RewriteStatepointsForGC.cpp 113 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Rewrite call/invoke instructions so as to make potential relocations
// performed by the garbage collector explicit in the IR.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <set>
#include <string>
#include <utility>
#include <vector>

#define DEBUG_TYPE "rewrite-statepoints-for-gc"

using namespace llvm;

// Print the liveset found at the insert location
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
                                  cl::init(false));
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
                                      cl::init(false));

// Print out the base pointers for debugging
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
                                       cl::init(false));

// Cost threshold measuring when it is profitable to rematerialize value instead
// of relocating it
static cl::opt<unsigned>
RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
                           cl::init(6));

#ifdef EXPENSIVE_CHECKS
static bool ClobberNonLive = true;
#else
static bool ClobberNonLive = false;
#endif

static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
                                                  cl::location(ClobberNonLive),
                                                  cl::Hidden);

static cl::opt<bool>
    AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
                                   cl::Hidden, cl::init(true));

/// The IR fed into RewriteStatepointsForGC may have had attributes and
/// metadata implying dereferenceability that are no longer valid/correct after
/// RewriteStatepointsForGC has run. This is because semantically, after
/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
/// heap. stripNonValidData (conservatively) restores
/// correctness by erasing all attributes in the module that externally imply
/// dereferenceability. Similar reasoning also applies to the noalias
/// attributes and metadata. gc.statepoint can touch the entire heap including
/// noalias objects.
/// Apart from attributes and metadata, we also remove instructions that imply
/// constant physical memory: llvm.invariant.start.
static void stripNonValidData(Module &M);

static bool shouldRewriteStatepointsIn(Function &F);

PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
                                               ModuleAnalysisManager &AM) {
  bool Changed = false;
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  for (Function &F : M) {
    // Nothing to do for declarations.
    if (F.isDeclaration() || F.empty())
      continue;

    // Policy choice says not to rewrite - the most common reason is that we're
    // compiling code without a GCStrategy.
    if (!shouldRewriteStatepointsIn(F))
      continue;

    auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
    auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
    auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
    Changed |= runOnFunction(F, DT, TTI, TLI);
  }
  if (!Changed)
    return PreservedAnalyses::all();

  // stripNonValidData asserts that shouldRewriteStatepointsIn
  // returns true for at least one function in the module.  Since at least
  // one function changed, we know that the precondition is satisfied.
  stripNonValidData(M);

  PreservedAnalyses PA;
  PA.preserve<TargetIRAnalysis>();
  PA.preserve<TargetLibraryAnalysis>();
  return PA;
}

namespace {

class RewriteStatepointsForGCLegacyPass : public ModulePass {
  RewriteStatepointsForGC Impl;

public:
  static char ID; // Pass identification, replacement for typeid

  RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
    initializeRewriteStatepointsForGCLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    bool Changed = false;
    for (Function &F : M) {
      // Nothing to do for declarations.
      if (F.isDeclaration() || F.empty())
        continue;

      // Policy choice says not to rewrite - the most common reason is that
      // we're compiling code without a GCStrategy.
      if (!shouldRewriteStatepointsIn(F))
        continue;

      TargetTransformInfo &TTI =
          getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
      const TargetLibraryInfo &TLI =
          getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
      auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();

      Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
    }

    if (!Changed)
      return false;

    // stripNonValidData asserts that shouldRewriteStatepointsIn
    // returns true for at least one function in the module.  Since at least
    // one function changed, we know that the precondition is satisfied.
    stripNonValidData(M);
    return true;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    // We add and rewrite a bunch of instructions, but don't really do much
    // else.  We could in theory preserve a lot more analyses here.
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
  }
};

} // end anonymous namespace

char RewriteStatepointsForGCLegacyPass::ID = 0;

ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
  return new RewriteStatepointsForGCLegacyPass();
}

INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
                      "rewrite-statepoints-for-gc",
                      "Make relocations explicit at statepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
                    "rewrite-statepoints-for-gc",
                    "Make relocations explicit at statepoints", false, false)

namespace {

struct GCPtrLivenessData {
  /// Values defined in this block.
  MapVector<BasicBlock *, SetVector<Value *>> KillSet;

  /// Values used in this block (and thus live); does not included values
  /// killed within this block.
  MapVector<BasicBlock *, SetVector<Value *>> LiveSet;

  /// Values live into this basic block (i.e. used by any
  /// instruction in this basic block or ones reachable from here)
  MapVector<BasicBlock *, SetVector<Value *>> LiveIn;

  /// Values live out of this basic block (i.e. live into
  /// any successor block)
  MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
};

// The type of the internal cache used inside the findBasePointers family
// of functions.  From the callers perspective, this is an opaque type and
// should not be inspected.
//
// In the actual implementation this caches two relations:
// - The base relation itself (i.e. this pointer is based on that one)
// - The base defining value relation (i.e. before base_phi insertion)
// Generally, after the execution of a full findBasePointer call, only the
// base relation will remain.  Internally, we add a mixture of the two
// types, then update all the second type to the first type
using DefiningValueMapTy = MapVector<Value *, Value *>;
using StatepointLiveSetTy = SetVector<Value *>;
using RematerializedValueMapTy =
    MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;

struct PartiallyConstructedSafepointRecord {
  /// The set of values known to be live across this safepoint
  StatepointLiveSetTy LiveSet;

  /// Mapping from live pointers to a base-defining-value
  MapVector<Value *, Value *> PointerToBase;

  /// The *new* gc.statepoint instruction itself.  This produces the token
  /// that normal path gc.relocates and the gc.result are tied to.
  Instruction *StatepointToken;

  /// Instruction to which exceptional gc relocates are attached
  /// Makes it easier to iterate through them during relocationViaAlloca.
  Instruction *UnwindToken;

  /// Record live values we are rematerialized instead of relocating.
  /// They are not included into 'LiveSet' field.
  /// Maps rematerialized copy to it's original value.
  RematerializedValueMapTy RematerializedValues;
};

} // end anonymous namespace

static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
  Optional<OperandBundleUse> DeoptBundle =
      Call->getOperandBundle(LLVMContext::OB_deopt);

  if (!DeoptBundle.hasValue()) {
    assert(AllowStatepointWithNoDeoptInfo &&
           "Found non-leaf call without deopt info!");
    return None;
  }

  return DeoptBundle.getValue().Inputs;
}

/// Compute the live-in set for every basic block in the function
static void computeLiveInValues(DominatorTree &DT, Function &F,
                                GCPtrLivenessData &Data);

/// Given results from the dataflow liveness computation, find the set of live
/// Values at a particular instruction.
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
                              StatepointLiveSetTy &out);

// TODO: Once we can get to the GCStrategy, this becomes
// Optional<bool> isGCManagedPointer(const Type *Ty) const override {

static bool isGCPointerType(Type *T) {
  if (auto *PT = dyn_cast<PointerType>(T))
    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
    // GC managed heap.  We know that a pointer into this heap needs to be
    // updated and that no other pointer does.
    return PT->getAddressSpace() == 1;
  return false;
}

// Return true if this type is one which a) is a gc pointer or contains a GC
// pointer and b) is of a type this code expects to encounter as a live value.
// (The insertion code will assert that a type which matches (a) and not (b)
// is not encountered.)
static bool isHandledGCPointerType(Type *T) {
  // We fully support gc pointers
  if (isGCPointerType(T))
    return true;
  // We partially support vectors of gc pointers. The code will assert if it
  // can't handle something.
  if (auto VT = dyn_cast<VectorType>(T))
    if (isGCPointerType(VT->getElementType()))
      return true;
  return false;
}

#ifndef NDEBUG
/// Returns true if this type contains a gc pointer whether we know how to
/// handle that type or not.
static bool containsGCPtrType(Type *Ty) {
  if (isGCPointerType(Ty))
    return true;
  if (VectorType *VT = dyn_cast<VectorType>(Ty))
    return isGCPointerType(VT->getScalarType());
  if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
    return containsGCPtrType(AT->getElementType());
  if (StructType *ST = dyn_cast<StructType>(Ty))
    return llvm::any_of(ST->elements(), containsGCPtrType);
  return false;
}

// Returns true if this is a type which a) is a gc pointer or contains a GC
// pointer and b) is of a type which the code doesn't expect (i.e. first class
// aggregates).  Used to trip assertions.
static bool isUnhandledGCPointerType(Type *Ty) {
  return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
}
#endif

// Return the name of the value suffixed with the provided value, or if the
// value didn't have a name, the default value specified.
static std::string suffixed_name_or(Value *V, StringRef Suffix,
                                    StringRef DefaultName) {
  return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
}

// Conservatively identifies any definitions which might be live at the
// given instruction. The  analysis is performed immediately before the
// given instruction. Values defined by that instruction are not considered
// live.  Values used by that instruction are considered live.
static void analyzeParsePointLiveness(
    DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
    PartiallyConstructedSafepointRecord &Result) {
  StatepointLiveSetTy LiveSet;
  findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);

  if (PrintLiveSet) {
    dbgs() << "Live Variables:\n";
    for (Value *V : LiveSet)
      dbgs() << " " << V->getName() << " " << *V << "\n";
  }
  if (PrintLiveSetSize) {
    dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n";
    dbgs() << "Number live values: " << LiveSet.size() << "\n";
  }
  Result.LiveSet = LiveSet;
}

static bool isKnownBaseResult(Value *V);

namespace {

/// A single base defining value - An immediate base defining value for an
/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
/// For instructions which have multiple pointer [vector] inputs or that
/// transition between vector and scalar types, there is no immediate base
/// defining value.  The 'base defining value' for 'Def' is the transitive
/// closure of this relation stopping at the first instruction which has no
/// immediate base defining value.  The b.d.v. might itself be a base pointer,
/// but it can also be an arbitrary derived pointer.
struct BaseDefiningValueResult {
  /// Contains the value which is the base defining value.
  Value * const BDV;

  /// True if the base defining value is also known to be an actual base
  /// pointer.
  const bool IsKnownBase;

  BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
    : BDV(BDV), IsKnownBase(IsKnownBase) {
#ifndef NDEBUG
    // Check consistency between new and old means of checking whether a BDV is
    // a base.
    bool MustBeBase = isKnownBaseResult(BDV);
    assert(!MustBeBase || MustBeBase == IsKnownBase);
#endif
  }
};

} // end anonymous namespace

static BaseDefiningValueResult findBaseDefiningValue(Value *I);

/// Return a base defining value for the 'Index' element of the given vector
/// instruction 'I'.  If Index is null, returns a BDV for the entire vector
/// 'I'.  As an optimization, this method will try to determine when the
/// element is known to already be a base pointer.  If this can be established,
/// the second value in the returned pair will be true.  Note that either a
/// vector or a pointer typed value can be returned.  For the former, the
/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
/// If the later, the return pointer is a BDV (or possibly a base) for the
/// particular element in 'I'.
static BaseDefiningValueResult
findBaseDefiningValueOfVector(Value *I) {
  // Each case parallels findBaseDefiningValue below, see that code for
  // detailed motivation.

