TailRecursionElimination.cpp 35.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file transforms calls of the current function (self recursion) followed
// by a return instruction with a branch to the entry of the function, creating
// a loop.  This pass also implements the following extensions to the basic
// algorithm:
//
//  1. Trivial instructions between the call and return do not prevent the
//     transformation from taking place, though currently the analysis cannot
//     support moving any really useful instructions (only dead ones).
//  2. This pass transforms functions that are prevented from being tail
//     recursive by an associative and commutative expression to use an
//     accumulator variable, thus compiling the typical naive factorial or
//     'fib' implementation into efficient code.
//  3. TRE is performed if the function returns void, if the return
//     returns the result returned by the call, or if the function returns a
//     run-time constant on all exits from the function.  It is possible, though
//     unlikely, that the return returns something else (like constant 0), and
//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
//     the function return the exact same value.
//  4. If it can prove that callees do not access their caller stack frame,
//     they are marked as eligible for tail call elimination (by the code
//     generator).
//
// There are several improvements that could be made:
//
//  1. If the function has any alloca instructions, these instructions will be
//     moved out of the entry block of the function, causing them to be
//     evaluated each time through the tail recursion.  Safely keeping allocas
//     in the entry block requires analysis to proves that the tail-called
//     function does not read or write the stack object.
//  2. Tail recursion is only performed if the call immediately precedes the
//     return instruction.  It's possible that there could be a jump between
//     the call and the return.
//  3. There can be intervening operations between the call and the return that
//     prevent the TRE from occurring.  For example, there could be GEP's and
//     stores to memory that will not be read or written by the call.  This
//     requires some substantial analysis (such as with DSA) to prove safe to
//     move ahead of the call, but doing so could allow many more TREs to be
//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
//  4. The algorithm we use to detect if callees access their caller stack
//     frames is very primitive.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;

#define DEBUG_TYPE "tailcallelim"

STATISTIC(NumEliminated, "Number of tail calls removed");
STATISTIC(NumRetDuped,   "Number of return duplicated");
STATISTIC(NumAccumAdded, "Number of accumulators introduced");

/// Scan the specified function for alloca instructions.
/// If it contains any dynamic allocas, returns false.
static bool canTRE(Function &F) {
  // Because of PR962, we don't TRE dynamic allocas.
  return llvm::all_of(instructions(F), [](Instruction &I) {
    auto *AI = dyn_cast<AllocaInst>(&I);
    return !AI || AI->isStaticAlloca();
  });
}

namespace {
struct AllocaDerivedValueTracker {
  // Start at a root value and walk its use-def chain to mark calls that use the
  // value or a derived value in AllocaUsers, and places where it may escape in
  // EscapePoints.
  void walk(Value *Root) {
    SmallVector<Use *, 32> Worklist;
    SmallPtrSet<Use *, 32> Visited;

    auto AddUsesToWorklist = [&](Value *V) {
      for (auto &U : V->uses()) {
        if (!Visited.insert(&U).second)
          continue;
        Worklist.push_back(&U);
      }
    };

    AddUsesToWorklist(Root);

    while (!Worklist.empty()) {
      Use *U = Worklist.pop_back_val();
      Instruction *I = cast<Instruction>(U->getUser());

      switch (I->getOpcode()) {
      case Instruction::Call:
      case Instruction::Invoke: {
        CallSite CS(I);
        // If the alloca-derived argument is passed byval it is not an escape
        // point, or a use of an alloca. Calling with byval copies the contents
        // of the alloca into argument registers or stack slots, which exist
        // beyond the lifetime of the current frame.
        if (CS.isArgOperand(U) && CS.isByValArgument(CS.getArgumentNo(U)))
          continue;
        bool IsNocapture =
            CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
        callUsesLocalStack(CS, IsNocapture);
        if (IsNocapture) {
          // If the alloca-derived argument is passed in as nocapture, then it
          // can't propagate to the call's return. That would be capturing.
          continue;
        }
        break;
      }
      case Instruction::Load: {
        // The result of a load is not alloca-derived (unless an alloca has
        // otherwise escaped, but this is a local analysis).
        continue;
      }
      case Instruction::Store: {
        if (U->getOperandNo() == 0)
          EscapePoints.insert(I);
        continue;  // Stores have no users to analyze.
      }
      case Instruction::BitCast:
      case Instruction::GetElementPtr:
      case Instruction::PHI:
      case Instruction::Select:
      case Instruction::AddrSpaceCast:
        break;
      default:
        EscapePoints.insert(I);
        break;
      }

