SpeculateAroundPHIs.cpp 35.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
//===- SpeculateAroundPHIs.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/SpeculateAroundPHIs.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

using namespace llvm;

#define DEBUG_TYPE "spec-phis"

STATISTIC(NumPHIsSpeculated, "Number of PHI nodes we speculated around");
STATISTIC(NumEdgesSplit,
          "Number of critical edges which were split for speculation");
STATISTIC(NumSpeculatedInstructions,
          "Number of instructions we speculated around the PHI nodes");
STATISTIC(NumNewRedundantInstructions,
          "Number of new, redundant instructions inserted");

/// Check whether speculating the users of a PHI node around the PHI
/// will be safe.
///
/// This checks both that all of the users are safe and also that all of their
/// operands are either recursively safe or already available along an incoming
/// edge to the PHI.
///
/// This routine caches both all the safe nodes explored in `PotentialSpecSet`
/// and the chain of nodes that definitively reach any unsafe node in
/// `UnsafeSet`. By preserving these between repeated calls to this routine for
/// PHIs in the same basic block, the exploration here can be reused. However,
/// these caches must no be reused for PHIs in a different basic block as they
/// reflect what is available along incoming edges.
static bool
isSafeToSpeculatePHIUsers(PHINode &PN, DominatorTree &DT,
                          SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
                          SmallPtrSetImpl<Instruction *> &UnsafeSet) {
  auto *PhiBB = PN.getParent();
  SmallPtrSet<Instruction *, 4> Visited;
  SmallVector<std::pair<Instruction *, User::value_op_iterator>, 16> DFSStack;

  // Walk each user of the PHI node.
  for (Use &U : PN.uses()) {
    auto *UI = cast<Instruction>(U.getUser());

    // Ensure the use post-dominates the PHI node. This ensures that, in the
    // absence of unwinding, the use will actually be reached.
    // FIXME: We use a blunt hammer of requiring them to be in the same basic
    // block. We should consider using actual post-dominance here in the
    // future.
    if (UI->getParent() != PhiBB) {
      LLVM_DEBUG(dbgs() << "  Unsafe: use in a different BB: " << *UI << "\n");
      return false;
    }

    if (auto CS = ImmutableCallSite(UI)) {
      if (CS.isConvergent() || CS.cannotDuplicate()) {
        LLVM_DEBUG(dbgs() << "  Unsafe: convergent "
                   "callsite cannot de duplicated: " << *UI << '\n');
        return false;
      }
    }

    // FIXME: This check is much too conservative. We're not going to move these
    // instructions onto new dynamic paths through the program unless there is
    // a call instruction between the use and the PHI node. And memory isn't
    // changing unless there is a store in that same sequence. We should
    // probably change this to do at least a limited scan of the intervening
    // instructions and allow handling stores in easily proven safe cases.
    if (mayBeMemoryDependent(*UI)) {
      LLVM_DEBUG(dbgs() << "  Unsafe: can't speculate use: " << *UI << "\n");
      return false;
    }

    // Now do a depth-first search of everything these users depend on to make
    // sure they are transitively safe. This is a depth-first search, but we
    // check nodes in preorder to minimize the amount of checking.
    Visited.insert(UI);
    DFSStack.push_back({UI, UI->value_op_begin()});
    do {
      User::value_op_iterator OpIt;
      std::tie(UI, OpIt) = DFSStack.pop_back_val();

      while (OpIt != UI->value_op_end()) {
        auto *OpI = dyn_cast<Instruction>(*OpIt);
        // Increment to the next operand for whenever we continue.
        ++OpIt;
        // No need to visit non-instructions, which can't form dependencies.
        if (!OpI)
          continue;

        // Now do the main pre-order checks that this operand is a viable
        // dependency of something we want to speculate.