  if (isa<Argument>(I))
    // An incoming argument to the function is a base pointer
    return BaseDefiningValueResult(I, true);

  if (isa<Constant>(I))
    // Base of constant vector consists only of constant null pointers.
    // For reasoning see similar case inside 'findBaseDefiningValue' function.
    return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
                                   true);

  if (isa<LoadInst>(I))
    return BaseDefiningValueResult(I, true);

  if (isa<InsertElementInst>(I))
    // We don't know whether this vector contains entirely base pointers or
    // not.  To be conservatively correct, we treat it as a BDV and will
    // duplicate code as needed to construct a parallel vector of bases.
    return BaseDefiningValueResult(I, false);

  if (isa<ShuffleVectorInst>(I))
    // We don't know whether this vector contains entirely base pointers or
    // not.  To be conservatively correct, we treat it as a BDV and will
    // duplicate code as needed to construct a parallel vector of bases.
    // TODO: There a number of local optimizations which could be applied here
    // for particular sufflevector patterns.
    return BaseDefiningValueResult(I, false);

  // The behavior of getelementptr instructions is the same for vector and
  // non-vector data types.
  if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
    return findBaseDefiningValue(GEP->getPointerOperand());

  // If the pointer comes through a bitcast of a vector of pointers to
  // a vector of another type of pointer, then look through the bitcast
  if (auto *BC = dyn_cast<BitCastInst>(I))
    return findBaseDefiningValue(BC->getOperand(0));

  // We assume that functions in the source language only return base
  // pointers.  This should probably be generalized via attributes to support
  // both source language and internal functions.
  if (isa<CallInst>(I) || isa<InvokeInst>(I))
    return BaseDefiningValueResult(I, true);

  // A PHI or Select is a base defining value.  The outer findBasePointer
  // algorithm is responsible for constructing a base value for this BDV.
  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
         "unknown vector instruction - no base found for vector element");
  return BaseDefiningValueResult(I, false);
}

/// Helper function for findBasePointer - Will return a value which either a)
/// defines the base pointer for the input, b) blocks the simple search
/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
/// from pointer to vector type or back.
static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
  assert(I->getType()->isPtrOrPtrVectorTy() &&
         "Illegal to ask for the base pointer of a non-pointer type");

  if (I->getType()->isVectorTy())
    return findBaseDefiningValueOfVector(I);

  if (isa<Argument>(I))
    // An incoming argument to the function is a base pointer
    // We should have never reached here if this argument isn't an gc value
    return BaseDefiningValueResult(I, true);

  if (isa<Constant>(I)) {
    // We assume that objects with a constant base (e.g. a global) can't move
    // and don't need to be reported to the collector because they are always
    // live. Besides global references, all kinds of constants (e.g. undef,
    // constant expressions, null pointers) can be introduced by the inliner or
    // the optimizer, especially on dynamically dead paths.
    // Here we treat all of them as having single null base. By doing this we
    // trying to avoid problems reporting various conflicts in a form of
    // "phi (const1, const2)" or "phi (const, regular gc ptr)".
    // See constant.ll file for relevant test cases.

    return BaseDefiningValueResult(
        ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
  }

  if (CastInst *CI = dyn_cast<CastInst>(I)) {
    Value *Def = CI->stripPointerCasts();
    // If stripping pointer casts changes the address space there is an
    // addrspacecast in between.
    assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
               cast<PointerType>(CI->getType())->getAddressSpace() &&
           "unsupported addrspacecast");
    // If we find a cast instruction here, it means we've found a cast which is
    // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
    // handle int->ptr conversion.
    assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
    return findBaseDefiningValue(Def);
  }

  if (isa<LoadInst>(I))
    // The value loaded is an gc base itself
    return BaseDefiningValueResult(I, true);

  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
    // The base of this GEP is the base
    return findBaseDefiningValue(GEP->getPointerOperand());

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
    default:
      // fall through to general call handling
      break;
    case Intrinsic::experimental_gc_statepoint:
      llvm_unreachable("statepoints don't produce pointers");
    case Intrinsic::experimental_gc_relocate:
      // Rerunning safepoint insertion after safepoints are already
      // inserted is not supported.  It could probably be made to work,
      // but why are you doing this?  There's no good reason.
      llvm_unreachable("repeat safepoint insertion is not supported");
    case Intrinsic::gcroot:
      // Currently, this mechanism hasn't been extended to work with gcroot.
      // There's no reason it couldn't be, but I haven't thought about the
      // implications much.
      llvm_unreachable(
          "interaction with the gcroot mechanism is not supported");
    }
  }
  // We assume that functions in the source language only return base
  // pointers.  This should probably be generalized via attributes to support
  // both source language and internal functions.
  if (isa<CallInst>(I) || isa<InvokeInst>(I))
    return BaseDefiningValueResult(I, true);

  // TODO: I have absolutely no idea how to implement this part yet.  It's not
  // necessarily hard, I just haven't really looked at it yet.
  assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");

  if (isa<AtomicCmpXchgInst>(I))
    // A CAS is effectively a atomic store and load combined under a
    // predicate.  From the perspective of base pointers, we just treat it
    // like a load.
    return BaseDefiningValueResult(I, true);

  assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
                                   "binary ops which don't apply to pointers");

  // The aggregate ops.  Aggregates can either be in the heap or on the
  // stack, but in either case, this is simply a field load.  As a result,
  // this is a defining definition of the base just like a load is.
  if (isa<ExtractValueInst>(I))
    return BaseDefiningValueResult(I, true);

  // We should never see an insert vector since that would require we be
  // tracing back a struct value not a pointer value.
  assert(!isa<InsertValueInst>(I) &&
         "Base pointer for a struct is meaningless");

  // An extractelement produces a base result exactly when it's input does.
  // We may need to insert a parallel instruction to extract the appropriate
  // element out of the base vector corresponding to the input. Given this,
  // it's analogous to the phi and select case even though it's not a merge.
  if (isa<ExtractElementInst>(I))
    // Note: There a lot of obvious peephole cases here.  This are deliberately
    // handled after the main base pointer inference algorithm to make writing
    // test cases to exercise that code easier.
    return BaseDefiningValueResult(I, false);

  // The last two cases here don't return a base pointer.  Instead, they
  // return a value which dynamically selects from among several base
  // derived pointers (each with it's own base potentially).  It's the job of
  // the caller to resolve these.
  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
         "missing instruction case in findBaseDefiningValing");
  return BaseDefiningValueResult(I, false);
}

/// Returns the base defining value for this value.
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
  Value *&Cached = Cache[I];
  if (!Cached) {
    Cached = findBaseDefiningValue(I).BDV;
    LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
                      << Cached->getName() << "\n");
  }
  assert(Cache[I] != nullptr);
  return Cached;
}

/// Return a base pointer for this value if known.  Otherwise, return it's
/// base defining value.
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
  Value *Def = findBaseDefiningValueCached(I, Cache);
  auto Found = Cache.find(Def);
  if (Found != Cache.end()) {
    // Either a base-of relation, or a self reference.  Caller must check.
    return Found->second;
  }
  // Only a BDV available
  return Def;
}

/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
/// is it known to be a base pointer?  Or do we need to continue searching.
static bool isKnownBaseResult(Value *V) {
  if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
      !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
      !isa<ShuffleVectorInst>(V)) {
    // no recursion possible
    return true;
  }
  if (isa<Instruction>(V) &&
      cast<Instruction>(V)->getMetadata("is_base_value")) {
    // This is a previously inserted base phi or select.  We know
    // that this is a base value.
    return true;
  }

  // We need to keep searching
  return false;
}

namespace {

/// Models the state of a single base defining value in the findBasePointer
/// algorithm for determining where a new instruction is needed to propagate
/// the base of this BDV.
class BDVState {
public:
  enum Status { Unknown, Base, Conflict };

  BDVState() : BaseValue(nullptr) {}

  explicit BDVState(Status Status, Value *BaseValue = nullptr)
      : Status(Status), BaseValue(BaseValue) {
    assert(Status != Base || BaseValue);
  }

  explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}

  Status getStatus() const { return Status; }
  Value *getBaseValue() const { return BaseValue; }

  bool isBase() const { return getStatus() == Base; }
  bool isUnknown() const { return getStatus() == Unknown; }
  bool isConflict() const { return getStatus() == Conflict; }

  bool operator==(const BDVState &Other) const {
    return BaseValue == Other.BaseValue && Status == Other.Status;
  }

  bool operator!=(const BDVState &other) const { return !(*this == other); }

  LLVM_DUMP_METHOD
  void dump() const {
    print(dbgs());
    dbgs() << '\n';
  }

  void print(raw_ostream &OS) const {
    switch (getStatus()) {
    case Unknown:
      OS << "U";
      break;
    case Base:
      OS << "B";
      break;
    case Conflict:
      OS << "C";
      break;
    }
    OS << " (" << getBaseValue() << " - "
       << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
  }

private:
  Status Status = Unknown;
  AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
};

} // end anonymous namespace

#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
  State.print(OS);
  return OS;
}
#endif

static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
  switch (LHS.getStatus()) {
  case BDVState::Unknown:
    return RHS;

  case BDVState::Base:
    assert(LHS.getBaseValue() && "can't be null");
    if (RHS.isUnknown())
      return LHS;

    if (RHS.isBase()) {
      if (LHS.getBaseValue() == RHS.getBaseValue()) {
        assert(LHS == RHS && "equality broken!");
        return LHS;
      }
      return BDVState(BDVState::Conflict);
    }
    assert(RHS.isConflict() && "only three states!");
    return BDVState(BDVState::Conflict);

  case BDVState::Conflict:
    return LHS;
  }
  llvm_unreachable("only three states!");
}

// Values of type BDVState form a lattice, and this function implements the meet
// operation.
static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
  BDVState Result = meetBDVStateImpl(LHS, RHS);
  assert(Result == meetBDVStateImpl(RHS, LHS) &&
         "Math is wrong: meet does not commute!");
  return Result;
}

/// For a given value or instruction, figure out what base ptr its derived from.
/// For gc objects, this is simply itself.  On success, returns a value which is
/// the base pointer.  (This is reliable and can be used for relocation.)  On
/// failure, returns nullptr.
static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
  Value *Def = findBaseOrBDV(I, Cache);

  if (isKnownBaseResult(Def))
    return Def;

  // Here's the rough algorithm:
  // - For every SSA value, construct a mapping to either an actual base
  //   pointer or a PHI which obscures the base pointer.
  // - Construct a mapping from PHI to unknown TOP state.  Use an
  //   optimistic algorithm to propagate base pointer information.  Lattice
  //   looks like:
  //   UNKNOWN
  //   b1 b2 b3 b4
  //   CONFLICT
  //   When algorithm terminates, all PHIs will either have a single concrete
  //   base or be in a conflict state.
  // - For every conflict, insert a dummy PHI node without arguments.  Add
  //   these to the base[Instruction] = BasePtr mapping.  For every
  //   non-conflict, add the actual base.
  //  - For every conflict, add arguments for the base[a] of each input
  //   arguments.
  //
  // Note: A simpler form of this would be to add the conflict form of all
  // PHIs without running the optimistic algorithm.  This would be
  // analogous to pessimistic data flow and would likely lead to an
  // overall worse solution.