      AddUsesToWorklist(I);
    }
  }

  void callUsesLocalStack(CallSite CS, bool IsNocapture) {
    // Add it to the list of alloca users.
    AllocaUsers.insert(CS.getInstruction());

    // If it's nocapture then it can't capture this alloca.
    if (IsNocapture)
      return;

    // If it can write to memory, it can leak the alloca value.
    if (!CS.onlyReadsMemory())
      EscapePoints.insert(CS.getInstruction());
  }

  SmallPtrSet<Instruction *, 32> AllocaUsers;
  SmallPtrSet<Instruction *, 32> EscapePoints;
};
}

static bool markTails(Function &F, bool &AllCallsAreTailCalls,
                      OptimizationRemarkEmitter *ORE) {
  if (F.callsFunctionThatReturnsTwice())
    return false;
  AllCallsAreTailCalls = true;

  // The local stack holds all alloca instructions and all byval arguments.
  AllocaDerivedValueTracker Tracker;
  for (Argument &Arg : F.args()) {
    if (Arg.hasByValAttr())
      Tracker.walk(&Arg);
  }
  for (auto &BB : F) {
    for (auto &I : BB)
      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
        Tracker.walk(AI);
  }

  bool Modified = false;

  // Track whether a block is reachable after an alloca has escaped. Blocks that
  // contain the escaping instruction will be marked as being visited without an
  // escaped alloca, since that is how the block began.
  enum VisitType {
    UNVISITED,
    UNESCAPED,
    ESCAPED
  };
  DenseMap<BasicBlock *, VisitType> Visited;

  // We propagate the fact that an alloca has escaped from block to successor.
  // Visit the blocks that are propagating the escapedness first. To do this, we
  // maintain two worklists.
  SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;

  // We may enter a block and visit it thinking that no alloca has escaped yet,
  // then see an escape point and go back around a loop edge and come back to
  // the same block twice. Because of this, we defer setting tail on calls when
  // we first encounter them in a block. Every entry in this list does not
  // statically use an alloca via use-def chain analysis, but may find an alloca
  // through other means if the block turns out to be reachable after an escape
  // point.
  SmallVector<CallInst *, 32> DeferredTails;

  BasicBlock *BB = &F.getEntryBlock();
  VisitType Escaped = UNESCAPED;
  do {
    for (auto &I : *BB) {
      if (Tracker.EscapePoints.count(&I))
        Escaped = ESCAPED;

      CallInst *CI = dyn_cast<CallInst>(&I);
      if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I))
        continue;

      bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();

      if (!IsNoTail && CI->doesNotAccessMemory()) {
        // A call to a readnone function whose arguments are all things computed
        // outside this function can be marked tail. Even if you stored the
        // alloca address into a global, a readnone function can't load the
        // global anyhow.
        //
        // Note that this runs whether we know an alloca has escaped or not. If
        // it has, then we can't trust Tracker.AllocaUsers to be accurate.
        bool SafeToTail = true;
        for (auto &Arg : CI->arg_operands()) {
          if (isa<Constant>(Arg.getUser()))
            continue;
          if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
            if (!A->hasByValAttr())
              continue;
          SafeToTail = false;
          break;
        }
        if (SafeToTail) {
          using namespace ore;
          ORE->emit([&]() {
            return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
                   << "marked as tail call candidate (readnone)";
          });
          CI->setTailCall();
          Modified = true;
          continue;
        }
      }

      if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
        DeferredTails.push_back(CI);
      } else {
        AllCallsAreTailCalls = false;
      }
    }

    for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
      auto &State = Visited[SuccBB];
      if (State < Escaped) {
        State = Escaped;
        if (State == ESCAPED)
          WorklistEscaped.push_back(SuccBB);
        else
          WorklistUnescaped.push_back(SuccBB);
      }
    }

    if (!WorklistEscaped.empty()) {
      BB = WorklistEscaped.pop_back_val();
      Escaped = ESCAPED;
    } else {
      BB = nullptr;
      while (!WorklistUnescaped.empty()) {
        auto *NextBB = WorklistUnescaped.pop_back_val();
        if (Visited[NextBB] == UNESCAPED) {
          BB = NextBB;
          Escaped = UNESCAPED;
          break;
        }
      }
    }
  } while (BB);

  for (CallInst *CI : DeferredTails) {
    if (Visited[CI->getParent()] != ESCAPED) {
      // If the escape point was part way through the block, calls after the
      // escape point wouldn't have been put into DeferredTails.
      LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
      CI->setTailCall();
      Modified = true;
    } else {
      AllCallsAreTailCalls = false;
    }
  }

  return Modified;
}

/// Return true if it is safe to move the specified
/// instruction from after the call to before the call, assuming that all
/// instructions between the call and this instruction are movable.
///
static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
  // FIXME: We can move load/store/call/free instructions above the call if the
  // call does not mod/ref the memory location being processed.
  if (I->mayHaveSideEffects())  // This also handles volatile loads.
    return false;