        // First do a few checks for instructions that won't require
        // speculation at all because they are trivially available on the
        // incoming edge (either through dominance or through an incoming value
        // to a PHI).
        //
        // The cases in the current block will be trivially dominated by the
        // edge.
        auto *ParentBB = OpI->getParent();
        if (ParentBB == PhiBB) {
          if (isa<PHINode>(OpI)) {
            // We can trivially map through phi nodes in the same block.
            continue;
          }
        } else if (DT.dominates(ParentBB, PhiBB)) {
          // Instructions from dominating blocks are already available.
          continue;
        }

        // Once we know that we're considering speculating the operand, check
        // if we've already explored this subgraph and found it to be safe.
        if (PotentialSpecSet.count(OpI))
          continue;

        // If we've already explored this subgraph and found it unsafe, bail.
        // If when we directly test whether this is safe it fails, bail.
        if (UnsafeSet.count(OpI) || ParentBB != PhiBB ||
            mayBeMemoryDependent(*OpI)) {
          LLVM_DEBUG(dbgs() << "  Unsafe: can't speculate transitive use: "
                            << *OpI << "\n");
          // Record the stack of instructions which reach this node as unsafe
          // so we prune subsequent searches.
          UnsafeSet.insert(OpI);
          for (auto &StackPair : DFSStack) {
            Instruction *I = StackPair.first;
            UnsafeSet.insert(I);
          }
          return false;
        }

        // Skip any operands we're already recursively checking.
        if (!Visited.insert(OpI).second)
          continue;

        // Push onto the stack and descend. We can directly continue this
        // loop when ascending.
        DFSStack.push_back({UI, OpIt});
        UI = OpI;
        OpIt = OpI->value_op_begin();
      }

      // This node and all its operands are safe. Go ahead and cache that for
      // reuse later.
      PotentialSpecSet.insert(UI);

      // Continue with the next node on the stack.
    } while (!DFSStack.empty());
  }

#ifndef NDEBUG
  // Every visited operand should have been marked as safe for speculation at
  // this point. Verify this and return success.
  for (auto *I : Visited)
    assert(PotentialSpecSet.count(I) &&
           "Failed to mark a visited instruction as safe!");
#endif
  return true;
}

/// Check whether, in isolation, a given PHI node is both safe and profitable
/// to speculate users around.
///
/// This handles checking whether there are any constant operands to a PHI
/// which could represent a useful speculation candidate, whether the users of
/// the PHI are safe to speculate including all their transitive dependencies,
/// and whether after speculation there will be some cost savings (profit) to
/// folding the operands into the users of the PHI node. Returns true if both
/// safe and profitable with relevant cost savings updated in the map and with
/// an update to the `PotentialSpecSet`. Returns false if either safety or
/// profitability are absent. Some new entries may be made to the
/// `PotentialSpecSet` even when this routine returns false, but they remain
/// conservatively correct.
///
/// The profitability check here is a local one, but it checks this in an
/// interesting way. Beyond checking that the total cost of materializing the
/// constants will be less than the cost of folding them into their users, it
/// also checks that no one incoming constant will have a higher cost when
/// folded into its users rather than materialized. This higher cost could
/// result in a dynamic *path* that is more expensive even when the total cost
/// is lower. Currently, all of the interesting cases where this optimization
/// should fire are ones where it is a no-loss operation in this sense. If we
/// ever want to be more aggressive here, we would need to balance the
/// different incoming edges' cost by looking at their respective
/// probabilities.
static bool isSafeAndProfitableToSpeculateAroundPHI(
    PHINode &PN, SmallDenseMap<PHINode *, int, 16> &CostSavingsMap,
    SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
    SmallPtrSetImpl<Instruction *> &UnsafeSet, DominatorTree &DT,
    TargetTransformInfo &TTI) {
  // First see whether there is any cost savings to speculating around this
  // PHI, and build up a map of the constant inputs to how many times they
  // occur.
  bool NonFreeMat = false;
  struct CostsAndCount {
    int MatCost = TargetTransformInfo::TCC_Free;
    int FoldedCost = TargetTransformInfo::TCC_Free;
    int Count = 0;
  };
  SmallDenseMap<ConstantInt *, CostsAndCount, 16> CostsAndCounts;
  SmallPtrSet<BasicBlock *, 16> IncomingConstantBlocks;
  for (int i : llvm::seq<int>(0, PN.getNumIncomingValues())) {
    auto *IncomingC = dyn_cast<ConstantInt>(PN.getIncomingValue(i));
    if (!IncomingC)
      continue;