#ifndef NDEBUG
  auto isExpectedBDVType = [](Value *BDV) {
    return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
           isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
           isa<ShuffleVectorInst>(BDV);
  };
#endif

  // Once populated, will contain a mapping from each potentially non-base BDV
  // to a lattice value (described above) which corresponds to that BDV.
  // We use the order of insertion (DFS over the def/use graph) to provide a
  // stable deterministic ordering for visiting DenseMaps (which are unordered)
  // below.  This is important for deterministic compilation.
  MapVector<Value *, BDVState> States;

  // Recursively fill in all base defining values reachable from the initial
  // one for which we don't already know a definite base value for
  /* scope */ {
    SmallVector<Value*, 16> Worklist;
    Worklist.push_back(Def);
    States.insert({Def, BDVState()});
    while (!Worklist.empty()) {
      Value *Current = Worklist.pop_back_val();
      assert(!isKnownBaseResult(Current) && "why did it get added?");

      auto visitIncomingValue = [&](Value *InVal) {
        Value *Base = findBaseOrBDV(InVal, Cache);
        if (isKnownBaseResult(Base))
          // Known bases won't need new instructions introduced and can be
          // ignored safely
          return;
        assert(isExpectedBDVType(Base) && "the only non-base values "
               "we see should be base defining values");
        if (States.insert(std::make_pair(Base, BDVState())).second)
          Worklist.push_back(Base);
      };
      if (PHINode *PN = dyn_cast<PHINode>(Current)) {
        for (Value *InVal : PN->incoming_values())
          visitIncomingValue(InVal);
      } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
        visitIncomingValue(SI->getTrueValue());
        visitIncomingValue(SI->getFalseValue());
      } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
        visitIncomingValue(EE->getVectorOperand());
      } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
        visitIncomingValue(IE->getOperand(0)); // vector operand
        visitIncomingValue(IE->getOperand(1)); // scalar operand
      } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
        visitIncomingValue(SV->getOperand(0));
        visitIncomingValue(SV->getOperand(1));
      }
      else {
        llvm_unreachable("Unimplemented instruction case");
      }
    }
  }

#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "States after initialization:\n");
  for (auto Pair : States) {
    LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
  }
#endif

  // Return a phi state for a base defining value.  We'll generate a new
  // base state for known bases and expect to find a cached state otherwise.
  auto getStateForBDV = [&](Value *baseValue) {
    if (isKnownBaseResult(baseValue))
      return BDVState(baseValue);
    auto I = States.find(baseValue);
    assert(I != States.end() && "lookup failed!");
    return I->second;
  };

  bool Progress = true;
  while (Progress) {
#ifndef NDEBUG
    const size_t OldSize = States.size();
#endif
    Progress = false;
    // We're only changing values in this loop, thus safe to keep iterators.
    // Since this is computing a fixed point, the order of visit does not
    // effect the result.  TODO: We could use a worklist here and make this run
    // much faster.
    for (auto Pair : States) {
      Value *BDV = Pair.first;
      assert(!isKnownBaseResult(BDV) && "why did it get added?");

      // Given an input value for the current instruction, return a BDVState
      // instance which represents the BDV of that value.
      auto getStateForInput = [&](Value *V) mutable {
        Value *BDV = findBaseOrBDV(V, Cache);
        return getStateForBDV(BDV);
      };

      BDVState NewState;
      if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
        NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
        NewState =
            meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
      } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
        for (Value *Val : PN->incoming_values())
          NewState = meetBDVState(NewState, getStateForInput(Val));
      } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
        // The 'meet' for an extractelement is slightly trivial, but it's still
        // useful in that it drives us to conflict if our input is.
        NewState =
            meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
      } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
        // Given there's a inherent type mismatch between the operands, will
        // *always* produce Conflict.
        NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
        NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
      } else {
        // The only instance this does not return a Conflict is when both the
        // vector operands are the same vector.
        auto *SV = cast<ShuffleVectorInst>(BDV);
        NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
        NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
      }

      BDVState OldState = States[BDV];
      if (OldState != NewState) {
        Progress = true;
        States[BDV] = NewState;
      }
    }

    assert(OldSize == States.size() &&
           "fixed point shouldn't be adding any new nodes to state");
  }

#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
  for (auto Pair : States) {
    LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
  }
#endif

  // Insert Phis for all conflicts
  // TODO: adjust naming patterns to avoid this order of iteration dependency
  for (auto Pair : States) {
    Instruction *I = cast<Instruction>(Pair.first);
    BDVState State = Pair.second;
    assert(!isKnownBaseResult(I) && "why did it get added?");
    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");

    // extractelement instructions are a bit special in that we may need to
    // insert an extract even when we know an exact base for the instruction.
    // The problem is that we need to convert from a vector base to a scalar
    // base for the particular indice we're interested in.
    if (State.isBase() && isa<ExtractElementInst>(I) &&
        isa<VectorType>(State.getBaseValue()->getType())) {
      auto *EE = cast<ExtractElementInst>(I);
      // TODO: In many cases, the new instruction is just EE itself.  We should
      // exploit this, but can't do it here since it would break the invariant
      // about the BDV not being known to be a base.
      auto *BaseInst = ExtractElementInst::Create(
          State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
      BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
      States[I] = BDVState(BDVState::Base, BaseInst);
    }

    // Since we're joining a vector and scalar base, they can never be the
    // same.  As a result, we should always see insert element having reached
    // the conflict state.
    assert(!isa<InsertElementInst>(I) || State.isConflict());

    if (!State.isConflict())
      continue;

    /// Create and insert a new instruction which will represent the base of
    /// the given instruction 'I'.
    auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
      if (isa<PHINode>(I)) {
        BasicBlock *BB = I->getParent();
        int NumPreds = pred_size(BB);
        assert(NumPreds > 0 && "how did we reach here");
        std::string Name = suffixed_name_or(I, ".base", "base_phi");
        return PHINode::Create(I->getType(), NumPreds, Name, I);
      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
        // The undef will be replaced later
        UndefValue *Undef = UndefValue::get(SI->getType());
        std::string Name = suffixed_name_or(I, ".base", "base_select");
        return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
      } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
        UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
        std::string Name = suffixed_name_or(I, ".base", "base_ee");
        return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
                                          EE);
      } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
        UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
        UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
        std::string Name = suffixed_name_or(I, ".base", "base_ie");
        return InsertElementInst::Create(VecUndef, ScalarUndef,
                                         IE->getOperand(2), Name, IE);
      } else {
        auto *SV = cast<ShuffleVectorInst>(I);
        UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
        std::string Name = suffixed_name_or(I, ".base", "base_sv");
        return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
                                     Name, SV);
      }
    };
    Instruction *BaseInst = MakeBaseInstPlaceholder(I);
    // Add metadata marking this as a base value
    BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
    States[I] = BDVState(BDVState::Conflict, BaseInst);
  }

  // Returns a instruction which produces the base pointer for a given
  // instruction.  The instruction is assumed to be an input to one of the BDVs
  // seen in the inference algorithm above.  As such, we must either already
  // know it's base defining value is a base, or have inserted a new
  // instruction to propagate the base of it's BDV and have entered that newly
  // introduced instruction into the state table.  In either case, we are
  // assured to be able to determine an instruction which produces it's base
  // pointer.
  auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
    Value *BDV = findBaseOrBDV(Input, Cache);
    Value *Base = nullptr;
    if (isKnownBaseResult(BDV)) {
      Base = BDV;
    } else {
      // Either conflict or base.
      assert(States.count(BDV));
      Base = States[BDV].getBaseValue();
    }
    assert(Base && "Can't be null");
    // The cast is needed since base traversal may strip away bitcasts
    if (Base->getType() != Input->getType() && InsertPt)
      Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
    return Base;
  };

  // Fixup all the inputs of the new PHIs.  Visit order needs to be
  // deterministic and predictable because we're naming newly created
  // instructions.
  for (auto Pair : States) {
    Instruction *BDV = cast<Instruction>(Pair.first);
    BDVState State = Pair.second;

    assert(!isKnownBaseResult(BDV) && "why did it get added?");
    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
    if (!State.isConflict())
      continue;

    if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
      PHINode *PN = cast<PHINode>(BDV);
      unsigned NumPHIValues = PN->getNumIncomingValues();
      for (unsigned i = 0; i < NumPHIValues; i++) {
        Value *InVal = PN->getIncomingValue(i);
        BasicBlock *InBB = PN->getIncomingBlock(i);

        // If we've already seen InBB, add the same incoming value
        // we added for it earlier.  The IR verifier requires phi
        // nodes with multiple entries from the same basic block
        // to have the same incoming value for each of those
        // entries.  If we don't do this check here and basephi
        // has a different type than base, we'll end up adding two
        // bitcasts (and hence two distinct values) as incoming
        // values for the same basic block.

        int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
        if (BlockIndex != -1) {
          Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
          BasePHI->addIncoming(OldBase, InBB);

#ifndef NDEBUG
          Value *Base = getBaseForInput(InVal, nullptr);
          // In essence this assert states: the only way two values
          // incoming from the same basic block may be different is by
          // being different bitcasts of the same value.  A cleanup
          // that remains TODO is changing findBaseOrBDV to return an
          // llvm::Value of the correct type (and still remain pure).
          // This will remove the need to add bitcasts.
          assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
                 "Sanity -- findBaseOrBDV should be pure!");
#endif
          continue;
        }

        // Find the instruction which produces the base for each input.  We may
        // need to insert a bitcast in the incoming block.
        // TODO: Need to split critical edges if insertion is needed
        Value *Base = getBaseForInput(InVal, InBB->getTerminator());
        BasePHI->addIncoming(Base, InBB);
      }
      assert(BasePHI->getNumIncomingValues() == NumPHIValues);
    } else if (SelectInst *BaseSI =
                   dyn_cast<SelectInst>(State.getBaseValue())) {
      SelectInst *SI = cast<SelectInst>(BDV);

      // Find the instruction which produces the base for each input.
      // We may need to insert a bitcast.
      BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
      BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
    } else if (auto *BaseEE =
                   dyn_cast<ExtractElementInst>(State.getBaseValue())) {
      Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
      // Find the instruction which produces the base for each input.  We may
      // need to insert a bitcast.
      BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
    } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
      auto *BdvIE = cast<InsertElementInst>(BDV);
      auto UpdateOperand = [&](int OperandIdx) {
        Value *InVal = BdvIE->getOperand(OperandIdx);
        Value *Base = getBaseForInput(InVal, BaseIE);
        BaseIE->setOperand(OperandIdx, Base);
      };
      UpdateOperand(0); // vector operand
      UpdateOperand(1); // scalar operand
    } else {
      auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
      auto *BdvSV = cast<ShuffleVectorInst>(BDV);
      auto UpdateOperand = [&](int OperandIdx) {
        Value *InVal = BdvSV->getOperand(OperandIdx);
        Value *Base = getBaseForInput(InVal, BaseSV);
        BaseSV->setOperand(OperandIdx, Base);
      };
      UpdateOperand(0); // vector operand
      UpdateOperand(1); // vector operand
    }
  }

  // Cache all of our results so we can cheaply reuse them
  // NOTE: This is actually two caches: one of the base defining value
  // relation and one of the base pointer relation!  FIXME
  for (auto Pair : States) {
    auto *BDV = Pair.first;
    Value *Base = Pair.second.getBaseValue();
    assert(BDV && Base);
    assert(!isKnownBaseResult(BDV) && "why did it get added?");

    LLVM_DEBUG(
        dbgs() << "Updating base value cache"
               << " for: " << BDV->getName() << " from: "
               << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
               << " to: " << Base->getName() << "\n");

    if (Cache.count(BDV)) {
      assert(isKnownBaseResult(Base) &&
             "must be something we 'know' is a base pointer");
      // Once we transition from the BDV relation being store in the Cache to
      // the base relation being stored, it must be stable
      assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
             "base relation should be stable");
    }
    Cache[BDV] = Base;
  }
  assert(Cache.count(Def));
  return Cache[Def];
}