  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    // Loads may always be moved above calls without side effects.
    if (CI->mayHaveSideEffects()) {
      // Non-volatile loads may be moved above a call with side effects if it
      // does not write to memory and the load provably won't trap.
      // Writes to memory only matter if they may alias the pointer
      // being loaded from.
      const DataLayout &DL = L->getModule()->getDataLayout();
      if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
          !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
                                       MaybeAlign(L->getAlignment()), DL, L))
        return false;
    }
  }

  // Otherwise, if this is a side-effect free instruction, check to make sure
  // that it does not use the return value of the call.  If it doesn't use the
  // return value of the call, it must only use things that are defined before
  // the call, or movable instructions between the call and the instruction
  // itself.
  return !is_contained(I->operands(), CI);
}

/// Return true if the specified value is the same when the return would exit
/// as it was when the initial iteration of the recursive function was executed.
///
/// We currently handle static constants and arguments that are not modified as
/// part of the recursion.
static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
  if (isa<Constant>(V)) return true; // Static constants are always dyn consts

  // Check to see if this is an immutable argument, if so, the value
  // will be available to initialize the accumulator.
  if (Argument *Arg = dyn_cast<Argument>(V)) {
    // Figure out which argument number this is...
    unsigned ArgNo = 0;
    Function *F = CI->getParent()->getParent();
    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
      ++ArgNo;

    // If we are passing this argument into call as the corresponding
    // argument operand, then the argument is dynamically constant.
    // Otherwise, we cannot transform this function safely.
    if (CI->getArgOperand(ArgNo) == Arg)
      return true;
  }

  // Switch cases are always constant integers. If the value is being switched
  // on and the return is only reachable from one of its cases, it's
  // effectively constant.
  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
      if (SI->getCondition() == V)
        return SI->getDefaultDest() != RI->getParent();

  // Not a constant or immutable argument, we can't safely transform.
  return false;
}

/// Check to see if the function containing the specified tail call consistently
/// returns the same runtime-constant value at all exit points except for
/// IgnoreRI. If so, return the returned value.
static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
  Function *F = CI->getParent()->getParent();
  Value *ReturnedValue = nullptr;

  for (BasicBlock &BBI : *F) {
    ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
    if (RI == nullptr || RI == IgnoreRI) continue;

    // We can only perform this transformation if the value returned is
    // evaluatable at the start of the initial invocation of the function,
    // instead of at the end of the evaluation.
    //
    Value *RetOp = RI->getOperand(0);
    if (!isDynamicConstant(RetOp, CI, RI))
      return nullptr;

    if (ReturnedValue && RetOp != ReturnedValue)
      return nullptr;     // Cannot transform if differing values are returned.
    ReturnedValue = RetOp;
  }
  return ReturnedValue;
}

/// If the specified instruction can be transformed using accumulator recursion
/// elimination, return the constant which is the start of the accumulator
/// value.  Otherwise return null.
static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
  if (!I->isAssociative() || !I->isCommutative()) return nullptr;
  assert(I->getNumOperands() == 2 &&
         "Associative/commutative operations should have 2 args!");

  // Exactly one operand should be the result of the call instruction.
  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
      (I->getOperand(0) != CI && I->getOperand(1) != CI))
    return nullptr;

  // The only user of this instruction we allow is a single return instruction.
  if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
    return nullptr;

  // Ok, now we have to check all of the other return instructions in this
  // function.  If they return non-constants or differing values, then we cannot
  // transform the function safely.
  return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
}

static Instruction *firstNonDbg(BasicBlock::iterator I) {
  while (isa<DbgInfoIntrinsic>(I))
    ++I;
  return &*I;
}

static CallInst *findTRECandidate(Instruction *TI,
                                  bool CannotTailCallElimCallsMarkedTail,
                                  const TargetTransformInfo *TTI) {
  BasicBlock *BB = TI->getParent();
  Function *F = BB->getParent();

  if (&BB->front() == TI) // Make sure there is something before the terminator.
    return nullptr;