    // Only visit each incoming edge with a constant input once.
    if (!IncomingConstantBlocks.insert(PN.getIncomingBlock(i)).second)
      continue;

    auto InsertResult = CostsAndCounts.insert({IncomingC, {}});
    // Count how many edges share a given incoming costant.
    ++InsertResult.first->second.Count;
    // Only compute the cost the first time we see a particular constant.
    if (!InsertResult.second)
      continue;

    int &MatCost = InsertResult.first->second.MatCost;
    MatCost = TTI.getIntImmCost(IncomingC->getValue(), IncomingC->getType());
    NonFreeMat |= MatCost != TTI.TCC_Free;
  }
  if (!NonFreeMat) {
    LLVM_DEBUG(dbgs() << "    Free: " << PN << "\n");
    // No profit in free materialization.
    return false;
  }

  // Now check that the uses of this PHI can actually be speculated,
  // otherwise we'll still have to materialize the PHI value.
  if (!isSafeToSpeculatePHIUsers(PN, DT, PotentialSpecSet, UnsafeSet)) {
    LLVM_DEBUG(dbgs() << "    Unsafe PHI: " << PN << "\n");
    return false;
  }

  // Compute how much (if any) savings are available by speculating around this
  // PHI.
  for (Use &U : PN.uses()) {
    auto *UserI = cast<Instruction>(U.getUser());
    // Now check whether there is any savings to folding the incoming constants
    // into this use.
    unsigned Idx = U.getOperandNo();

    // If we have a binary operator that is commutative, an actual constant
    // operand would end up on the RHS, so pretend the use of the PHI is on the
    // RHS.
    //
    // Technically, this is a bit weird if *both* operands are PHIs we're
    // speculating. But if that is the case, giving an "optimistic" cost isn't
    // a bad thing because after speculation it will constant fold. And
    // moreover, such cases should likely have been constant folded already by
    // some other pass, so we shouldn't worry about "modeling" them terribly
    // accurately here. Similarly, if the other operand is a constant, it still
    // seems fine to be "optimistic" in our cost modeling, because when the
    // incoming operand from the PHI node is also a constant, we will end up
    // constant folding.
    if (UserI->isBinaryOp() && UserI->isCommutative() && Idx != 1)
      // Assume we will commute the constant to the RHS to be canonical.
      Idx = 1;

    // Get the intrinsic ID if this user is an intrinsic.
    Intrinsic::ID IID = Intrinsic::not_intrinsic;
    if (auto *UserII = dyn_cast<IntrinsicInst>(UserI))
      IID = UserII->getIntrinsicID();

    for (auto &IncomingConstantAndCostsAndCount : CostsAndCounts) {
      ConstantInt *IncomingC = IncomingConstantAndCostsAndCount.first;
      int MatCost = IncomingConstantAndCostsAndCount.second.MatCost;
      int &FoldedCost = IncomingConstantAndCostsAndCount.second.FoldedCost;
      if (IID)
        FoldedCost += TTI.getIntImmCostIntrin(IID, Idx, IncomingC->getValue(),
                                              IncomingC->getType());
      else
        FoldedCost +=
            TTI.getIntImmCostInst(UserI->getOpcode(), Idx,
                                  IncomingC->getValue(), IncomingC->getType());

      // If we accumulate more folded cost for this incoming constant than
      // materialized cost, then we'll regress any edge with this constant so
      // just bail. We're only interested in cases where folding the incoming
      // constants is at least break-even on all paths.
      if (FoldedCost > MatCost) {
        LLVM_DEBUG(dbgs() << "  Not profitable to fold imm: " << *IncomingC
                          << "\n"
                             "    Materializing cost:    "
                          << MatCost
                          << "\n"
                             "    Accumulated folded cost: "
                          << FoldedCost << "\n");
        return false;
      }
    }
  }

  // Compute the total cost savings afforded by this PHI node.
  int TotalMatCost = TTI.TCC_Free, TotalFoldedCost = TTI.TCC_Free;
  for (auto IncomingConstantAndCostsAndCount : CostsAndCounts) {
    int MatCost = IncomingConstantAndCostsAndCount.second.MatCost;
    int FoldedCost = IncomingConstantAndCostsAndCount.second.FoldedCost;
    int Count = IncomingConstantAndCostsAndCount.second.Count;

    TotalMatCost += MatCost * Count;
    TotalFoldedCost += FoldedCost * Count;
  }
  assert(TotalFoldedCost <= TotalMatCost && "If each constant's folded cost is "
                                            "less that its materialized cost, "
                                            "the sum must be as well.");