// For a set of live pointers (base and/or derived), identify the base
// pointer of the object which they are derived from.  This routine will
// mutate the IR graph as needed to make the 'base' pointer live at the
// definition site of 'derived'.  This ensures that any use of 'derived' can
// also use 'base'.  This may involve the insertion of a number of
// additional PHI nodes.
//
// preconditions: live is a set of pointer type Values
//
// side effects: may insert PHI nodes into the existing CFG, will preserve
// CFG, will not remove or mutate any existing nodes
//
// post condition: PointerToBase contains one (derived, base) pair for every
// pointer in live.  Note that derived can be equal to base if the original
// pointer was a base pointer.
static void
findBasePointers(const StatepointLiveSetTy &live,
                 MapVector<Value *, Value *> &PointerToBase,
                 DominatorTree *DT, DefiningValueMapTy &DVCache) {
  for (Value *ptr : live) {
    Value *base = findBasePointer(ptr, DVCache);
    assert(base && "failed to find base pointer");
    PointerToBase[ptr] = base;
    assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
            DT->dominates(cast<Instruction>(base)->getParent(),
                          cast<Instruction>(ptr)->getParent())) &&
           "The base we found better dominate the derived pointer");
  }
}

/// Find the required based pointers (and adjust the live set) for the given
/// parse point.
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
                             CallBase *Call,
                             PartiallyConstructedSafepointRecord &result) {
  MapVector<Value *, Value *> PointerToBase;
  findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);

  if (PrintBasePointers) {
    errs() << "Base Pairs (w/o Relocation):\n";
    for (auto &Pair : PointerToBase) {
      errs() << " derived ";
      Pair.first->printAsOperand(errs(), false);
      errs() << " base ";
      Pair.second->printAsOperand(errs(), false);
      errs() << "\n";;
    }
  }

  result.PointerToBase = PointerToBase;
}

/// Given an updated version of the dataflow liveness results, update the
/// liveset and base pointer maps for the call site CS.
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
                                  CallBase *Call,
                                  PartiallyConstructedSafepointRecord &result);

static void recomputeLiveInValues(
    Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
  // TODO-PERF: reuse the original liveness, then simply run the dataflow
  // again.  The old values are still live and will help it stabilize quickly.
  GCPtrLivenessData RevisedLivenessData;
  computeLiveInValues(DT, F, RevisedLivenessData);
  for (size_t i = 0; i < records.size(); i++) {
    struct PartiallyConstructedSafepointRecord &info = records[i];
    recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
  }
}

// When inserting gc.relocate and gc.result calls, we need to ensure there are
// no uses of the original value / return value between the gc.statepoint and
// the gc.relocate / gc.result call.  One case which can arise is a phi node
// starting one of the successor blocks.  We also need to be able to insert the
// gc.relocates only on the path which goes through the statepoint.  We might
// need to split an edge to make this possible.
static BasicBlock *
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
                            DominatorTree &DT) {
  BasicBlock *Ret = BB;
  if (!BB->getUniquePredecessor())
    Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);

  // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
  // from it
  FoldSingleEntryPHINodes(Ret);
  assert(!isa<PHINode>(Ret->begin()) &&
         "All PHI nodes should have been removed!");

  // At this point, we can safely insert a gc.relocate or gc.result as the first
  // instruction in Ret if needed.
  return Ret;
}

// Create new attribute set containing only attributes which can be transferred
// from original call to the safepoint.
static AttributeList legalizeCallAttributes(AttributeList AL) {
  if (AL.isEmpty())
    return AL;

  // Remove the readonly, readnone, and statepoint function attributes.
  AttrBuilder FnAttrs = AL.getFnAttributes();
  FnAttrs.removeAttribute(Attribute::ReadNone);
  FnAttrs.removeAttribute(Attribute::ReadOnly);
  for (Attribute A : AL.getFnAttributes()) {
    if (isStatepointDirectiveAttr(A))
      FnAttrs.remove(A);
  }

  // Just skip parameter and return attributes for now
  LLVMContext &Ctx = AL.getContext();
  return AttributeList::get(Ctx, AttributeList::FunctionIndex,
                            AttributeSet::get(Ctx, FnAttrs));
}

/// Helper function to place all gc relocates necessary for the given
/// statepoint.
/// Inputs:
///   liveVariables - list of variables to be relocated.
///   liveStart - index of the first live variable.
///   basePtrs - base pointers.
///   statepointToken - statepoint instruction to which relocates should be
///   bound.
///   Builder - Llvm IR builder to be used to construct new calls.
static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
                              const int LiveStart,
                              ArrayRef<Value *> BasePtrs,
                              Instruction *StatepointToken,
                              IRBuilder<> Builder) {
  if (LiveVariables.empty())
    return;

  auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
    auto ValIt = llvm::find(LiveVec, Val);
    assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
    size_t Index = std::distance(LiveVec.begin(), ValIt);
    assert(Index < LiveVec.size() && "Bug in std::find?");
    return Index;
  };
  Module *M = StatepointToken->getModule();

  // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
  // element type is i8 addrspace(1)*). We originally generated unique
  // declarations for each pointer type, but this proved problematic because
  // the intrinsic mangling code is incomplete and fragile.  Since we're moving
  // towards a single unified pointer type anyways, we can just cast everything
  // to an i8* of the right address space.  A bitcast is added later to convert
  // gc_relocate to the actual value's type.
  auto getGCRelocateDecl = [&] (Type *Ty) {
    assert(isHandledGCPointerType(Ty));
    auto AS = Ty->getScalarType()->getPointerAddressSpace();
    Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
    if (auto *VT = dyn_cast<VectorType>(Ty))
      NewTy = VectorType::get(NewTy, VT->getNumElements());
    return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
                                     {NewTy});
  };

  // Lazily populated map from input types to the canonicalized form mentioned
  // in the comment above.  This should probably be cached somewhere more
  // broadly.
  DenseMap<Type *, Function *> TypeToDeclMap;

  for (unsigned i = 0; i < LiveVariables.size(); i++) {
    // Generate the gc.relocate call and save the result
    Value *BaseIdx =
      Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
    Value *LiveIdx = Builder.getInt32(LiveStart + i);

    Type *Ty = LiveVariables[i]->getType();
    if (!TypeToDeclMap.count(Ty))
      TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
    Function *GCRelocateDecl = TypeToDeclMap[Ty];

    // only specify a debug name if we can give a useful one
    CallInst *Reloc = Builder.CreateCall(
        GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
        suffixed_name_or(LiveVariables[i], ".relocated", ""));
    // Trick CodeGen into thinking there are lots of free registers at this
    // fake call.
    Reloc->setCallingConv(CallingConv::Cold);
  }
}

namespace {

/// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
/// avoids having to worry about keeping around dangling pointers to Values.
class DeferredReplacement {
  AssertingVH<Instruction> Old;
  AssertingVH<Instruction> New;
  bool IsDeoptimize = false;

  DeferredReplacement() = default;

public:
  static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
    assert(Old != New && Old && New &&
           "Cannot RAUW equal values or to / from null!");

    DeferredReplacement D;
    D.Old = Old;
    D.New = New;
    return D;
  }

  static DeferredReplacement createDelete(Instruction *ToErase) {
    DeferredReplacement D;
    D.Old = ToErase;
    return D;
  }

  static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
#ifndef NDEBUG
    auto *F = cast<CallInst>(Old)->getCalledFunction();
    assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
           "Only way to construct a deoptimize deferred replacement");
#endif
    DeferredReplacement D;
    D.Old = Old;
    D.IsDeoptimize = true;
    return D;
  }

  /// Does the task represented by this instance.
  void doReplacement() {
    Instruction *OldI = Old;
    Instruction *NewI = New;

    assert(OldI != NewI && "Disallowed at construction?!");
    assert((!IsDeoptimize || !New) &&
           "Deoptimize intrinsics are not replaced!");

    Old = nullptr;
    New = nullptr;

    if (NewI)
      OldI->replaceAllUsesWith(NewI);

    if (IsDeoptimize) {
      // Note: we've inserted instructions, so the call to llvm.deoptimize may
      // not necessarily be followed by the matching return.
      auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
      new UnreachableInst(RI->getContext(), RI);
      RI->eraseFromParent();
    }

    OldI->eraseFromParent();
  }
};

} // end anonymous namespace

static StringRef getDeoptLowering(CallBase *Call) {
  const char *DeoptLowering = "deopt-lowering";
  if (Call->hasFnAttr(DeoptLowering)) {
    // FIXME: Calls have a *really* confusing interface around attributes
    // with values.
    const AttributeList &CSAS = Call->getAttributes();
    if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
      return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
          .getValueAsString();
    Function *F = Call->getCalledFunction();
    assert(F && F->hasFnAttribute(DeoptLowering));
    return F->getFnAttribute(DeoptLowering).getValueAsString();
  }
  return "live-through";
}

static void
makeStatepointExplicitImpl(CallBase *Call, /* to replace */
                           const SmallVectorImpl<Value *> &BasePtrs,
                           const SmallVectorImpl<Value *> &LiveVariables,
                           PartiallyConstructedSafepointRecord &Result,
                           std::vector<DeferredReplacement> &Replacements) {
  assert(BasePtrs.size() == LiveVariables.size());

  // Then go ahead and use the builder do actually do the inserts.  We insert
  // immediately before the previous instruction under the assumption that all
  // arguments will be available here.  We can't insert afterwards since we may
  // be replacing a terminator.
  IRBuilder<> Builder(Call);

  ArrayRef<Value *> GCArgs(LiveVariables);
  uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
  uint32_t NumPatchBytes = 0;
  uint32_t Flags = uint32_t(StatepointFlags::None);

  ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end());
  ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call);
  ArrayRef<Use> TransitionArgs;
  if (auto TransitionBundle =
          Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
    Flags |= uint32_t(StatepointFlags::GCTransition);
    TransitionArgs = TransitionBundle->Inputs;
  }

  // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
  // with a return value, we lower then as never returning calls to
  // __llvm_deoptimize that are followed by unreachable to get better codegen.
  bool IsDeoptimize = false;

  StatepointDirectives SD =
      parseStatepointDirectivesFromAttrs(Call->getAttributes());
  if (SD.NumPatchBytes)
    NumPatchBytes = *SD.NumPatchBytes;
  if (SD.StatepointID)
    StatepointID = *SD.StatepointID;

  // Pass through the requested lowering if any.  The default is live-through.
  StringRef DeoptLowering = getDeoptLowering(Call);
  if (DeoptLowering.equals("live-in"))
    Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
  else {
    assert(DeoptLowering.equals("live-through") && "Unsupported value!");
  }

  Value *CallTarget = Call->getCalledValue();
  if (Function *F = dyn_cast<Function>(CallTarget)) {
    if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
      // Calls to llvm.experimental.deoptimize are lowered to calls to the
      // __llvm_deoptimize symbol.  We want to resolve this now, since the
      // verifier does not allow taking the address of an intrinsic function.

