VPlan.h 64.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file contains the declarations of the Vectorization Plan base classes:
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
///    VPBlockBase, together implementing a Hierarchical CFG;
/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
///    treated as proper graphs for generic algorithms;
/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
///    within VPBasicBlocks;
/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
///    instruction;
/// 5. The VPlan class holding a candidate for vectorization;
/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
/// These are documented in docs/VectorizationPlan.rst.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H

#include "VPlanLoopInfo.h"
#include "VPlanValue.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/IRBuilder.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <map>
#include <string>

namespace llvm {

class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class BasicBlock;
class DominatorTree;
class InnerLoopVectorizer;
template <class T> class InterleaveGroup;
class LoopInfo;
class raw_ostream;
class Value;
class VPBasicBlock;
class VPRegionBlock;
class VPlan;
class VPlanSlp;

/// A range of powers-of-2 vectorization factors with fixed start and
/// adjustable end. The range includes start and excludes end, e.g.,:
/// [1, 9) = {1, 2, 4, 8}
struct VFRange {
  // A power of 2.
  const unsigned Start;

  // Need not be a power of 2. If End <= Start range is empty.
  unsigned End;
};

using VPlanPtr = std::unique_ptr<VPlan>;

/// In what follows, the term "input IR" refers to code that is fed into the
/// vectorizer whereas the term "output IR" refers to code that is generated by
/// the vectorizer.

/// VPIteration represents a single point in the iteration space of the output
/// (vectorized and/or unrolled) IR loop.
struct VPIteration {
  /// in [0..UF)
  unsigned Part;

  /// in [0..VF)
  unsigned Lane;
};

/// This is a helper struct for maintaining vectorization state. It's used for
/// mapping values from the original loop to their corresponding values in
/// the new loop. Two mappings are maintained: one for vectorized values and
/// one for scalarized values. Vectorized values are represented with UF
/// vector values in the new loop, and scalarized values are represented with
/// UF x VF scalar values in the new loop. UF and VF are the unroll and
/// vectorization factors, respectively.
///
/// Entries can be added to either map with setVectorValue and setScalarValue,
/// which assert that an entry was not already added before. If an entry is to
/// replace an existing one, call resetVectorValue and resetScalarValue. This is
/// currently needed to modify the mapped values during "fix-up" operations that
/// occur once the first phase of widening is complete. These operations include
/// type truncation and the second phase of recurrence widening.
///
/// Entries from either map can be retrieved using the getVectorValue and
/// getScalarValue functions, which assert that the desired value exists.
struct VectorizerValueMap {
  friend struct VPTransformState;

private:
  /// The unroll factor. Each entry in the vector map contains UF vector values.
  unsigned UF;

  /// The vectorization factor. Each entry in the scalar map contains UF x VF
  /// scalar values.
  unsigned VF;

  /// The vector and scalar map storage. We use std::map and not DenseMap
  /// because insertions to DenseMap invalidate its iterators.
  using VectorParts = SmallVector<Value *, 2>;
  using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
  std::map<Value *, VectorParts> VectorMapStorage;
  std::map<Value *, ScalarParts> ScalarMapStorage;

public:
  /// Construct an empty map with the given unroll and vectorization factors.
  VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}

  /// \return True if the map has any vector entry for \p Key.
  bool hasAnyVectorValue(Value *Key) const {
    return VectorMapStorage.count(Key);
  }

  /// \return True if the map has a vector entry for \p Key and \p Part.
  bool hasVectorValue(Value *Key, unsigned Part) const {
    assert(Part < UF && "Queried Vector Part is too large.");
    if (!hasAnyVectorValue(Key))
      return false;
    const VectorParts &Entry = VectorMapStorage.find(Key)->second;
    assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
    return Entry[Part] != nullptr;
  }

  /// \return True if the map has any scalar entry for \p Key.
  bool hasAnyScalarValue(Value *Key) const {
    return ScalarMapStorage.count(Key);
  }

  /// \return True if the map has a scalar entry for \p Key and \p Instance.
  bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
    assert(Instance.Part < UF && "Queried Scalar Part is too large.");
    assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
    if (!hasAnyScalarValue(Key))
      return false;
    const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
    assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
    assert(Entry[Instance.Part].size() == VF &&
           "ScalarParts has wrong dimensions.");
    return Entry[Instance.Part][Instance.Lane] != nullptr;
  }