  LLVM_DEBUG(dbgs() << "    Cost savings " << (TotalMatCost - TotalFoldedCost)
                    << ": " << PN << "\n");
  CostSavingsMap[&PN] = TotalMatCost - TotalFoldedCost;
  return true;
}

/// Simple helper to walk all the users of a list of phis depth first, and call
/// a visit function on each one in post-order.
///
/// All of the PHIs should be in the same basic block, and this is primarily
/// used to make a single depth-first walk across their collective users
/// without revisiting any subgraphs. Callers should provide a fast, idempotent
/// callable to test whether a node has been visited and the more important
/// callable to actually visit a particular node.
///
/// Depth-first and postorder here refer to the *operand* graph -- we start
/// from a collection of users of PHI nodes and walk "up" the operands
/// depth-first.
template <typename IsVisitedT, typename VisitT>
static void visitPHIUsersAndDepsInPostOrder(ArrayRef<PHINode *> PNs,
                                            IsVisitedT IsVisited,
                                            VisitT Visit) {
  SmallVector<std::pair<Instruction *, User::value_op_iterator>, 16> DFSStack;
  for (auto *PN : PNs)
    for (Use &U : PN->uses()) {
      auto *UI = cast<Instruction>(U.getUser());
      if (IsVisited(UI))
        // Already visited this user, continue across the roots.
        continue;

      // Otherwise, walk the operand graph depth-first and visit each
      // dependency in postorder.
      DFSStack.push_back({UI, UI->value_op_begin()});
      do {
        User::value_op_iterator OpIt;
        std::tie(UI, OpIt) = DFSStack.pop_back_val();
        while (OpIt != UI->value_op_end()) {
          auto *OpI = dyn_cast<Instruction>(*OpIt);
          // Increment to the next operand for whenever we continue.
          ++OpIt;
          // No need to visit non-instructions, which can't form dependencies,
          // or instructions outside of our potential dependency set that we
          // were given. Finally, if we've already visited the node, continue
          // to the next.
          if (!OpI || IsVisited(OpI))
            continue;

          // Push onto the stack and descend. We can directly continue this
          // loop when ascending.
          DFSStack.push_back({UI, OpIt});
          UI = OpI;
          OpIt = OpI->value_op_begin();
        }

        // Finished visiting children, visit this node.
        assert(!IsVisited(UI) && "Should not have already visited a node!");
        Visit(UI);
      } while (!DFSStack.empty());
    }
}

/// Find profitable PHIs to speculate.
///
/// For a PHI node to be profitable, we need the cost of speculating its users
/// (and their dependencies) to not exceed the savings of folding the PHI's
/// constant operands into the speculated users.
///
/// Computing this is surprisingly challenging. Because users of two different
/// PHI nodes can depend on each other or on common other instructions, it may
/// be profitable to speculate two PHI nodes together even though neither one
/// in isolation is profitable. The straightforward way to find all the
/// profitable PHIs would be to check each combination of PHIs' cost, but this
/// is exponential in complexity.
///
/// Even if we assume that we only care about cases where we can consider each
/// PHI node in isolation (rather than considering cases where none are
/// profitable in isolation but some subset are profitable as a set), we still
/// have a challenge. The obvious way to find all individually profitable PHIs
/// is to iterate until reaching a fixed point, but this will be quadratic in
/// complexity. =/
///
/// This code currently uses a linear-to-compute order for a greedy approach.
/// It won't find cases where a set of PHIs must be considered together, but it
/// handles most cases of order dependence without quadratic iteration. The
/// specific order used is the post-order across the operand DAG. When the last
/// user of a PHI is visited in this postorder walk, we check it for
/// profitability.
///
/// There is an orthogonal extra complexity to all of this: computing the cost
/// itself can easily become a linear computation making everything again (at
/// best) quadratic. Using a postorder over the operand graph makes it
/// particularly easy to avoid this through dynamic programming. As we do the
/// postorder walk, we build the transitive cost of that subgraph. It is also
/// straightforward to then update these costs when we mark a PHI for
/// speculation so that subsequent PHIs don't re-pay the cost of already
/// speculated instructions.
static SmallVector<PHINode *, 16>
findProfitablePHIs(ArrayRef<PHINode *> PNs,
                   const SmallDenseMap<PHINode *, int, 16> &CostSavingsMap,
                   const SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
                   int NumPreds, DominatorTree &DT, TargetTransformInfo &TTI) {
  SmallVector<PHINode *, 16> SpecPNs;