      SmallVector<Type *, 8> DomainTy;
      for (Value *Arg : CallArgs)
        DomainTy.push_back(Arg->getType());
      auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
                                    /* isVarArg = */ false);

      // Note: CallTarget can be a bitcast instruction of a symbol if there are
      // calls to @llvm.experimental.deoptimize with different argument types in
      // the same module.  This is fine -- we assume the frontend knew what it
      // was doing when generating this kind of IR.
      CallTarget = F->getParent()
                       ->getOrInsertFunction("__llvm_deoptimize", FTy)
                       .getCallee();

      IsDeoptimize = true;
    }
  }

  // Create the statepoint given all the arguments
  Instruction *Token = nullptr;
  if (auto *CI = dyn_cast<CallInst>(Call)) {
    CallInst *SPCall = Builder.CreateGCStatepointCall(
        StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
        TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");

    SPCall->setTailCallKind(CI->getTailCallKind());
    SPCall->setCallingConv(CI->getCallingConv());

    // Currently we will fail on parameter attributes and on certain
    // function attributes.  In case if we can handle this set of attributes -
    // set up function attrs directly on statepoint and return attrs later for
    // gc_result intrinsic.
    SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes()));

    Token = SPCall;

    // Put the following gc_result and gc_relocate calls immediately after the
    // the old call (which we're about to delete)
    assert(CI->getNextNode() && "Not a terminator, must have next!");
    Builder.SetInsertPoint(CI->getNextNode());
    Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
  } else {
    auto *II = cast<InvokeInst>(Call);

    // Insert the new invoke into the old block.  We'll remove the old one in a
    // moment at which point this will become the new terminator for the
    // original block.
    InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
        StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
        II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
        "statepoint_token");

    SPInvoke->setCallingConv(II->getCallingConv());

    // Currently we will fail on parameter attributes and on certain
    // function attributes.  In case if we can handle this set of attributes -
    // set up function attrs directly on statepoint and return attrs later for
    // gc_result intrinsic.
    SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes()));

    Token = SPInvoke;

    // Generate gc relocates in exceptional path
    BasicBlock *UnwindBlock = II->getUnwindDest();
    assert(!isa<PHINode>(UnwindBlock->begin()) &&
           UnwindBlock->getUniquePredecessor() &&
           "can't safely insert in this block!");

    Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
    Builder.SetCurrentDebugLocation(II->getDebugLoc());

    // Attach exceptional gc relocates to the landingpad.
    Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
    Result.UnwindToken = ExceptionalToken;

    const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
    CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
                      Builder);

    // Generate gc relocates and returns for normal block
    BasicBlock *NormalDest = II->getNormalDest();
    assert(!isa<PHINode>(NormalDest->begin()) &&
           NormalDest->getUniquePredecessor() &&
           "can't safely insert in this block!");

    Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());

    // gc relocates will be generated later as if it were regular call
    // statepoint
  }
  assert(Token && "Should be set in one of the above branches!");

  if (IsDeoptimize) {
    // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
    // transform the tail-call like structure to a call to a void function
    // followed by unreachable to get better codegen.
    Replacements.push_back(
        DeferredReplacement::createDeoptimizeReplacement(Call));
  } else {
    Token->setName("statepoint_token");
    if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
      StringRef Name = Call->hasName() ? Call->getName() : "";
      CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
      GCResult->setAttributes(
          AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
                             Call->getAttributes().getRetAttributes()));

      // We cannot RAUW or delete CS.getInstruction() because it could be in the
      // live set of some other safepoint, in which case that safepoint's
      // PartiallyConstructedSafepointRecord will hold a raw pointer to this
      // llvm::Instruction.  Instead, we defer the replacement and deletion to
      // after the live sets have been made explicit in the IR, and we no longer
      // have raw pointers to worry about.
      Replacements.emplace_back(
          DeferredReplacement::createRAUW(Call, GCResult));
    } else {
      Replacements.emplace_back(DeferredReplacement::createDelete(Call));
    }
  }

  Result.StatepointToken = Token;

  // Second, create a gc.relocate for every live variable
  const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
  CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
}

// Replace an existing gc.statepoint with a new one and a set of gc.relocates
// which make the relocations happening at this safepoint explicit.
//
// WARNING: Does not do any fixup to adjust users of the original live
// values.  That's the callers responsibility.
static void
makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
                       PartiallyConstructedSafepointRecord &Result,
                       std::vector<DeferredReplacement> &Replacements) {
  const auto &LiveSet = Result.LiveSet;
  const auto &PointerToBase = Result.PointerToBase;

  // Convert to vector for efficient cross referencing.
  SmallVector<Value *, 64> BaseVec, LiveVec;
  LiveVec.reserve(LiveSet.size());
  BaseVec.reserve(LiveSet.size());
  for (Value *L : LiveSet) {
    LiveVec.push_back(L);
    assert(PointerToBase.count(L));
    Value *Base = PointerToBase.find(L)->second;
    BaseVec.push_back(Base);
  }
  assert(LiveVec.size() == BaseVec.size());

  // Do the actual rewriting and delete the old statepoint
  makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
}

// Helper function for the relocationViaAlloca.
//
// It receives iterator to the statepoint gc relocates and emits a store to the
// assigned location (via allocaMap) for the each one of them.  It adds the
// visited values into the visitedLiveValues set, which we will later use them
// for sanity checking.
static void
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
                       DenseMap<Value *, AllocaInst *> &AllocaMap,
                       DenseSet<Value *> &VisitedLiveValues) {
  for (User *U : GCRelocs) {
    GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
    if (!Relocate)
      continue;

    Value *OriginalValue = Relocate->getDerivedPtr();
    assert(AllocaMap.count(OriginalValue));
    Value *Alloca = AllocaMap[OriginalValue];

    // Emit store into the related alloca
    // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
    // the correct type according to alloca.
    assert(Relocate->getNextNode() &&
           "Should always have one since it's not a terminator");
    IRBuilder<> Builder(Relocate->getNextNode());
    Value *CastedRelocatedValue =
      Builder.CreateBitCast(Relocate,
                            cast<AllocaInst>(Alloca)->getAllocatedType(),
                            suffixed_name_or(Relocate, ".casted", ""));

    StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
    Store->insertAfter(cast<Instruction>(CastedRelocatedValue));

#ifndef NDEBUG
    VisitedLiveValues.insert(OriginalValue);
#endif
  }
}

// Helper function for the "relocationViaAlloca". Similar to the
// "insertRelocationStores" but works for rematerialized values.
static void insertRematerializationStores(
    const RematerializedValueMapTy &RematerializedValues,
    DenseMap<Value *, AllocaInst *> &AllocaMap,
    DenseSet<Value *> &VisitedLiveValues) {
  for (auto RematerializedValuePair: RematerializedValues) {
    Instruction *RematerializedValue = RematerializedValuePair.first;
    Value *OriginalValue = RematerializedValuePair.second;

    assert(AllocaMap.count(OriginalValue) &&
           "Can not find alloca for rematerialized value");
    Value *Alloca = AllocaMap[OriginalValue];

    StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
    Store->insertAfter(RematerializedValue);

#ifndef NDEBUG
    VisitedLiveValues.insert(OriginalValue);
#endif
  }
}

/// Do all the relocation update via allocas and mem2reg
static void relocationViaAlloca(
    Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
    ArrayRef<PartiallyConstructedSafepointRecord> Records) {
#ifndef NDEBUG
  // record initial number of (static) allocas; we'll check we have the same
  // number when we get done.
  int InitialAllocaNum = 0;
  for (Instruction &I : F.getEntryBlock())
    if (isa<AllocaInst>(I))
      InitialAllocaNum++;
#endif

  // TODO-PERF: change data structures, reserve
  DenseMap<Value *, AllocaInst *> AllocaMap;
  SmallVector<AllocaInst *, 200> PromotableAllocas;
  // Used later to chack that we have enough allocas to store all values
  std::size_t NumRematerializedValues = 0;
  PromotableAllocas.reserve(Live.size());

  // Emit alloca for "LiveValue" and record it in "allocaMap" and
  // "PromotableAllocas"
  const DataLayout &DL = F.getParent()->getDataLayout();
  auto emitAllocaFor = [&](Value *LiveValue) {
    AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
                                        DL.getAllocaAddrSpace(), "",
                                        F.getEntryBlock().getFirstNonPHI());
    AllocaMap[LiveValue] = Alloca;
    PromotableAllocas.push_back(Alloca);
  };

  // Emit alloca for each live gc pointer
  for (Value *V : Live)
    emitAllocaFor(V);

  // Emit allocas for rematerialized values
  for (const auto &Info : Records)
    for (auto RematerializedValuePair : Info.RematerializedValues) {
      Value *OriginalValue = RematerializedValuePair.second;
      if (AllocaMap.count(OriginalValue) != 0)
        continue;

      emitAllocaFor(OriginalValue);
      ++NumRematerializedValues;
    }

  // The next two loops are part of the same conceptual operation.  We need to
  // insert a store to the alloca after the original def and at each
  // redefinition.  We need to insert a load before each use.  These are split
  // into distinct loops for performance reasons.

  // Update gc pointer after each statepoint: either store a relocated value or
  // null (if no relocated value was found for this gc pointer and it is not a
  // gc_result).  This must happen before we update the statepoint with load of
  // alloca otherwise we lose the link between statepoint and old def.
  for (const auto &Info : Records) {
    Value *Statepoint = Info.StatepointToken;

    // This will be used for consistency check
    DenseSet<Value *> VisitedLiveValues;

    // Insert stores for normal statepoint gc relocates
    insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);

    // In case if it was invoke statepoint
    // we will insert stores for exceptional path gc relocates.
    if (isa<InvokeInst>(Statepoint)) {
      insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
                             VisitedLiveValues);
    }

    // Do similar thing with rematerialized values
    insertRematerializationStores(Info.RematerializedValues, AllocaMap,
                                  VisitedLiveValues);

    if (ClobberNonLive) {
      // As a debugging aid, pretend that an unrelocated pointer becomes null at
      // the gc.statepoint.  This will turn some subtle GC problems into
      // slightly easier to debug SEGVs.  Note that on large IR files with
      // lots of gc.statepoints this is extremely costly both memory and time
      // wise.
      SmallVector<AllocaInst *, 64> ToClobber;
      for (auto Pair : AllocaMap) {
        Value *Def = Pair.first;
        AllocaInst *Alloca = Pair.second;

        // This value was relocated
        if (VisitedLiveValues.count(Def)) {
          continue;
        }
        ToClobber.push_back(Alloca);
      }

      auto InsertClobbersAt = [&](Instruction *IP) {
        for (auto *AI : ToClobber) {
          auto PT = cast<PointerType>(AI->getAllocatedType());
          Constant *CPN = ConstantPointerNull::get(PT);
          StoreInst *Store = new StoreInst(CPN, AI);
          Store->insertBefore(IP);
        }
      };

      // Insert the clobbering stores.  These may get intermixed with the
      // gc.results and gc.relocates, but that's fine.
      if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
        InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
        InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
      } else {
        InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
      }
    }
  }

  // Update use with load allocas and add store for gc_relocated.
  for (auto Pair : AllocaMap) {
    Value *Def = Pair.first;
    AllocaInst *Alloca = Pair.second;

    // We pre-record the uses of allocas so that we dont have to worry about
    // later update that changes the user information..