  // Scan backwards from the return, checking to see if there is a tail call in
  // this block.  If so, set CI to it.
  CallInst *CI = nullptr;
  BasicBlock::iterator BBI(TI);
  while (true) {
    CI = dyn_cast<CallInst>(BBI);
    if (CI && CI->getCalledFunction() == F)
      break;

    if (BBI == BB->begin())
      return nullptr;          // Didn't find a potential tail call.
    --BBI;
  }

  // If this call is marked as a tail call, and if there are dynamic allocas in
  // the function, we cannot perform this optimization.
  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
    return nullptr;

  // As a special case, detect code like this:
  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
  // and disable this xform in this case, because the code generator will
  // lower the call to fabs into inline code.
  if (BB == &F->getEntryBlock() &&
      firstNonDbg(BB->front().getIterator()) == CI &&
      firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
      !TTI->isLoweredToCall(CI->getCalledFunction())) {
    // A single-block function with just a call and a return. Check that
    // the arguments match.
    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
                           E = CallSite(CI).arg_end();
    Function::arg_iterator FI = F->arg_begin(),
                           FE = F->arg_end();
    for (; I != E && FI != FE; ++I, ++FI)
      if (*I != &*FI) break;
    if (I == E && FI == FE)
      return nullptr;
  }

  return CI;
}

static bool eliminateRecursiveTailCall(
    CallInst *CI, ReturnInst *Ret, BasicBlock *&OldEntry,
    bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
  // If we are introducing accumulator recursion to eliminate operations after
  // the call instruction that are both associative and commutative, the initial
  // value for the accumulator is placed in this variable.  If this value is set
  // then we actually perform accumulator recursion elimination instead of
  // simple tail recursion elimination.  If the operation is an LLVM instruction
  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
  // we are handling the case when the return instruction returns a constant C
  // which is different to the constant returned by other return instructions
  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
  // special case of accumulator recursion, the operation being "return C".
  Value *AccumulatorRecursionEliminationInitVal = nullptr;
  Instruction *AccumulatorRecursionInstr = nullptr;

  // Ok, we found a potential tail call.  We can currently only transform the
  // tail call if all of the instructions between the call and the return are
  // movable to above the call itself, leaving the call next to the return.
  // Check that this is the case now.
  BasicBlock::iterator BBI(CI);
  for (++BBI; &*BBI != Ret; ++BBI) {
    if (canMoveAboveCall(&*BBI, CI, AA))
      continue;

    // If we can't move the instruction above the call, it might be because it
    // is an associative and commutative operation that could be transformed
    // using accumulator recursion elimination.  Check to see if this is the
    // case, and if so, remember the initial accumulator value for later.
    if ((AccumulatorRecursionEliminationInitVal =
             canTransformAccumulatorRecursion(&*BBI, CI))) {
      // Yes, this is accumulator recursion.  Remember which instruction
      // accumulates.
      AccumulatorRecursionInstr = &*BBI;
    } else {
      return false;   // Otherwise, we cannot eliminate the tail recursion!
    }
  }

  // We can only transform call/return pairs that either ignore the return value
  // of the call and return void, ignore the value of the call and return a
  // constant, return the value returned by the tail call, or that are being
  // accumulator recursion variable eliminated.
  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
      !isa<UndefValue>(Ret->getReturnValue()) &&
      AccumulatorRecursionEliminationInitVal == nullptr &&
      !getCommonReturnValue(nullptr, CI)) {
    // One case remains that we are able to handle: the current return
    // instruction returns a constant, and all other return instructions
    // return a different constant.
    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
      return false; // Current return instruction does not return a constant.
    // Check that all other return instructions return a common constant.  If
    // so, record it in AccumulatorRecursionEliminationInitVal.
    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
    if (!AccumulatorRecursionEliminationInitVal)
      return false;
  }

  BasicBlock *BB = Ret->getParent();
  Function *F = BB->getParent();

  using namespace ore;
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
           << "transforming tail recursion into loop";
  });

  // OK! We can transform this tail call.  If this is the first one found,
  // create the new entry block, allowing us to branch back to the old entry.
  if (!OldEntry) {
    OldEntry = &F->getEntryBlock();
    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
    NewEntry->takeName(OldEntry);
    OldEntry->setName("tailrecurse");
    BranchInst *BI = BranchInst::Create(OldEntry, NewEntry);
    BI->setDebugLoc(CI->getDebugLoc());

