LowerMatrixIntrinsics.cpp
33 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
//===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Lower matrix intrinsics to vector operations.
//
// TODO:
// * Implement multiply & add fusion
// * Add remark, summarizing the available matrix optimization opportunities.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "lower-matrix-intrinsics"
static cl::opt<bool> EnableShapePropagation("matrix-propagate-shape",
cl::init(true));
static cl::opt<bool> AllowContractEnabled(
"matrix-allow-contract", cl::init(false), cl::Hidden,
cl::desc("Allow the use of FMAs if available and profitable. This may "
"result in different results, due to less rounding error."));
namespace {
// Given an element poitner \p BasePtr to the start of a (sub) matrix, compute
// the start address of column \p Col with type (\p EltType x \p NumRows)
// assuming \p Stride elements between start two consecutive columns.
// \p Stride must be >= \p NumRows.
//
// Consider a 4x4 matrix like below
//
// 0 1 2 3
// 0 v_0_0 v_0_1 v_0_2 v_0_3
// 1 v_1_0 v_1_1 v_1_2 v_1_3
// 2 v_2_0 v_2_1 v_2_2 v_2_3
// 3 v_3_0 v_3_1 v_3_2 v_3_3
// To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
// we need a pointer to the first element of the submatrix as base pointer.
// Then we can use computeColumnAddr to compute the addresses for the columns
// of the sub-matrix.
//
// Column 0: computeColumnAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
// -> just returns Base
// Column 1: computeColumnAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
// -> returns Base + (1 * 4)
// Column 2: computeColumnAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
// -> returns Base + (2 * 4)
//
// The graphic below illustrates the number of elements in a column (marked
// with |) and the number of skipped elements (marked with }).
//
// v_0_0 v_0_1 {v_0_2 {v_0_3
// Base Col 1 Col 2
// | | |
// v_1_0 |v_1_1 |v_1_2 |v_1_3
// v_2_0 |v_2_1 |v_2_2 |v_2_3
// v_3_0 {v_3_1 {v_3_2 v_3_3
//
Value *computeColumnAddr(Value *BasePtr, Value *Col, Value *Stride,
unsigned NumRows, Type *EltType,
IRBuilder<> &Builder) {
assert((!isa<ConstantInt>(Stride) ||
cast<ConstantInt>(Stride)->getZExtValue() >= NumRows) &&
"Stride must be >= the number of rows.");
unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
// Compute the start of the column with index Col as Col * Stride.
Value *ColumnStart = Builder.CreateMul(Col, Stride, "col.start");
// Get pointer to the start of the selected column. Skip GEP creation,
// if we select column 0.
if (isa<ConstantInt>(ColumnStart) && cast<ConstantInt>(ColumnStart)->isZero())
ColumnStart = BasePtr;
else
ColumnStart = Builder.CreateGEP(EltType, BasePtr, ColumnStart, "col.gep");
// Cast elementwise column start pointer to a pointer to a column
// (EltType x NumRows)*.
Type *ColumnType = VectorType::get(EltType, NumRows);
Type *ColumnPtrType = PointerType::get(ColumnType, AS);
return Builder.CreatePointerCast(ColumnStart, ColumnPtrType, "col.cast");
}
/// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
///
/// Currently, the lowering for each matrix intrinsic is done as follows:
/// 1. Propagate the shape information from intrinsics to connected
/// instructions.
/// 2. Lower instructions with shape information.
/// 2.1. Get column vectors for each argument. If we already lowered the
/// definition of an argument, use the produced column vectors directly.
/// If not, split the operand vector containing an embedded matrix into
/// a set of column vectors,
/// 2.2. Lower the instruction in terms of columnwise operations, which yields
/// a set of column vectors containing result matrix. Note that we lower
/// all instructions that have shape information. Besides the intrinsics,
/// this includes stores for example.
/// 2.3. Update uses of the lowered instruction. If we have shape information
/// for a user, there is nothing to do, as we will look up the result
/// column matrix when lowering the user. For other uses, we embed the
/// result matrix in a flat vector and update the use.
/// 2.4. Cache the result column matrix for the instruction we lowered
/// 3. After we lowered all instructions in a function, remove the now
/// obsolete instructions.