    SmallVector<Instruction *, 20> Uses;
    // PERF: trade a linear scan for repeated reallocation
    Uses.reserve(Def->getNumUses());
    for (User *U : Def->users()) {
      if (!isa<ConstantExpr>(U)) {
        // If the def has a ConstantExpr use, then the def is either a
        // ConstantExpr use itself or null.  In either case
        // (recursively in the first, directly in the second), the oop
        // it is ultimately dependent on is null and this particular
        // use does not need to be fixed up.
        Uses.push_back(cast<Instruction>(U));
      }
    }

    llvm::sort(Uses);
    auto Last = std::unique(Uses.begin(), Uses.end());
    Uses.erase(Last, Uses.end());

    for (Instruction *Use : Uses) {
      if (isa<PHINode>(Use)) {
        PHINode *Phi = cast<PHINode>(Use);
        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
          if (Def == Phi->getIncomingValue(i)) {
            LoadInst *Load =
                new LoadInst(Alloca->getAllocatedType(), Alloca, "",
                             Phi->getIncomingBlock(i)->getTerminator());
            Phi->setIncomingValue(i, Load);
          }
        }
      } else {
        LoadInst *Load =
            new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
        Use->replaceUsesOfWith(Def, Load);
      }
    }

    // Emit store for the initial gc value.  Store must be inserted after load,
    // otherwise store will be in alloca's use list and an extra load will be
    // inserted before it.
    StoreInst *Store = new StoreInst(Def, Alloca);
    if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
        // InvokeInst is a terminator so the store need to be inserted into its
        // normal destination block.
        BasicBlock *NormalDest = Invoke->getNormalDest();
        Store->insertBefore(NormalDest->getFirstNonPHI());
      } else {
        assert(!Inst->isTerminator() &&
               "The only terminator that can produce a value is "
               "InvokeInst which is handled above.");
        Store->insertAfter(Inst);
      }
    } else {
      assert(isa<Argument>(Def));
      Store->insertAfter(cast<Instruction>(Alloca));
    }
  }

  assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
         "we must have the same allocas with lives");
  if (!PromotableAllocas.empty()) {
    // Apply mem2reg to promote alloca to SSA
    PromoteMemToReg(PromotableAllocas, DT);
  }

#ifndef NDEBUG
  for (auto &I : F.getEntryBlock())
    if (isa<AllocaInst>(I))
      InitialAllocaNum--;
  assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
#endif
}

/// Implement a unique function which doesn't require we sort the input
/// vector.  Doing so has the effect of changing the output of a couple of
/// tests in ways which make them less useful in testing fused safepoints.
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
  SmallSet<T, 8> Seen;
  Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
            Vec.end());
}

/// Insert holders so that each Value is obviously live through the entire
/// lifetime of the call.
static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
                                 SmallVectorImpl<CallInst *> &Holders) {
  if (Values.empty())
    // No values to hold live, might as well not insert the empty holder
    return;

  Module *M = Call->getModule();
  // Use a dummy vararg function to actually hold the values live
  FunctionCallee Func = M->getOrInsertFunction(
      "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
  if (isa<CallInst>(Call)) {
    // For call safepoints insert dummy calls right after safepoint
    Holders.push_back(
        CallInst::Create(Func, Values, "", &*++Call->getIterator()));
    return;
  }
  // For invoke safepooints insert dummy calls both in normal and
  // exceptional destination blocks
  auto *II = cast<InvokeInst>(Call);
  Holders.push_back(CallInst::Create(
      Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
  Holders.push_back(CallInst::Create(
      Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
}

static void findLiveReferences(
    Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
  GCPtrLivenessData OriginalLivenessData;
  computeLiveInValues(DT, F, OriginalLivenessData);
  for (size_t i = 0; i < records.size(); i++) {
    struct PartiallyConstructedSafepointRecord &info = records[i];
    analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
  }
}

// Helper function for the "rematerializeLiveValues". It walks use chain
// starting from the "CurrentValue" until it reaches the root of the chain, i.e.
// the base or a value it cannot process. Only "simple" values are processed
// (currently it is GEP's and casts). The returned root is  examined by the
// callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
// with all visited values.
static Value* findRematerializableChainToBasePointer(
  SmallVectorImpl<Instruction*> &ChainToBase,
  Value *CurrentValue) {
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
    ChainToBase.push_back(GEP);
    return findRematerializableChainToBasePointer(ChainToBase,
                                                  GEP->getPointerOperand());
  }

  if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
    if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
      return CI;

    ChainToBase.push_back(CI);
    return findRematerializableChainToBasePointer(ChainToBase,
                                                  CI->getOperand(0));
  }

  // We have reached the root of the chain, which is either equal to the base or
  // is the first unsupported value along the use chain.
  return CurrentValue;
}

// Helper function for the "rematerializeLiveValues". Compute cost of the use
// chain we are going to rematerialize.
static unsigned
chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
                       TargetTransformInfo &TTI) {
  unsigned Cost = 0;

  for (Instruction *Instr : Chain) {
    if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
      assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
             "non noop cast is found during rematerialization");

      Type *SrcTy = CI->getOperand(0)->getType();
      Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);

    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
      // Cost of the address calculation
      Type *ValTy = GEP->getSourceElementType();
      Cost += TTI.getAddressComputationCost(ValTy);

      // And cost of the GEP itself
      // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
      //       allowed for the external usage)
      if (!GEP->hasAllConstantIndices())
        Cost += 2;

    } else {
      llvm_unreachable("unsupported instruction type during rematerialization");
    }
  }

  return Cost;
}

static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
  unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
  if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
      OrigRootPhi.getParent() != AlternateRootPhi.getParent())
    return false;
  // Map of incoming values and their corresponding basic blocks of
  // OrigRootPhi.
  SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
  for (unsigned i = 0; i < PhiNum; i++)
    CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
        OrigRootPhi.getIncomingBlock(i);

  // Both current and base PHIs should have same incoming values and
  // the same basic blocks corresponding to the incoming values.
  for (unsigned i = 0; i < PhiNum; i++) {
    auto CIVI =
        CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
    if (CIVI == CurrentIncomingValues.end())
      return false;
    BasicBlock *CurrentIncomingBB = CIVI->second;
    if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
      return false;
  }
  return true;
}

// From the statepoint live set pick values that are cheaper to recompute then
// to relocate. Remove this values from the live set, rematerialize them after
// statepoint and record them in "Info" structure. Note that similar to
// relocated values we don't do any user adjustments here.
static void rematerializeLiveValues(CallBase *Call,
                                    PartiallyConstructedSafepointRecord &Info,
                                    TargetTransformInfo &TTI) {
  const unsigned int ChainLengthThreshold = 10;

  // Record values we are going to delete from this statepoint live set.
  // We can not di this in following loop due to iterator invalidation.
  SmallVector<Value *, 32> LiveValuesToBeDeleted;

  for (Value *LiveValue: Info.LiveSet) {
    // For each live pointer find its defining chain
    SmallVector<Instruction *, 3> ChainToBase;
    assert(Info.PointerToBase.count(LiveValue));
    Value *RootOfChain =
      findRematerializableChainToBasePointer(ChainToBase,
                                             LiveValue);

    // Nothing to do, or chain is too long
    if ( ChainToBase.size() == 0 ||
        ChainToBase.size() > ChainLengthThreshold)
      continue;

    // Handle the scenario where the RootOfChain is not equal to the
    // Base Value, but they are essentially the same phi values.
    if (RootOfChain != Info.PointerToBase[LiveValue]) {
      PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
      PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
      if (!OrigRootPhi || !AlternateRootPhi)
        continue;
      // PHI nodes that have the same incoming values, and belonging to the same
      // basic blocks are essentially the same SSA value.  When the original phi
      // has incoming values with different base pointers, the original phi is
      // marked as conflict, and an additional `AlternateRootPhi` with the same
      // incoming values get generated by the findBasePointer function. We need
      // to identify the newly generated AlternateRootPhi (.base version of phi)
      // and RootOfChain (the original phi node itself) are the same, so that we
      // can rematerialize the gep and casts. This is a workaround for the
      // deficiency in the findBasePointer algorithm.
      if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
        continue;
      // Now that the phi nodes are proved to be the same, assert that
      // findBasePointer's newly generated AlternateRootPhi is present in the
      // liveset of the call.
      assert(Info.LiveSet.count(AlternateRootPhi));
    }
    // Compute cost of this chain
    unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
    // TODO: We can also account for cases when we will be able to remove some
    //       of the rematerialized values by later optimization passes. I.e if
    //       we rematerialized several intersecting chains. Or if original values
    //       don't have any uses besides this statepoint.

    // For invokes we need to rematerialize each chain twice - for normal and
    // for unwind basic blocks. Model this by multiplying cost by two.
    if (isa<InvokeInst>(Call)) {
      Cost *= 2;
    }
    // If it's too expensive - skip it
    if (Cost >= RematerializationThreshold)
      continue;

    // Remove value from the live set
    LiveValuesToBeDeleted.push_back(LiveValue);

    // Clone instructions and record them inside "Info" structure

    // Walk backwards to visit top-most instructions first
    std::reverse(ChainToBase.begin(), ChainToBase.end());

    // Utility function which clones all instructions from "ChainToBase"
    // and inserts them before "InsertBefore". Returns rematerialized value
    // which should be used after statepoint.
    auto rematerializeChain = [&ChainToBase](
        Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
      Instruction *LastClonedValue = nullptr;
      Instruction *LastValue = nullptr;
      for (Instruction *Instr: ChainToBase) {
        // Only GEP's and casts are supported as we need to be careful to not
        // introduce any new uses of pointers not in the liveset.
        // Note that it's fine to introduce new uses of pointers which were
        // otherwise not used after this statepoint.
        assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));

        Instruction *ClonedValue = Instr->clone();
        ClonedValue->insertBefore(InsertBefore);
        ClonedValue->setName(Instr->getName() + ".remat");

        // If it is not first instruction in the chain then it uses previously
        // cloned value. We should update it to use cloned value.
        if (LastClonedValue) {
          assert(LastValue);
          ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
#ifndef NDEBUG
          for (auto OpValue : ClonedValue->operand_values()) {
            // Assert that cloned instruction does not use any instructions from
            // this chain other than LastClonedValue
            assert(!is_contained(ChainToBase, OpValue) &&
                   "incorrect use in rematerialization chain");
            // Assert that the cloned instruction does not use the RootOfChain
            // or the AlternateLiveBase.
            assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
          }
#endif
        } else {
          // For the first instruction, replace the use of unrelocated base i.e.
          // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
          // live set. They have been proved to be the same PHI nodes.  Note
          // that the *only* use of the RootOfChain in the ChainToBase list is
          // the first Value in the list.
          if (RootOfChain != AlternateLiveBase)
            ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
        }

        LastClonedValue = ClonedValue;
        LastValue = Instr;
      }
      assert(LastClonedValue);
      return LastClonedValue;
    };

    // Different cases for calls and invokes. For invokes we need to clone
    // instructions both on normal and unwind path.
    if (isa<CallInst>(Call)) {
      Instruction *InsertBefore = Call->getNextNode();
      assert(InsertBefore);
      Instruction *RematerializedValue = rematerializeChain(
          InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
      Info.RematerializedValues[RematerializedValue] = LiveValue;
    } else {
      auto *Invoke = cast<InvokeInst>(Call);

      Instruction *NormalInsertBefore =
          &*Invoke->getNormalDest()->getFirstInsertionPt();
      Instruction *UnwindInsertBefore =
          &*Invoke->getUnwindDest()->getFirstInsertionPt();

      Instruction *NormalRematerializedValue = rematerializeChain(
          NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
      Instruction *UnwindRematerializedValue = rematerializeChain(
          UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);

      Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
      Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
    }
  }

  // Remove rematerializaed values from the live set
  for (auto LiveValue: LiveValuesToBeDeleted) {
    Info.LiveSet.remove(LiveValue);
  }
}

static bool insertParsePoints(Function &F, DominatorTree &DT,
                              TargetTransformInfo &TTI,
                              SmallVectorImpl<CallBase *> &ToUpdate) {
#ifndef NDEBUG
  // sanity check the input
  std::set<CallBase *> Uniqued;
  Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
  assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");

  for (CallBase *Call : ToUpdate)
    assert(Call->getFunction() == &F);
#endif

  // When inserting gc.relocates for invokes, we need to be able to insert at
  // the top of the successor blocks.  See the comment on
  // normalForInvokeSafepoint on exactly what is needed.  Note that this step
  // may restructure the CFG.
  for (CallBase *Call : ToUpdate) {
    auto *II = dyn_cast<InvokeInst>(Call);
    if (!II)
      continue;
    normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
    normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
  }