    // If this tail call is marked 'tail' and if there are any allocas in the
    // entry block, move them up to the new entry block.
    TailCallsAreMarkedTail = CI->isTailCall();
    if (TailCallsAreMarkedTail)
      // Move all fixed sized allocas from OldEntry to NewEntry.
      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
             NEBI = NewEntry->begin(); OEBI != E; )
        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
          if (isa<ConstantInt>(AI->getArraySize()))
            AI->moveBefore(&*NEBI);

    // Now that we have created a new block, which jumps to the entry
    // block, insert a PHI node for each argument of the function.
    // For now, we initialize each PHI to only have the real arguments
    // which are passed in.
    Instruction *InsertPos = &OldEntry->front();
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I) {
      PHINode *PN = PHINode::Create(I->getType(), 2,
                                    I->getName() + ".tr", InsertPos);
      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
      PN->addIncoming(&*I, NewEntry);
      ArgumentPHIs.push_back(PN);
    }
    // The entry block was changed from OldEntry to NewEntry.
    // The forward DominatorTree needs to be recalculated when the EntryBB is
    // changed. In this corner-case we recalculate the entire tree.
    DTU.recalculate(*NewEntry->getParent());
  }

  // If this function has self recursive calls in the tail position where some
  // are marked tail and some are not, only transform one flavor or another.  We
  // have to choose whether we move allocas in the entry block to the new entry
  // block or not, so we can't make a good choice for both.  NOTE: We could do
  // slightly better here in the case that the function has no entry block
  // allocas.
  if (TailCallsAreMarkedTail && !CI->isTailCall())
    return false;

  // Ok, now that we know we have a pseudo-entry block WITH all of the
  // required PHI nodes, add entries into the PHI node for the actual
  // parameters passed into the tail-recursive call.
  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);

  // If we are introducing an accumulator variable to eliminate the recursion,
  // do so now.  Note that we _know_ that no subsequent tail recursion
  // eliminations will happen on this function because of the way the
  // accumulator recursion predicate is set up.
  //
  if (AccumulatorRecursionEliminationInitVal) {
    Instruction *AccRecInstr = AccumulatorRecursionInstr;
    // Start by inserting a new PHI node for the accumulator.
    pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
    PHINode *AccPN = PHINode::Create(
        AccumulatorRecursionEliminationInitVal->getType(),
        std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());

    // Loop over all of the predecessors of the tail recursion block.  For the
    // real entry into the function we seed the PHI with the initial value,
    // computed earlier.  For any other existing branches to this block (due to
    // other tail recursions eliminated) the accumulator is not modified.
    // Because we haven't added the branch in the current block to OldEntry yet,
    // it will not show up as a predecessor.
    for (pred_iterator PI = PB; PI != PE; ++PI) {
      BasicBlock *P = *PI;
      if (P == &F->getEntryBlock())
        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
      else
        AccPN->addIncoming(AccPN, P);
    }

    if (AccRecInstr) {
      // Add an incoming argument for the current block, which is computed by
      // our associative and commutative accumulator instruction.
      AccPN->addIncoming(AccRecInstr, BB);

      // Next, rewrite the accumulator recursion instruction so that it does not
      // use the result of the call anymore, instead, use the PHI node we just
      // inserted.
      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
    } else {
      // Add an incoming argument for the current block, which is just the
      // constant returned by the current return instruction.
      AccPN->addIncoming(Ret->getReturnValue(), BB);
    }

    // Finally, rewrite any return instructions in the program to return the PHI
    // node instead of the "initval" that they do currently.  This loop will
    // actually rewrite the return value we are destroying, but that's ok.
    for (BasicBlock &BBI : *F)
      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
        RI->setOperand(0, AccPN);
    ++NumAccumAdded;
  }

  // Now that all of the PHI nodes are in place, remove the call and
  // ret instructions, replacing them with an unconditional branch.
  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
  NewBI->setDebugLoc(CI->getDebugLoc());

  BB->getInstList().erase(Ret);  // Remove return.
  BB->getInstList().erase(CI);   // Remove call.
  DTU.applyUpdates({{DominatorTree::Insert, BB, OldEntry}});
  ++NumEliminated;
  return true;
}

static bool foldReturnAndProcessPred(
    BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry,
    bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
    bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
  bool Change = false;

  // Make sure this block is a trivial return block.
  assert(BB->getFirstNonPHIOrDbg() == Ret &&
         "Trying to fold non-trivial return block");