///
class LowerMatrixIntrinsics {
Function &Func;
const DataLayout &DL;
const TargetTransformInfo &TTI;
/// Wrapper class representing a matrix as a set of column vectors.
/// All column vectors must have the same vector type.
class ColumnMatrixTy {
SmallVector<Value *, 16> Columns;
public:
ColumnMatrixTy() : Columns() {}
ColumnMatrixTy(ArrayRef<Value *> Cols)
: Columns(Cols.begin(), Cols.end()) {}
Value *getColumn(unsigned i) const { return Columns[i]; }
void setColumn(unsigned i, Value *V) { Columns[i] = V; }
size_t getNumColumns() const { return Columns.size(); }
size_t getNumRows() const {
assert(Columns.size() > 0 && "Cannot call getNumRows without columns");
return cast<VectorType>(Columns[0]->getType())->getNumElements();
}
const SmallVectorImpl<Value *> &getColumnVectors() const { return Columns; }
SmallVectorImpl<Value *> &getColumnVectors() { return Columns; }
void addColumn(Value *V) { Columns.push_back(V); }
iterator_range<SmallVector<Value *, 8>::iterator> columns() {
return make_range(Columns.begin(), Columns.end());
}
/// Embed the columns of the matrix into a flat vector by concatenating
/// them.
Value *embedInVector(IRBuilder<> &Builder) const {
return Columns.size() == 1 ? Columns[0]
: concatenateVectors(Builder, Columns);
}
};
struct ShapeInfo {
unsigned NumRows;
unsigned NumColumns;
ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
: NumRows(NumRows), NumColumns(NumColumns) {}
ShapeInfo(Value *NumRows, Value *NumColumns)
: NumRows(cast<ConstantInt>(NumRows)->getZExtValue()),
NumColumns(cast<ConstantInt>(NumColumns)->getZExtValue()) {}
bool operator==(const ShapeInfo &other) {
return NumRows == other.NumRows && NumColumns == other.NumColumns;
}
bool operator!=(const ShapeInfo &other) { return !(*this == other); }
/// Returns true if shape-information is defined, meaning both dimensions
/// are != 0.
operator bool() const {
assert(NumRows == 0 || NumColumns != 0);
return NumRows != 0;
}
};
/// Maps instructions to their shape information. The shape information
/// describes the shape to be used while lowering. This matches the shape of
/// the result value of the instruction, with the only exceptions being store
/// instructions and the matrix_columnwise_store intrinsics. For those, the
/// shape information indicates that those instructions should be lowered
/// using shape information as well.
DenseMap<Value *, ShapeInfo> ShapeMap;
/// List of instructions to remove. While lowering, we are not replacing all
/// users of a lowered instruction, if shape information is available and
/// those need to be removed after we finished lowering.
SmallVector<Instruction *, 16> ToRemove;
/// Map from instructions to their produced column matrix.
DenseMap<Value *, ColumnMatrixTy> Inst2ColumnMatrix;
public:
LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI)
: Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI) {}
/// Return the set of column vectors that a matrix value is lowered to.
///
/// If we lowered \p MatrixVal, just return the cache result column matrix.
/// Otherwie split the flat vector \p MatrixVal containing a matrix with
/// shape \p SI into column vectors.
ColumnMatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
IRBuilder<> Builder) {
VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
assert(VType && "MatrixVal must be a vector type");
assert(VType->getNumElements() == SI.NumRows * SI.NumColumns &&
"The vector size must match the number of matrix elements");
// Check if we lowered MatrixVal using shape information. In that case,
// return the existing column matrix, if it matches the requested shape
// information. If there is a mis-match, embed the result in a flat
// vector and split it later.
auto Found = Inst2ColumnMatrix.find(MatrixVal);
if (Found != Inst2ColumnMatrix.end()) {
ColumnMatrixTy &M = Found->second;
// Return the found matrix, if its shape matches the requested shape
// information
if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
return M;
MatrixVal = M.embedInVector(Builder);
}
// Otherwise split MatrixVal.