  // A list of dummy calls added to the IR to keep various values obviously
  // live in the IR.  We'll remove all of these when done.
  SmallVector<CallInst *, 64> Holders;

  // Insert a dummy call with all of the deopt operands we'll need for the
  // actual safepoint insertion as arguments.  This ensures reference operands
  // in the deopt argument list are considered live through the safepoint (and
  // thus makes sure they get relocated.)
  for (CallBase *Call : ToUpdate) {
    SmallVector<Value *, 64> DeoptValues;

    for (Value *Arg : GetDeoptBundleOperands(Call)) {
      assert(!isUnhandledGCPointerType(Arg->getType()) &&
             "support for FCA unimplemented");
      if (isHandledGCPointerType(Arg->getType()))
        DeoptValues.push_back(Arg);
    }

    insertUseHolderAfter(Call, DeoptValues, Holders);
  }

  SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());

  // A) Identify all gc pointers which are statically live at the given call
  // site.
  findLiveReferences(F, DT, ToUpdate, Records);

  // B) Find the base pointers for each live pointer
  /* scope for caching */ {
    // Cache the 'defining value' relation used in the computation and
    // insertion of base phis and selects.  This ensures that we don't insert
    // large numbers of duplicate base_phis.
    DefiningValueMapTy DVCache;

    for (size_t i = 0; i < Records.size(); i++) {
      PartiallyConstructedSafepointRecord &info = Records[i];
      findBasePointers(DT, DVCache, ToUpdate[i], info);
    }
  } // end of cache scope

  // The base phi insertion logic (for any safepoint) may have inserted new
  // instructions which are now live at some safepoint.  The simplest such
  // example is:
  // loop:
  //   phi a  <-- will be a new base_phi here
  //   safepoint 1 <-- that needs to be live here
  //   gep a + 1
  //   safepoint 2
  //   br loop
  // We insert some dummy calls after each safepoint to definitely hold live
  // the base pointers which were identified for that safepoint.  We'll then
  // ask liveness for _every_ base inserted to see what is now live.  Then we
  // remove the dummy calls.
  Holders.reserve(Holders.size() + Records.size());
  for (size_t i = 0; i < Records.size(); i++) {
    PartiallyConstructedSafepointRecord &Info = Records[i];

    SmallVector<Value *, 128> Bases;
    for (auto Pair : Info.PointerToBase)
      Bases.push_back(Pair.second);

    insertUseHolderAfter(ToUpdate[i], Bases, Holders);
  }

  // By selecting base pointers, we've effectively inserted new uses. Thus, we
  // need to rerun liveness.  We may *also* have inserted new defs, but that's
  // not the key issue.
  recomputeLiveInValues(F, DT, ToUpdate, Records);

  if (PrintBasePointers) {
    for (auto &Info : Records) {
      errs() << "Base Pairs: (w/Relocation)\n";
      for (auto Pair : Info.PointerToBase) {
        errs() << " derived ";
        Pair.first->printAsOperand(errs(), false);
        errs() << " base ";
        Pair.second->printAsOperand(errs(), false);
        errs() << "\n";
      }
    }
  }

  // It is possible that non-constant live variables have a constant base.  For
  // example, a GEP with a variable offset from a global.  In this case we can
  // remove it from the liveset.  We already don't add constants to the liveset
  // because we assume they won't move at runtime and the GC doesn't need to be
  // informed about them.  The same reasoning applies if the base is constant.
  // Note that the relocation placement code relies on this filtering for
  // correctness as it expects the base to be in the liveset, which isn't true
  // if the base is constant.
  for (auto &Info : Records)
    for (auto &BasePair : Info.PointerToBase)
      if (isa<Constant>(BasePair.second))
        Info.LiveSet.remove(BasePair.first);

  for (CallInst *CI : Holders)
    CI->eraseFromParent();

  Holders.clear();

  // In order to reduce live set of statepoint we might choose to rematerialize
  // some values instead of relocating them. This is purely an optimization and
  // does not influence correctness.
  for (size_t i = 0; i < Records.size(); i++)
    rematerializeLiveValues(ToUpdate[i], Records[i], TTI);

  // We need this to safely RAUW and delete call or invoke return values that
  // may themselves be live over a statepoint.  For details, please see usage in
  // makeStatepointExplicitImpl.
  std::vector<DeferredReplacement> Replacements;

  // Now run through and replace the existing statepoints with new ones with
  // the live variables listed.  We do not yet update uses of the values being
  // relocated. We have references to live variables that need to
  // survive to the last iteration of this loop.  (By construction, the
  // previous statepoint can not be a live variable, thus we can and remove
  // the old statepoint calls as we go.)
  for (size_t i = 0; i < Records.size(); i++)
    makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);

  ToUpdate.clear(); // prevent accident use of invalid calls.

  for (auto &PR : Replacements)
    PR.doReplacement();

  Replacements.clear();

  for (auto &Info : Records) {
    // These live sets may contain state Value pointers, since we replaced calls
    // with operand bundles with calls wrapped in gc.statepoint, and some of
    // those calls may have been def'ing live gc pointers.  Clear these out to
    // avoid accidentally using them.
    //
    // TODO: We should create a separate data structure that does not contain
    // these live sets, and migrate to using that data structure from this point
    // onward.
    Info.LiveSet.clear();
    Info.PointerToBase.clear();
  }

  // Do all the fixups of the original live variables to their relocated selves
  SmallVector<Value *, 128> Live;
  for (size_t i = 0; i < Records.size(); i++) {
    PartiallyConstructedSafepointRecord &Info = Records[i];

    // We can't simply save the live set from the original insertion.  One of
    // the live values might be the result of a call which needs a safepoint.
    // That Value* no longer exists and we need to use the new gc_result.
    // Thankfully, the live set is embedded in the statepoint (and updated), so
    // we just grab that.
    Statepoint Statepoint(Info.StatepointToken);
    Live.insert(Live.end(), Statepoint.gc_args_begin(),
                Statepoint.gc_args_end());
#ifndef NDEBUG
    // Do some basic sanity checks on our liveness results before performing
    // relocation.  Relocation can and will turn mistakes in liveness results
    // into non-sensical code which is must harder to debug.
    // TODO: It would be nice to test consistency as well
    assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
           "statepoint must be reachable or liveness is meaningless");
    for (Value *V : Statepoint.gc_args()) {
      if (!isa<Instruction>(V))
        // Non-instruction values trivial dominate all possible uses
        continue;
      auto *LiveInst = cast<Instruction>(V);
      assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
             "unreachable values should never be live");
      assert(DT.dominates(LiveInst, Info.StatepointToken) &&
             "basic SSA liveness expectation violated by liveness analysis");
    }
#endif
  }
  unique_unsorted(Live);

#ifndef NDEBUG
  // sanity check
  for (auto *Ptr : Live)
    assert(isHandledGCPointerType(Ptr->getType()) &&
           "must be a gc pointer type");
#endif

  relocationViaAlloca(F, DT, Live, Records);
  return !Records.empty();
}

// Handles both return values and arguments for Functions and calls.
template <typename AttrHolder>
static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
                                      unsigned Index) {
  AttrBuilder R;
  if (AH.getDereferenceableBytes(Index))
    R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
                                  AH.getDereferenceableBytes(Index)));
  if (AH.getDereferenceableOrNullBytes(Index))
    R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
                                  AH.getDereferenceableOrNullBytes(Index)));
  if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
    R.addAttribute(Attribute::NoAlias);

  if (!R.empty())
    AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
}

static void stripNonValidAttributesFromPrototype(Function &F) {
  LLVMContext &Ctx = F.getContext();

  for (Argument &A : F.args())
    if (isa<PointerType>(A.getType()))
      RemoveNonValidAttrAtIndex(Ctx, F,
                                A.getArgNo() + AttributeList::FirstArgIndex);

  if (isa<PointerType>(F.getReturnType()))
    RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
}

/// Certain metadata on instructions are invalid after running RS4GC.
/// Optimizations that run after RS4GC can incorrectly use this metadata to
/// optimize functions. We drop such metadata on the instruction.
static void stripInvalidMetadataFromInstruction(Instruction &I) {
  if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
    return;
  // These are the attributes that are still valid on loads and stores after
  // RS4GC.
  // The metadata implying dereferenceability and noalias are (conservatively)
  // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
  // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
  // touch the entire heap including noalias objects. Note: The reasoning is
  // same as stripping the dereferenceability and noalias attributes that are
  // analogous to the metadata counterparts.
  // We also drop the invariant.load metadata on the load because that metadata
  // implies the address operand to the load points to memory that is never
  // changed once it became dereferenceable. This is no longer true after RS4GC.
  // Similar reasoning applies to invariant.group metadata, which applies to
  // loads within a group.
  unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
                         LLVMContext::MD_range,
                         LLVMContext::MD_alias_scope,
                         LLVMContext::MD_nontemporal,
                         LLVMContext::MD_nonnull,
                         LLVMContext::MD_align,
                         LLVMContext::MD_type};

  // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
  I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
}

static void stripNonValidDataFromBody(Function &F) {
  if (F.empty())
    return;

  LLVMContext &Ctx = F.getContext();
  MDBuilder Builder(Ctx);

  // Set of invariantstart instructions that we need to remove.
  // Use this to avoid invalidating the instruction iterator.
  SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;

  for (Instruction &I : instructions(F)) {
    // invariant.start on memory location implies that the referenced memory
    // location is constant and unchanging. This is no longer true after
    // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
    // which frees the entire heap and the presence of invariant.start allows
    // the optimizer to sink the load of a memory location past a statepoint,
    // which is incorrect.
    if (auto *II = dyn_cast<IntrinsicInst>(&I))
      if (II->getIntrinsicID() == Intrinsic::invariant_start) {
        InvariantStartInstructions.push_back(II);
        continue;
      }

    if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
      MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
      I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
    }

    stripInvalidMetadataFromInstruction(I);

    if (auto *Call = dyn_cast<CallBase>(&I)) {
      for (int i = 0, e = Call->arg_size(); i != e; i++)
        if (isa<PointerType>(Call->getArgOperand(i)->getType()))
          RemoveNonValidAttrAtIndex(Ctx, *Call,
                                    i + AttributeList::FirstArgIndex);
      if (isa<PointerType>(Call->getType()))
        RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
    }
  }

  // Delete the invariant.start instructions and RAUW undef.
  for (auto *II : InvariantStartInstructions) {
    II->replaceAllUsesWith(UndefValue::get(II->getType()));
    II->eraseFromParent();
  }
}

/// Returns true if this function should be rewritten by this pass.  The main
/// point of this function is as an extension point for custom logic.
static bool shouldRewriteStatepointsIn(Function &F) {
  // TODO: This should check the GCStrategy
  if (F.hasGC()) {
    const auto &FunctionGCName = F.getGC();
    const StringRef StatepointExampleName("statepoint-example");
    const StringRef CoreCLRName("coreclr");
    return (StatepointExampleName == FunctionGCName) ||
           (CoreCLRName == FunctionGCName);
  } else
    return false;
}

static void stripNonValidData(Module &M) {
#ifndef NDEBUG
  assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
#endif

  for (Function &F : M)
    stripNonValidAttributesFromPrototype(F);

  for (Function &F : M)
    stripNonValidDataFromBody(F);
}

bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
                                            TargetTransformInfo &TTI,
                                            const TargetLibraryInfo &TLI) {
  assert(!F.isDeclaration() && !F.empty() &&
         "need function body to rewrite statepoints in");
  assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");

  auto NeedsRewrite = [&TLI](Instruction &I) {
    if (const auto *Call = dyn_cast<CallBase>(&I))
      return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call);
    return false;
  };