  // First, establish a reverse mapping from immediate users of the PHI nodes
  // to the nodes themselves, and count how many users each PHI node has in
  // a way we can update while processing them.
  SmallDenseMap<Instruction *, TinyPtrVector<PHINode *>, 16> UserToPNMap;
  SmallDenseMap<PHINode *, int, 16> PNUserCountMap;
  SmallPtrSet<Instruction *, 16> UserSet;
  for (auto *PN : PNs) {
    assert(UserSet.empty() && "Must start with an empty user set!");
    for (Use &U : PN->uses())
      UserSet.insert(cast<Instruction>(U.getUser()));
    PNUserCountMap[PN] = UserSet.size();
    for (auto *UI : UserSet)
      UserToPNMap.insert({UI, {}}).first->second.push_back(PN);
    UserSet.clear();
  }

  // Now do a DFS across the operand graph of the users, computing cost as we
  // go and when all costs for a given PHI are known, checking that PHI for
  // profitability.
  SmallDenseMap<Instruction *, int, 16> SpecCostMap;
  visitPHIUsersAndDepsInPostOrder(
      PNs,
      /*IsVisited*/
      [&](Instruction *I) {
        // We consider anything that isn't potentially speculated to be
        // "visited" as it is already handled. Similarly, anything that *is*
        // potentially speculated but for which we have an entry in our cost
        // map, we're done.
        return !PotentialSpecSet.count(I) || SpecCostMap.count(I);
      },
      /*Visit*/
      [&](Instruction *I) {
        // We've fully visited the operands, so sum their cost with this node
        // and update the cost map.
        int Cost = TTI.TCC_Free;
        for (Value *OpV : I->operand_values())
          if (auto *OpI = dyn_cast<Instruction>(OpV)) {
            auto CostMapIt = SpecCostMap.find(OpI);
            if (CostMapIt != SpecCostMap.end())
              Cost += CostMapIt->second;
          }
        Cost += TTI.getUserCost(I);
        bool Inserted = SpecCostMap.insert({I, Cost}).second;
        (void)Inserted;
        assert(Inserted && "Must not re-insert a cost during the DFS!");

        // Now check if this node had a corresponding PHI node using it. If so,
        // we need to decrement the outstanding user count for it.
        auto UserPNsIt = UserToPNMap.find(I);
        if (UserPNsIt == UserToPNMap.end())
          return;
        auto &UserPNs = UserPNsIt->second;
        auto UserPNsSplitIt = std::stable_partition(
            UserPNs.begin(), UserPNs.end(), [&](PHINode *UserPN) {
              int &PNUserCount = PNUserCountMap.find(UserPN)->second;
              assert(
                  PNUserCount > 0 &&
                  "Should never re-visit a PN after its user count hits zero!");
              --PNUserCount;
              return PNUserCount != 0;
            });

        // FIXME: Rather than one at a time, we should sum the savings as the
        // cost will be completely shared.
        SmallVector<Instruction *, 16> SpecWorklist;
        for (auto *PN : llvm::make_range(UserPNsSplitIt, UserPNs.end())) {
          int SpecCost = TTI.TCC_Free;
          for (Use &U : PN->uses())
            SpecCost +=
                SpecCostMap.find(cast<Instruction>(U.getUser()))->second;
          SpecCost *= (NumPreds - 1);
          // When the user count of a PHI node hits zero, we should check its
          // profitability. If profitable, we should mark it for speculation
          // and zero out the cost of everything it depends on.
          int CostSavings = CostSavingsMap.find(PN)->second;
          if (SpecCost > CostSavings) {
            LLVM_DEBUG(dbgs() << "  Not profitable, speculation cost: " << *PN
                              << "\n"
                                 "    Cost savings:     "
                              << CostSavings
                              << "\n"
                                 "    Speculation cost: "
                              << SpecCost << "\n");
            continue;
          }

          // We're going to speculate this user-associated PHI. Copy it out and
          // add its users to the worklist to update their cost.
          SpecPNs.push_back(PN);
          for (Use &U : PN->uses()) {
            auto *UI = cast<Instruction>(U.getUser());
            auto CostMapIt = SpecCostMap.find(UI);
            if (CostMapIt->second == 0)
              continue;
            // Zero out this cost entry to avoid duplicates.
            CostMapIt->second = 0;
            SpecWorklist.push_back(UI);
          }
        }