SmallVector<Value *, 16> SplitVecs;
Value *Undef = UndefValue::get(VType);
for (unsigned MaskStart = 0; MaskStart < VType->getNumElements();
MaskStart += SI.NumRows) {
Constant *Mask = createSequentialMask(Builder, MaskStart, SI.NumRows, 0);
Value *V = Builder.CreateShuffleVector(MatrixVal, Undef, Mask, "split");
SplitVecs.push_back(V);
}
return {SplitVecs};
}
/// If \p V already has a known shape return false. Otherwise set the shape
/// for instructions that support it.
bool setShapeInfo(Value *V, ShapeInfo Shape) {
assert(Shape && "Shape not set");
if (isa<UndefValue>(V) || !supportsShapeInfo(V))
return false;
auto SIter = ShapeMap.find(V);
if (SIter != ShapeMap.end()) {
LLVM_DEBUG(dbgs() << " not overriding existing shape: "
<< SIter->second.NumRows << " "
<< SIter->second.NumColumns << " for " << *V << "\n");
return false;
}
ShapeMap.insert({V, Shape});
LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns
<< " for " << *V << "\n");
return true;
}
bool isUniformShape(Value *V) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I)
return true;
switch (I->getOpcode()) {
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul: // Scalar multiply.
case Instruction::Add:
case Instruction::Mul:
case Instruction::Sub:
return true;
default:
return false;
}
}
/// Returns true if shape information can be used for \p V. The supported
/// instructions must match the instructions that can be lowered by this pass.
bool supportsShapeInfo(Value *V) {
Instruction *Inst = dyn_cast<Instruction>(V);
if (!Inst)
return false;
IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
if (II)
switch (II->getIntrinsicID()) {
case Intrinsic::matrix_multiply:
case Intrinsic::matrix_transpose:
case Intrinsic::matrix_columnwise_load:
case Intrinsic::matrix_columnwise_store:
return true;
default:
return false;
}
return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
}
/// Propagate the shape information of instructions to their users.
/// The work list contains instructions for which we can compute the shape,
/// either based on the information provided by matrix intrinsics or known
/// shapes of operands.
SmallVector<Instruction *, 32>
propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
SmallVector<Instruction *, 32> NewWorkList;
// Pop an element for which we guaranteed to have at least one of the
// operand shapes. Add the shape for this and then add users to the work
// list.
LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
while (!WorkList.empty()) {
Instruction *Inst = WorkList.back();
WorkList.pop_back();
// New entry, set the value and insert operands
bool Propagate = false;
Value *MatrixA;
Value *MatrixB;
Value *M;
Value *N;
Value *K;
if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
m_Value(N), m_Value(K)))) {
Propagate = setShapeInfo(Inst, {M, K});
} else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
m_Value(MatrixA), m_Value(M), m_Value(N)))) {
// Flip dimensions.
Propagate = setShapeInfo(Inst, {N, M});
} else if (match(Inst, m_Intrinsic<Intrinsic::matrix_columnwise_store>(
m_Value(MatrixA), m_Value(), m_Value(),
m_Value(M), m_Value(N)))) {
Propagate = setShapeInfo(Inst, {N, M});
} else if (match(Inst,
m_Intrinsic<Intrinsic::matrix_columnwise_load>(
m_Value(), m_Value(), m_Value(M), m_Value(N)))) {
Propagate = setShapeInfo(Inst, {M, N});
} else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
auto OpShape = ShapeMap.find(MatrixA);
if (OpShape != ShapeMap.end())
setShapeInfo(Inst, OpShape->second);
continue;
} else if (isUniformShape(Inst)) {
// Find the first operand that has a known shape and use that.
for (auto &Op : Inst->operands()) {
auto OpShape = ShapeMap.find(Op.get());
if (OpShape != ShapeMap.end()) {
Propagate |= setShapeInfo(Inst, OpShape->second);
break;
}
}
}
if (Propagate) {
NewWorkList.push_back(Inst);
for (auto *User : Inst->users())
if (ShapeMap.count(User) == 0)
WorkList.push_back(cast<Instruction>(User));
}
}
return NewWorkList;
}
/// Propagate the shape to operands of instructions with shape information.
/// \p Worklist contains the instruction for which we already know the shape.