  // If the return block contains nothing but the return and PHI's,
  // there might be an opportunity to duplicate the return in its
  // predecessors and perform TRE there. Look for predecessors that end
  // in unconditional branch and recursive call(s).
  SmallVector<BranchInst*, 8> UncondBranchPreds;
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    BasicBlock *Pred = *PI;
    Instruction *PTI = Pred->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
      if (BI->isUnconditional())
        UncondBranchPreds.push_back(BI);
  }

  while (!UncondBranchPreds.empty()) {
    BranchInst *BI = UncondBranchPreds.pop_back_val();
    BasicBlock *Pred = BI->getParent();
    if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
      LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
                        << "INTO UNCOND BRANCH PRED: " << *Pred);
      ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU);

      // Cleanup: if all predecessors of BB have been eliminated by
      // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
      // because the ret instruction in there is still using a value which
      // eliminateRecursiveTailCall will attempt to remove.
      if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
        DTU.deleteBB(BB);

      eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
                                 ArgumentPHIs, AA, ORE, DTU);
      ++NumRetDuped;
      Change = true;
    }
  }

  return Change;
}

static bool processReturningBlock(
    ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail,
    SmallVectorImpl<PHINode *> &ArgumentPHIs,
    bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
  CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
  if (!CI)
    return false;

  return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
                                    ArgumentPHIs, AA, ORE, DTU);
}

static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI,
                                   AliasAnalysis *AA,
                                   OptimizationRemarkEmitter *ORE,
                                   DomTreeUpdater &DTU) {
  if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
    return false;

  bool MadeChange = false;
  bool AllCallsAreTailCalls = false;
  MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
  if (!AllCallsAreTailCalls)
    return MadeChange;

  // If this function is a varargs function, we won't be able to PHI the args
  // right, so don't even try to convert it...
  if (F.getFunctionType()->isVarArg())
    return false;

  BasicBlock *OldEntry = nullptr;
  bool TailCallsAreMarkedTail = false;
  SmallVector<PHINode*, 8> ArgumentPHIs;

  // If false, we cannot perform TRE on tail calls marked with the 'tail'
  // attribute, because doing so would cause the stack size to increase (real
  // TRE would deallocate variable sized allocas, TRE doesn't).
  bool CanTRETailMarkedCall = canTRE(F);

  // Change any tail recursive calls to loops.
  //
  // FIXME: The code generator produces really bad code when an 'escaping
  // alloca' is changed from being a static alloca to being a dynamic alloca.
  // Until this is resolved, disable this transformation if that would ever
  // happen.  This bug is PR962.
  for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
    BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
      bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
                                          ArgumentPHIs, !CanTRETailMarkedCall,
                                          TTI, AA, ORE, DTU);
      if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
        Change = foldReturnAndProcessPred(
            BB, Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
            !CanTRETailMarkedCall, TTI, AA, ORE, DTU);
      MadeChange |= Change;
    }
  }

  // If we eliminated any tail recursions, it's possible that we inserted some
  // silly PHI nodes which just merge an initial value (the incoming operand)
  // with themselves.  Check to see if we did and clean up our mess if so.  This
  // occurs when a function passes an argument straight through to its tail
  // call.
  for (PHINode *PN : ArgumentPHIs) {
    // If the PHI Node is a dynamic constant, replace it with the value it is.
    if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
      PN->replaceAllUsesWith(PNV);
      PN->eraseFromParent();
    }
  }

  return MadeChange;
}

namespace {
struct TailCallElim : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid
  TailCallElim() : FunctionPass(ID) {
    initializeTailCallElimPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<PostDominatorTreeWrapperPass>();
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
    auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
    auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
    // There is no noticable performance difference here between Lazy and Eager
    // UpdateStrategy based on some test results. It is feasible to switch the
    // UpdateStrategy to Lazy if we find it profitable later.
    DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);

    return eliminateTailRecursion(
        F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
        &getAnalysis<AAResultsWrapperPass>().getAAResults(),
        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
  }
};
}

char TailCallElim::ID = 0;
INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
                    false, false)

// Public interface to the TailCallElimination pass
FunctionPass *llvm::createTailCallEliminationPass() {
  return new TailCallElim();
}

PreservedAnalyses TailCallElimPass::run(Function &F,
                                        FunctionAnalysisManager &AM) {

  TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
  AliasAnalysis &AA = AM.getResult<AAManager>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
  auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
  // There is no noticable performance difference here between Lazy and Eager
  // UpdateStrategy based on some test results. It is feasible to switch the
  // UpdateStrategy to Lazy if we find it profitable later.
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
  bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE, DTU);

  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<PostDominatorTreeAnalysis>();
  return PA;
}