        // Now walk all the operands of the users in the worklist transitively
        // to zero out all the memoized costs.
        while (!SpecWorklist.empty()) {
          Instruction *SpecI = SpecWorklist.pop_back_val();
          assert(SpecCostMap.find(SpecI)->second == 0 &&
                 "Didn't zero out a cost!");

          // Walk the operands recursively to zero out their cost as well.
          for (auto *OpV : SpecI->operand_values()) {
            auto *OpI = dyn_cast<Instruction>(OpV);
            if (!OpI)
              continue;
            auto CostMapIt = SpecCostMap.find(OpI);
            if (CostMapIt == SpecCostMap.end() || CostMapIt->second == 0)
              continue;
            CostMapIt->second = 0;
            SpecWorklist.push_back(OpI);
          }
        }
      });

  return SpecPNs;
}

/// Speculate users around a set of PHI nodes.
///
/// This routine does the actual speculation around a set of PHI nodes where we
/// have determined this to be both safe and profitable.
///
/// This routine handles any spliting of critical edges necessary to create
/// a safe block to speculate into as well as cloning the instructions and
/// rewriting all uses.
static void speculatePHIs(ArrayRef<PHINode *> SpecPNs,
                          SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
                          SmallSetVector<BasicBlock *, 16> &PredSet,
                          DominatorTree &DT) {
  LLVM_DEBUG(dbgs() << "  Speculating around " << SpecPNs.size() << " PHIs!\n");
  NumPHIsSpeculated += SpecPNs.size();

  // Split any critical edges so that we have a block to hoist into.
  auto *ParentBB = SpecPNs[0]->getParent();
  SmallVector<BasicBlock *, 16> SpecPreds;
  SpecPreds.reserve(PredSet.size());
  for (auto *PredBB : PredSet) {
    auto *NewPredBB = SplitCriticalEdge(
        PredBB, ParentBB,
        CriticalEdgeSplittingOptions(&DT).setMergeIdenticalEdges());
    if (NewPredBB) {
      ++NumEdgesSplit;
      LLVM_DEBUG(dbgs() << "  Split critical edge from: " << PredBB->getName()
                        << "\n");
      SpecPreds.push_back(NewPredBB);
    } else {
      assert(PredBB->getSingleSuccessor() == ParentBB &&
             "We need a non-critical predecessor to speculate into.");
      assert(!isa<InvokeInst>(PredBB->getTerminator()) &&
             "Cannot have a non-critical invoke!");

      // Already non-critical, use existing pred.
      SpecPreds.push_back(PredBB);
    }
  }

  SmallPtrSet<Instruction *, 16> SpecSet;
  SmallVector<Instruction *, 16> SpecList;
  visitPHIUsersAndDepsInPostOrder(SpecPNs,
                                  /*IsVisited*/
                                  [&](Instruction *I) {
                                    // This is visited if we don't need to
                                    // speculate it or we already have
                                    // speculated it.
                                    return !PotentialSpecSet.count(I) ||
                                           SpecSet.count(I);
                                  },
                                  /*Visit*/
                                  [&](Instruction *I) {
                                    // All operands scheduled, schedule this
                                    // node.
                                    SpecSet.insert(I);
                                    SpecList.push_back(I);
                                  });

  int NumSpecInsts = SpecList.size() * SpecPreds.size();
  int NumRedundantInsts = NumSpecInsts - SpecList.size();
  LLVM_DEBUG(dbgs() << "  Inserting " << NumSpecInsts
                    << " speculated instructions, " << NumRedundantInsts
                    << " redundancies\n");
  NumSpeculatedInstructions += NumSpecInsts;
  NumNewRedundantInstructions += NumRedundantInsts;

  // Each predecessor is numbered by its index in `SpecPreds`, so for each
  // instruction we speculate, the speculated instruction is stored in that
  // index of the vector associated with the original instruction. We also
  // store the incoming values for each predecessor from any PHIs used.
  SmallDenseMap<Instruction *, SmallVector<Value *, 2>, 16> SpeculatedValueMap;