SmallVector<Instruction *, 32>
propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
SmallVector<Instruction *, 32> NewWorkList;
auto pushInstruction = [](Value *V,
SmallVectorImpl<Instruction *> &WorkList) {
Instruction *I = dyn_cast<Instruction>(V);
if (I)
WorkList.push_back(I);
};
// Pop an element with known shape. Traverse the operands, if their shape
// derives from the result shape and is unknown, add it and add them to the
// worklist.
LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
while (!WorkList.empty()) {
Value *V = WorkList.back();
WorkList.pop_back();
size_t BeforeProcessingV = WorkList.size();
if (!isa<Instruction>(V))
continue;
Value *MatrixA;
Value *MatrixB;
Value *M;
Value *N;
Value *K;
if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
m_Value(N), m_Value(K)))) {
if (setShapeInfo(MatrixA, {M, N}))
pushInstruction(MatrixA, WorkList);
if (setShapeInfo(MatrixB, {N, K}))
pushInstruction(MatrixB, WorkList);
} else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
m_Value(MatrixA), m_Value(M), m_Value(N)))) {
// Flip dimensions.
if (setShapeInfo(MatrixA, {M, N}))
pushInstruction(MatrixA, WorkList);
} else if (match(V, m_Intrinsic<Intrinsic::matrix_columnwise_store>(
m_Value(MatrixA), m_Value(), m_Value(),
m_Value(M), m_Value(N)))) {
if (setShapeInfo(MatrixA, {M, N})) {
pushInstruction(MatrixA, WorkList);
}
} else if (isa<LoadInst>(V) ||
match(V, m_Intrinsic<Intrinsic::matrix_columnwise_load>())) {
// Nothing to do, no matrix input.
} else if (isa<StoreInst>(V)) {
// Nothing to do. We forward-propagated to this so we would just
// backward propagate to an instruction with an already known shape.
} else if (isUniformShape(V)) {
// Propagate to all operands.
ShapeInfo Shape = ShapeMap[V];
for (Use &U : cast<Instruction>(V)->operands()) {
if (setShapeInfo(U.get(), Shape))
pushInstruction(U.get(), WorkList);
}
}
// After we discovered new shape info for new instructions in the
// worklist, we use their users as seeds for the next round of forward
// propagation.
for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
for (User *U : WorkList[I]->users())
if (isa<Instruction>(U) && V != U)
NewWorkList.push_back(cast<Instruction>(U));
}
return NewWorkList;
}
bool Visit() {
if (EnableShapePropagation) {
SmallVector<Instruction *, 32> WorkList;
// Initially only the shape of matrix intrinsics is known.
// Initialize the work list with ops carrying shape information.
for (BasicBlock &BB : Func)
for (Instruction &Inst : BB) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
if (!II)
continue;
switch (II->getIntrinsicID()) {
case Intrinsic::matrix_multiply:
case Intrinsic::matrix_transpose:
case Intrinsic::matrix_columnwise_load:
case Intrinsic::matrix_columnwise_store:
WorkList.push_back(&Inst);
break;
default:
break;
}
}
// Propagate shapes until nothing changes any longer.
while (!WorkList.empty()) {
WorkList = propagateShapeForward(WorkList);
WorkList = propagateShapeBackward(WorkList);
}
}
ReversePostOrderTraversal<Function *> RPOT(&Func);
bool Changed = false;
for (auto *BB : RPOT) {
for (Instruction &Inst : make_early_inc_range(*BB)) {
IRBuilder<> Builder(&Inst);
if (CallInst *CInst = dyn_cast<CallInst>(&Inst))
Changed |= VisitCallInst(CInst);
Value *Op1;
Value *Op2;
if (auto *BinOp = dyn_cast<BinaryOperator>(&Inst))
Changed |= VisitBinaryOperator(BinOp);
if (match(&Inst, m_Load(m_Value(Op1))))
Changed |= VisitLoad(&Inst, Op1, Builder);
else if (match(&Inst, m_Store(m_Value(Op1), m_Value(Op2))))
Changed |= VisitStore(&Inst, Op1, Op2, Builder);
}
}
for (Instruction *Inst : reverse(ToRemove))
Inst->eraseFromParent();
return Changed;
}
LoadInst *createColumnLoad(Value *ColumnPtr, Type *EltType,
IRBuilder<> Builder) {
unsigned Align = DL.getABITypeAlignment(EltType);
return Builder.CreateAlignedLoad(ColumnPtr, Align, "col.load");
}
StoreInst *createColumnStore(Value *ColumnValue, Value *ColumnPtr,
Type *EltType, IRBuilder<> Builder) {
unsigned Align = DL.getABITypeAlignment(EltType);
return Builder.CreateAlignedStore(ColumnValue, ColumnPtr, Align);
}
/// Turns \p BasePtr into an elementwise pointer to \p EltType.
Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
Type *EltPtrType = PointerType::get(EltType, AS);
return Builder.CreatePointerCast(BasePtr, EltPtrType);
}
/// Replace intrinsic calls
bool VisitCallInst(CallInst *Inst) {
if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
return false;
switch (Inst->getCalledFunction()->getIntrinsicID()) {
case Intrinsic::matrix_multiply:
LowerMultiply(Inst);
break;
case Intrinsic::matrix_transpose:
LowerTranspose(Inst);
break;
case Intrinsic::matrix_columnwise_load:
LowerColumnwiseLoad(Inst);
break;
case Intrinsic::matrix_columnwise_store:
LowerColumnwiseStore(Inst);
break;
default:
return false;
}
return true;
}
void LowerLoad(Instruction *Inst, Value *Ptr, Value *Stride,
ShapeInfo Shape) {
IRBuilder<> Builder(Inst);
auto VType = cast<VectorType>(Inst->getType());
Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
ColumnMatrixTy Result;
// Distance between start of one column and the start of the next
for (unsigned C = 0, E = Shape.NumColumns; C < E; ++C) {
Value *GEP =
computeColumnAddr(EltPtr, Builder.getInt32(C), Stride, Shape.NumRows,
VType->getElementType(), Builder);
Value *Column = createColumnLoad(GEP, VType->getElementType(), Builder);
Result.addColumn(Column);
}
finalizeLowering(Inst, Result, Builder);
}
/// Lowers llvm.matrix.columnwise.load.
///
/// The intrinsic loads a matrix from memory using a stride between columns.
void LowerColumnwiseLoad(CallInst *Inst) {
Value *Ptr = Inst->getArgOperand(0);
Value *Stride = Inst->getArgOperand(1);
LowerLoad(Inst, Ptr, Stride,
{Inst->getArgOperand(2), Inst->getArgOperand(3)});
}
void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, Value *Stride,
ShapeInfo Shape) {
IRBuilder<> Builder(Inst);
auto VType = cast<VectorType>(Matrix->getType());
Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
auto LM = getMatrix(Matrix, Shape, Builder);
for (auto C : enumerate(LM.columns())) {
Value *GEP =
computeColumnAddr(EltPtr, Builder.getInt32(C.index()), Stride,
Shape.NumRows, VType->getElementType(), Builder);
createColumnStore(C.value(), GEP, VType->getElementType(), Builder);
}
ToRemove.push_back(Inst);
}
/// Lowers llvm.matrix.columnwise.store.
///
/// The intrinsic store a matrix back memory using a stride between columns.
void LowerColumnwiseStore(CallInst *Inst) {
Value *Matrix = Inst->getArgOperand(0);
Value *Ptr = Inst->getArgOperand(1);
Value *Stride = Inst->getArgOperand(2);
LowerStore(Inst, Matrix, Ptr, Stride,
{Inst->getArgOperand(3), Inst->getArgOperand(4)});
}
/// Extract a column vector of \p NumElts starting at index (\p I, \p J) from
/// the matrix \p LM represented as a vector of column vectors.
