several possible options).
  SmallInstructionVector PossibleIVs;
  IVToIncMap.clear();
  LoopControlIV = nullptr;
  collectPossibleIVs(L, PossibleIVs);

  if (PossibleIVs.empty()) {
    LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
    return false;
  }

  ReductionTracker Reductions;
  collectPossibleReductions(L, Reductions);
  bool Changed = false;

  // For each possible IV, collect the associated possible set of 'root' nodes
  // (i+1, i+2, etc.).
  for (Instruction *PossibleIV : PossibleIVs)
    if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
      Changed = true;
      break;
    }
  LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");

  // Trip count of L has changed so SE must be re-evaluated.
  if (Changed)
    SE->forgetLoop(L);

  return Changed;
}