  // Inject the synthetic mappings to rewrite PHIs to the appropriate incoming
  // value. This handles both the PHIs we are speculating around and any other
  // PHIs that happen to be used.
  for (auto *OrigI : SpecList)
    for (auto *OpV : OrigI->operand_values()) {
      auto *OpPN = dyn_cast<PHINode>(OpV);
      if (!OpPN || OpPN->getParent() != ParentBB)
        continue;

      auto InsertResult = SpeculatedValueMap.insert({OpPN, {}});
      if (!InsertResult.second)
        continue;

      auto &SpeculatedVals = InsertResult.first->second;

      // Populating our structure for mapping is particularly annoying because
      // finding an incoming value for a particular predecessor block in a PHI
      // node is a linear time operation! To avoid quadratic behavior, we build
      // a map for this PHI node's incoming values and then translate it into
      // the more compact representation used below.
      SmallDenseMap<BasicBlock *, Value *, 16> IncomingValueMap;
      for (int i : llvm::seq<int>(0, OpPN->getNumIncomingValues()))
        IncomingValueMap[OpPN->getIncomingBlock(i)] = OpPN->getIncomingValue(i);

      for (auto *PredBB : SpecPreds)
        SpeculatedVals.push_back(IncomingValueMap.find(PredBB)->second);
    }

  // Speculate into each predecessor.
  for (int PredIdx : llvm::seq<int>(0, SpecPreds.size())) {
    auto *PredBB = SpecPreds[PredIdx];
    assert(PredBB->getSingleSuccessor() == ParentBB &&
           "We need a non-critical predecessor to speculate into.");

    for (auto *OrigI : SpecList) {
      auto *NewI = OrigI->clone();
      NewI->setName(Twine(OrigI->getName()) + "." + Twine(PredIdx));
      NewI->insertBefore(PredBB->getTerminator());

      // Rewrite all the operands to the previously speculated instructions.
      // Because we're walking in-order, the defs must precede the uses and we
      // should already have these mappings.
      for (Use &U : NewI->operands()) {
        auto *OpI = dyn_cast<Instruction>(U.get());
        if (!OpI)
          continue;
        auto MapIt = SpeculatedValueMap.find(OpI);
        if (MapIt == SpeculatedValueMap.end())
          continue;
        const auto &SpeculatedVals = MapIt->second;
        assert(SpeculatedVals[PredIdx] &&
               "Must have a speculated value for this predecessor!");
        assert(SpeculatedVals[PredIdx]->getType() == OpI->getType() &&
               "Speculated value has the wrong type!");

        // Rewrite the use to this predecessor's speculated instruction.
        U.set(SpeculatedVals[PredIdx]);
      }

      // Commute instructions which now have a constant in the LHS but not the
      // RHS.
      if (NewI->isBinaryOp() && NewI->isCommutative() &&
          isa<Constant>(NewI->getOperand(0)) &&
          !isa<Constant>(NewI->getOperand(1)))
        NewI->getOperandUse(0).swap(NewI->getOperandUse(1));

      SpeculatedValueMap[OrigI].push_back(NewI);
      assert(SpeculatedValueMap[OrigI][PredIdx] == NewI &&
             "Mismatched speculated instruction index!");
    }
  }

  // Walk the speculated instruction list and if they have uses, insert a PHI
  // for them from the speculated versions, and replace the uses with the PHI.
  // Then erase the instructions as they have been fully speculated. The walk
  // needs to be in reverse so that we don't think there are users when we'll
  // actually eventually remove them later.
  IRBuilder<> IRB(SpecPNs[0]);
  for (auto *OrigI : llvm::reverse(SpecList)) {
    // Check if we need a PHI for any remaining users and if so, insert it.
    if (!OrigI->use_empty()) {
      auto *SpecIPN = IRB.CreatePHI(OrigI->getType(), SpecPreds.size(),
                                    Twine(OrigI->getName()) + ".phi");
      // Add the incoming values we speculated.
      auto &SpeculatedVals = SpeculatedValueMap.find(OrigI)->second;
      for (int PredIdx : llvm::seq<int>(0, SpecPreds.size()))
        SpecIPN->addIncoming(SpeculatedVals[PredIdx], SpecPreds[PredIdx]);

      // And replace the uses with the PHI node.
      OrigI->replaceAllUsesWith(SpecIPN);
    }