Value *extractVector(const ColumnMatrixTy &LM, unsigned I, unsigned J,
unsigned NumElts, IRBuilder<> Builder) {
Value *Col = LM.getColumn(J);
Value *Undef = UndefValue::get(Col->getType());
Constant *Mask = createSequentialMask(Builder, I, NumElts, 0);
return Builder.CreateShuffleVector(Col, Undef, Mask, "block");
}
// Set elements I..I+NumElts-1 to Block
Value *insertVector(Value *Col, unsigned I, Value *Block,
IRBuilder<> Builder) {
// First, bring Block to the same size as Col
unsigned BlockNumElts =
cast<VectorType>(Block->getType())->getNumElements();
unsigned NumElts = cast<VectorType>(Col->getType())->getNumElements();
assert(NumElts >= BlockNumElts && "Too few elements for current block");
Value *ExtendMask =
createSequentialMask(Builder, 0, BlockNumElts, NumElts - BlockNumElts);
Value *Undef = UndefValue::get(Block->getType());
Block = Builder.CreateShuffleVector(Block, Undef, ExtendMask);
// If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
// 8, 4, 5, 6
SmallVector<Constant *, 16> Mask;
unsigned i;
for (i = 0; i < I; i++)
Mask.push_back(Builder.getInt32(i));
unsigned VecNumElts = cast<VectorType>(Col->getType())->getNumElements();
for (; i < I + BlockNumElts; i++)
Mask.push_back(Builder.getInt32(i - I + VecNumElts));
for (; i < VecNumElts; i++)
Mask.push_back(Builder.getInt32(i));
Value *MaskVal = ConstantVector::get(Mask);
return Builder.CreateShuffleVector(Col, Block, MaskVal);
}
Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
IRBuilder<> &Builder, bool AllowContraction) {
if (!Sum)
return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
if (UseFPOp) {
if (AllowContraction) {
// Use fmuladd for floating point operations and let the backend decide
// if that's profitable.
Value *FMulAdd = Intrinsic::getDeclaration(
Func.getParent(), Intrinsic::fmuladd, A->getType());
return Builder.CreateCall(FMulAdd, {A, B, Sum});
}
Value *Mul = Builder.CreateFMul(A, B);
return Builder.CreateFAdd(Sum, Mul);
}
Value *Mul = Builder.CreateMul(A, B);
return Builder.CreateAdd(Sum, Mul);
}
/// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
/// users with shape information, there's nothing to do: the will use the
/// cached value when they are lowered. For other users, \p Matrix is
/// flattened and the uses are updated to use it. Also marks \p Inst for
/// deletion.
void finalizeLowering(Instruction *Inst, ColumnMatrixTy Matrix,
IRBuilder<> &Builder) {
Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
ToRemove.push_back(Inst);
Value *Flattened = nullptr;
for (auto I = Inst->use_begin(), E = Inst->use_end(); I != E;) {
Use &U = *I++;
if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
if (!Flattened)
Flattened = Matrix.embedInVector(Builder);
U.set(Flattened);
}
}
}
/// Lowers llvm.matrix.multiply.
void LowerMultiply(CallInst *MatMul) {
IRBuilder<> Builder(MatMul);
auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
const ColumnMatrixTy &Lhs =
getMatrix(MatMul->getArgOperand(0), LShape, Builder);
const ColumnMatrixTy &Rhs =
getMatrix(MatMul->getArgOperand(1), RShape, Builder);
const unsigned R = LShape.NumRows;
const unsigned M = LShape.NumColumns;
const unsigned C = RShape.NumColumns;
assert(M == RShape.NumRows);
// Initialize the output
ColumnMatrixTy Result;
for (unsigned J = 0; J < C; ++J)
Result.addColumn(UndefValue::get(VectorType::get(EltType, R)));
const unsigned VF = std::max(TTI.getRegisterBitWidth(true) /
EltType->getPrimitiveSizeInBits(),
uint64_t(1));
bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) &&
MatMul->hasAllowContract());
// Multiply columns from the first operand with scalars from the second
// operand. Then move along the K axes and accumulate the columns. With
// this the adds can be vectorized without reassociation.
for (unsigned J = 0; J < C; ++J) {
unsigned BlockSize = VF;
for (unsigned I = 0; I < R; I += BlockSize) {
// Gradually lower the vectorization factor to cover the remainder.
while (I + BlockSize > R)
BlockSize /= 2;
Value *Sum = nullptr;
for (unsigned K = 0; K < M; ++K) {
Value *L = extractVector(Lhs, I, K, BlockSize, Builder);
Value *RH = Builder.CreateExtractElement(Rhs.getColumn(J), K);
Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
Sum = createMulAdd(Sum, L, Splat, EltType->isFloatingPointTy(),
Builder, AllowContract);
}
Result.setColumn(J, insertVector(Result.getColumn(J), I, Sum, Builder));
}
}
finalizeLowering(MatMul, Result, Builder);
}
/// Lowers llvm.matrix.transpose.
void LowerTranspose(CallInst *Inst) {
ColumnMatrixTy Result;
IRBuilder<> Builder(Inst);
Value *InputVal = Inst->getArgOperand(0);
VectorType *VectorTy = cast<VectorType>(InputVal->getType());
ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
ColumnMatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
for (unsigned Row = 0; Row < ArgShape.NumRows; ++Row) {
// Build a single column vector for this row. First initialize it.