  // Delete any unreachable statepoints so that we don't have unrewritten
  // statepoints surviving this pass.  This makes testing easier and the
  // resulting IR less confusing to human readers.
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  bool MadeChange = removeUnreachableBlocks(F, &DTU);
  // Flush the Dominator Tree.
  DTU.getDomTree();

  // Gather all the statepoints which need rewritten.  Be careful to only
  // consider those in reachable code since we need to ask dominance queries
  // when rewriting.  We'll delete the unreachable ones in a moment.
  SmallVector<CallBase *, 64> ParsePointNeeded;
  for (Instruction &I : instructions(F)) {
    // TODO: only the ones with the flag set!
    if (NeedsRewrite(I)) {
      // NOTE removeUnreachableBlocks() is stronger than
      // DominatorTree::isReachableFromEntry(). In other words
      // removeUnreachableBlocks can remove some blocks for which
      // isReachableFromEntry() returns true.
      assert(DT.isReachableFromEntry(I.getParent()) &&
            "no unreachable blocks expected");
      ParsePointNeeded.push_back(cast<CallBase>(&I));
    }
  }

  // Return early if no work to do.
  if (ParsePointNeeded.empty())
    return MadeChange;

  // As a prepass, go ahead and aggressively destroy single entry phi nodes.
  // These are created by LCSSA.  They have the effect of increasing the size
  // of liveness sets for no good reason.  It may be harder to do this post
  // insertion since relocations and base phis can confuse things.
  for (BasicBlock &BB : F)
    if (BB.getUniquePredecessor()) {
      MadeChange = true;
      FoldSingleEntryPHINodes(&BB);
    }

  // Before we start introducing relocations, we want to tweak the IR a bit to
  // avoid unfortunate code generation effects.  The main example is that we
  // want to try to make sure the comparison feeding a branch is after any
  // safepoints.  Otherwise, we end up with a comparison of pre-relocation
  // values feeding a branch after relocation.  This is semantically correct,
  // but results in extra register pressure since both the pre-relocation and
  // post-relocation copies must be available in registers.  For code without
  // relocations this is handled elsewhere, but teaching the scheduler to
  // reverse the transform we're about to do would be slightly complex.
  // Note: This may extend the live range of the inputs to the icmp and thus
  // increase the liveset of any statepoint we move over.  This is profitable
  // as long as all statepoints are in rare blocks.  If we had in-register
  // lowering for live values this would be a much safer transform.
  auto getConditionInst = [](Instruction *TI) -> Instruction * {
    if (auto *BI = dyn_cast<BranchInst>(TI))
      if (BI->isConditional())
        return dyn_cast<Instruction>(BI->getCondition());
    // TODO: Extend this to handle switches
    return nullptr;
  };
  for (BasicBlock &BB : F) {
    Instruction *TI = BB.getTerminator();
    if (auto *Cond = getConditionInst(TI))
      // TODO: Handle more than just ICmps here.  We should be able to move
      // most instructions without side effects or memory access.
      if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
        MadeChange = true;
        Cond->moveBefore(TI);
      }
  }

  // Nasty workaround - The base computation code in the main algorithm doesn't
  // consider the fact that a GEP can be used to convert a scalar to a vector.
  // The right fix for this is to integrate GEPs into the base rewriting
  // algorithm properly, this is just a short term workaround to prevent
  // crashes by canonicalizing such GEPs into fully vector GEPs.
  for (Instruction &I : instructions(F)) {
    if (!isa<GetElementPtrInst>(I))
      continue;

    unsigned VF = 0;
    for (unsigned i = 0; i < I.getNumOperands(); i++)
      if (I.getOperand(i)->getType()->isVectorTy()) {
        assert(VF == 0 ||
               VF == I.getOperand(i)->getType()->getVectorNumElements());
        VF = I.getOperand(i)->getType()->getVectorNumElements();
      }

    // It's the vector to scalar traversal through the pointer operand which
    // confuses base pointer rewriting, so limit ourselves to that case.
    if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
      IRBuilder<> B(&I);
      auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
      I.setOperand(0, Splat);
      MadeChange = true;
    }
  }

  MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
  return MadeChange;
}

// liveness computation via standard dataflow
// -------------------------------------------------------------------

// TODO: Consider using bitvectors for liveness, the set of potentially
// interesting values should be small and easy to pre-compute.

/// Compute the live-in set for the location rbegin starting from
/// the live-out set of the basic block
static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
                                BasicBlock::reverse_iterator End,
                                SetVector<Value *> &LiveTmp) {
  for (auto &I : make_range(Begin, End)) {
    // KILL/Def - Remove this definition from LiveIn
    LiveTmp.remove(&I);

    // Don't consider *uses* in PHI nodes, we handle their contribution to
    // predecessor blocks when we seed the LiveOut sets
    if (isa<PHINode>(I))
      continue;

    // USE - Add to the LiveIn set for this instruction
    for (Value *V : I.operands()) {
      assert(!isUnhandledGCPointerType(V->getType()) &&
             "support for FCA unimplemented");
      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
        // The choice to exclude all things constant here is slightly subtle.
        // There are two independent reasons:
        // - We assume that things which are constant (from LLVM's definition)
        // do not move at runtime.  For example, the address of a global
        // variable is fixed, even though it's contents may not be.
        // - Second, we can't disallow arbitrary inttoptr constants even
        // if the language frontend does.  Optimization passes are free to
        // locally exploit facts without respect to global reachability.  This
        // can create sections of code which are dynamically unreachable and
        // contain just about anything.  (see constants.ll in tests)
        LiveTmp.insert(V);
      }
    }
  }
}

static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
  for (BasicBlock *Succ : successors(BB)) {
    for (auto &I : *Succ) {
      PHINode *PN = dyn_cast<PHINode>(&I);
      if (!PN)
        break;

      Value *V = PN->getIncomingValueForBlock(BB);
      assert(!isUnhandledGCPointerType(V->getType()) &&
             "support for FCA unimplemented");
      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
        LiveTmp.insert(V);
    }
  }
}

static SetVector<Value *> computeKillSet(BasicBlock *BB) {
  SetVector<Value *> KillSet;
  for (Instruction &I : *BB)
    if (isHandledGCPointerType(I.getType()))
      KillSet.insert(&I);
  return KillSet;
}

#ifndef NDEBUG
/// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
/// sanity check for the liveness computation.
static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
                          Instruction *TI, bool TermOkay = false) {
  for (Value *V : Live) {
    if (auto *I = dyn_cast<Instruction>(V)) {
      // The terminator can be a member of the LiveOut set.  LLVM's definition
      // of instruction dominance states that V does not dominate itself.  As
      // such, we need to special case this to allow it.
      if (TermOkay && TI == I)
        continue;
      assert(DT.dominates(I, TI) &&
             "basic SSA liveness expectation violated by liveness analysis");
    }
  }
}

/// Check that all the liveness sets used during the computation of liveness
/// obey basic SSA properties.  This is useful for finding cases where we miss
/// a def.
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
                          BasicBlock &BB) {
  checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
  checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
  checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
}
#endif

static void computeLiveInValues(DominatorTree &DT, Function &F,
                                GCPtrLivenessData &Data) {
  SmallSetVector<BasicBlock *, 32> Worklist;

  // Seed the liveness for each individual block
  for (BasicBlock &BB : F) {
    Data.KillSet[&BB] = computeKillSet(&BB);
    Data.LiveSet[&BB].clear();
    computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);

#ifndef NDEBUG
    for (Value *Kill : Data.KillSet[&BB])
      assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
#endif

    Data.LiveOut[&BB] = SetVector<Value *>();
    computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
    Data.LiveIn[&BB] = Data.LiveSet[&BB];
    Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
    Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
    if (!Data.LiveIn[&BB].empty())
      Worklist.insert(pred_begin(&BB), pred_end(&BB));
  }

  // Propagate that liveness until stable
  while (!Worklist.empty()) {
    BasicBlock *BB = Worklist.pop_back_val();

    // Compute our new liveout set, then exit early if it hasn't changed despite
    // the contribution of our successor.
    SetVector<Value *> LiveOut = Data.LiveOut[BB];
    const auto OldLiveOutSize = LiveOut.size();
    for (BasicBlock *Succ : successors(BB)) {
      assert(Data.LiveIn.count(Succ));
      LiveOut.set_union(Data.LiveIn[Succ]);
    }
    // assert OutLiveOut is a subset of LiveOut
    if (OldLiveOutSize == LiveOut.size()) {
      // If the sets are the same size, then we didn't actually add anything
      // when unioning our successors LiveIn.  Thus, the LiveIn of this block
      // hasn't changed.
      continue;
    }
    Data.LiveOut[BB] = LiveOut;

    // Apply the effects of this basic block
    SetVector<Value *> LiveTmp = LiveOut;
    LiveTmp.set_union(Data.LiveSet[BB]);
    LiveTmp.set_subtract(Data.KillSet[BB]);

    assert(Data.LiveIn.count(BB));
    const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
    // assert: OldLiveIn is a subset of LiveTmp
    if (OldLiveIn.size() != LiveTmp.size()) {
      Data.LiveIn[BB] = LiveTmp;
      Worklist.insert(pred_begin(BB), pred_end(BB));
    }
  } // while (!Worklist.empty())

#ifndef NDEBUG
  // Sanity check our output against SSA properties.  This helps catch any
  // missing kills during the above iteration.
  for (BasicBlock &BB : F)
    checkBasicSSA(DT, Data, BB);
#endif
}

static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
                              StatepointLiveSetTy &Out) {
  BasicBlock *BB = Inst->getParent();

  // Note: The copy is intentional and required
  assert(Data.LiveOut.count(BB));
  SetVector<Value *> LiveOut = Data.LiveOut[BB];

  // We want to handle the statepoint itself oddly.  It's
  // call result is not live (normal), nor are it's arguments
  // (unless they're used again later).  This adjustment is
  // specifically what we need to relocate
  computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
                      LiveOut);
  LiveOut.remove(Inst);
  Out.insert(LiveOut.begin(), LiveOut.end());
}

static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
                                  CallBase *Call,
                                  PartiallyConstructedSafepointRecord &Info) {
  StatepointLiveSetTy Updated;
  findLiveSetAtInst(Call, RevisedLivenessData, Updated);

  // We may have base pointers which are now live that weren't before.  We need
  // to update the PointerToBase structure to reflect this.
  for (auto V : Updated)
    if (Info.PointerToBase.insert({V, V}).second) {
      assert(isKnownBaseResult(V) &&
             "Can't find base for unexpected live value!");
      continue;
    }

#ifndef NDEBUG
  for (auto V : Updated)
    assert(Info.PointerToBase.count(V) &&
           "Must be able to find base for live value!");
#endif

  // Remove any stale base mappings - this can happen since our liveness is
  // more precise then the one inherent in the base pointer analysis.
  DenseSet<Value *> ToErase;
  for (auto KVPair : Info.PointerToBase)
    if (!Updated.count(KVPair.first))
      ToErase.insert(KVPair.first);

  for (auto *V : ToErase)
    Info.PointerToBase.erase(V);

#ifndef NDEBUG
  for (auto KVPair : Info.PointerToBase)
    assert(Updated.count(KVPair.first) && "record for non-live value");
#endif

  Info.LiveSet = Updated;
}