    // It is important to immediately erase this so that it stops using other
    // instructions. This avoids inserting needless PHIs of them.
    OrigI->eraseFromParent();
  }

  // All of the uses of the speculated phi nodes should be removed at this
  // point, so erase them.
  for (auto *SpecPN : SpecPNs) {
    assert(SpecPN->use_empty() && "All users should have been speculated!");
    SpecPN->eraseFromParent();
  }
}

/// Try to speculate around a series of PHIs from a single basic block.
///
/// This routine checks whether any of these PHIs are profitable to speculate
/// users around. If safe and profitable, it does the speculation. It returns
/// true when at least some speculation occurs.
static bool tryToSpeculatePHIs(SmallVectorImpl<PHINode *> &PNs,
                               DominatorTree &DT, TargetTransformInfo &TTI) {
  LLVM_DEBUG(dbgs() << "Evaluating phi nodes for speculation:\n");

  // Savings in cost from speculating around a PHI node.
  SmallDenseMap<PHINode *, int, 16> CostSavingsMap;

  // Remember the set of instructions that are candidates for speculation so
  // that we can quickly walk things within that space. This prunes out
  // instructions already available along edges, etc.
  SmallPtrSet<Instruction *, 16> PotentialSpecSet;

  // Remember the set of instructions that are (transitively) unsafe to
  // speculate into the incoming edges of this basic block. This avoids
  // recomputing them for each PHI node we check. This set is specific to this
  // block though as things are pruned out of it based on what is available
  // along incoming edges.
  SmallPtrSet<Instruction *, 16> UnsafeSet;

  // For each PHI node in this block, check whether there are immediate folding
  // opportunities from speculation, and whether that speculation will be
  // valid. This determise the set of safe PHIs to speculate.
  PNs.erase(llvm::remove_if(PNs,
                            [&](PHINode *PN) {
                              return !isSafeAndProfitableToSpeculateAroundPHI(
                                  *PN, CostSavingsMap, PotentialSpecSet,
                                  UnsafeSet, DT, TTI);
                            }),
            PNs.end());
  // If no PHIs were profitable, skip.
  if (PNs.empty()) {
    LLVM_DEBUG(dbgs() << "  No safe and profitable PHIs found!\n");
    return false;
  }

  // We need to know how much speculation will cost which is determined by how
  // many incoming edges will need a copy of each speculated instruction.
  SmallSetVector<BasicBlock *, 16> PredSet;
  for (auto *PredBB : PNs[0]->blocks()) {
    if (!PredSet.insert(PredBB))
      continue;

    // We cannot speculate when a predecessor is an indirect branch.
    // FIXME: We also can't reliably create a non-critical edge block for
    // speculation if the predecessor is an invoke. This doesn't seem
    // fundamental and we should probably be splitting critical edges
    // differently.
    const auto *TermInst = PredBB->getTerminator();
    if (isa<IndirectBrInst>(TermInst) ||
        isa<InvokeInst>(TermInst) ||
        isa<CallBrInst>(TermInst)) {
      LLVM_DEBUG(dbgs() << "  Invalid: predecessor terminator: "
                        << PredBB->getName() << "\n");
      return false;
    }
  }
  if (PredSet.size() < 2) {
    LLVM_DEBUG(dbgs() << "  Unimportant: phi with only one predecessor\n");
    return false;
  }

  SmallVector<PHINode *, 16> SpecPNs = findProfitablePHIs(
      PNs, CostSavingsMap, PotentialSpecSet, PredSet.size(), DT, TTI);
  if (SpecPNs.empty())
    // Nothing to do.
    return false;

  speculatePHIs(SpecPNs, PotentialSpecSet, PredSet, DT);
  return true;
}

PreservedAnalyses SpeculateAroundPHIsPass::run(Function &F,
                                               FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);

  bool Changed = false;
  for (auto *BB : ReversePostOrderTraversal<Function *>(&F)) {
    SmallVector<PHINode *, 16> PNs;
    auto BBI = BB->begin();
    while (auto *PN = dyn_cast<PHINode>(&*BBI)) {
      PNs.push_back(PN);
      ++BBI;
    }

    if (PNs.empty())
      continue;

    Changed |= tryToSpeculatePHIs(PNs, DT, TTI);
  }

  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  return PA;
}