Value *ResultColumn = UndefValue::get(
VectorType::get(VectorTy->getElementType(), ArgShape.NumColumns));
// Go through the elements of this row and insert it into the resulting
// column vector.
for (auto C : enumerate(InputMatrix.columns())) {
Value *Elt = Builder.CreateExtractElement(C.value(), Row);
// We insert at index Column since that is the row index after the
// transpose.
ResultColumn =
Builder.CreateInsertElement(ResultColumn, Elt, C.index());
}
Result.addColumn(ResultColumn);
}
finalizeLowering(Inst, Result, Builder);
}
/// Lower load instructions, if shape information is available.
bool VisitLoad(Instruction *Inst, Value *Ptr, IRBuilder<> &Builder) {
auto I = ShapeMap.find(Inst);
if (I == ShapeMap.end())
return false;
LowerLoad(Inst, Ptr, Builder.getInt32(I->second.NumRows), I->second);
return true;
}
bool VisitStore(Instruction *Inst, Value *StoredVal, Value *Ptr,
IRBuilder<> &Builder) {
auto I = ShapeMap.find(StoredVal);
if (I == ShapeMap.end())
return false;
LowerStore(Inst, StoredVal, Ptr, Builder.getInt32(I->second.NumRows), I->second);
return true;
}
/// Lower binary operators, if shape information is available.
bool VisitBinaryOperator(BinaryOperator *Inst) {
auto I = ShapeMap.find(Inst);
if (I == ShapeMap.end())
return false;
Value *Lhs = Inst->getOperand(0);
Value *Rhs = Inst->getOperand(1);
IRBuilder<> Builder(Inst);
ShapeInfo &Shape = I->second;
ColumnMatrixTy LoweredLhs = getMatrix(Lhs, Shape, Builder);
ColumnMatrixTy LoweredRhs = getMatrix(Rhs, Shape, Builder);
// Add each column and store the result back into the opmapping
ColumnMatrixTy Result;
auto BuildColumnOp = [&Builder, Inst](Value *LHS, Value *RHS) {
switch (Inst->getOpcode()) {
case Instruction::Add:
return Builder.CreateAdd(LHS, RHS);
case Instruction::Mul:
return Builder.CreateMul(LHS, RHS);
case Instruction::Sub:
return Builder.CreateSub(LHS, RHS);
case Instruction::FAdd:
return Builder.CreateFAdd(LHS, RHS);
case Instruction::FMul:
return Builder.CreateFMul(LHS, RHS);
case Instruction::FSub:
return Builder.CreateFSub(LHS, RHS);
default:
llvm_unreachable("Unsupported binary operator for matrix");
}
};
for (unsigned C = 0; C < Shape.NumColumns; ++C)
Result.addColumn(
BuildColumnOp(LoweredLhs.getColumn(C), LoweredRhs.getColumn(C)));
finalizeLowering(Inst, Result, Builder);
return true;
}
};
} // namespace
PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
LowerMatrixIntrinsics LMT(F, TTI);
if (LMT.Visit()) {
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
return PreservedAnalyses::all();
}
namespace {
class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
public:
static char ID;
LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
initializeLowerMatrixIntrinsicsLegacyPassPass(
*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
LowerMatrixIntrinsics LMT(F, *TTI);
bool C = LMT.Visit();
return C;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.setPreservesCFG();
}
};
} // namespace
static const char pass_name[] = "Lower the matrix intrinsics";
char LowerMatrixIntrinsicsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
false, false)
INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
false, false)
Pass *llvm::createLowerMatrixIntrinsicsPass() {
return new LowerMatrixIntrinsicsLegacyPass();
}