  /// Retrieve the existing vector value that corresponds to \p Key and
  /// \p Part.
  Value *getVectorValue(Value *Key, unsigned Part) {
    assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
    return VectorMapStorage[Key][Part];
  }

  /// Retrieve the existing scalar value that corresponds to \p Key and
  /// \p Instance.
  Value *getScalarValue(Value *Key, const VPIteration &Instance) {
    assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
    return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
  }

  /// Set a vector value associated with \p Key and \p Part. Assumes such a
  /// value is not already set. If it is, use resetVectorValue() instead.
  void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
    assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
    if (!VectorMapStorage.count(Key)) {
      VectorParts Entry(UF);
      VectorMapStorage[Key] = Entry;
    }
    VectorMapStorage[Key][Part] = Vector;
  }

  /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
  /// value is not already set.
  void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
    assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
    if (!ScalarMapStorage.count(Key)) {
      ScalarParts Entry(UF);
      // TODO: Consider storing uniform values only per-part, as they occupy
      //       lane 0 only, keeping the other VF-1 redundant entries null.
      for (unsigned Part = 0; Part < UF; ++Part)
        Entry[Part].resize(VF, nullptr);
      ScalarMapStorage[Key] = Entry;
    }
    ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
  }

  /// Reset the vector value associated with \p Key for the given \p Part.
  /// This function can be used to update values that have already been
  /// vectorized. This is the case for "fix-up" operations including type
  /// truncation and the second phase of recurrence vectorization.
  void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
    assert(hasVectorValue(Key, Part) && "Vector value not set for part");
    VectorMapStorage[Key][Part] = Vector;
  }

  /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
  /// This function can be used to update values that have already been
  /// scalarized. This is the case for "fix-up" operations including scalar phi
  /// nodes for scalarized and predicated instructions.
  void resetScalarValue(Value *Key, const VPIteration &Instance,
                        Value *Scalar) {
    assert(hasScalarValue(Key, Instance) &&
           "Scalar value not set for part and lane");
    ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
  }
};

/// This class is used to enable the VPlan to invoke a method of ILV. This is
/// needed until the method is refactored out of ILV and becomes reusable.
struct VPCallback {
  virtual ~VPCallback() {}
  virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
  virtual Value *getOrCreateScalarValue(Value *V,
                                        const VPIteration &Instance) = 0;
};

/// VPTransformState holds information passed down when "executing" a VPlan,
/// needed for generating the output IR.
struct VPTransformState {
  VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
                   IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
                   InnerLoopVectorizer *ILV, VPCallback &Callback)
      : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
        ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}

  /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
  unsigned VF;
  unsigned UF;

  /// Hold the indices to generate specific scalar instructions. Null indicates
  /// that all instances are to be generated, using either scalar or vector
  /// instructions.
  Optional<VPIteration> Instance;

  struct DataState {
    /// A type for vectorized values in the new loop. Each value from the
    /// original loop, when vectorized, is represented by UF vector values in
    /// the new unrolled loop, where UF is the unroll factor.
    typedef SmallVector<Value *, 2> PerPartValuesTy;

    DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
  } Data;

  /// Get the generated Value for a given VPValue and a given Part. Note that
  /// as some Defs are still created by ILV and managed in its ValueMap, this
  /// method will delegate the call to ILV in such cases in order to provide
  /// callers a consistent API.
  /// \see set.
  Value *get(VPValue *Def, unsigned Part) {
    // If Values have been set for this Def return the one relevant for \p Part.
    if (Data.PerPartOutput.count(Def))
      return Data.PerPartOutput[Def][Part];
    // Def is managed by ILV: bring the Values from ValueMap.
    return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
  }

  /// Get the generated Value for a given VPValue and given Part and Lane. Note
  /// that as per-lane Defs are still created by ILV and managed in its ValueMap
  /// this method currently just delegates the call to ILV.
  Value *get(VPValue *Def, const VPIteration &Instance) {
    return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance);
  }

  /// Set the generated Value for a given VPValue and a given Part.
  void set(VPValue *Def, Value *V, unsigned Part) {
    if (!Data.PerPartOutput.count(Def)) {
      DataState::PerPartValuesTy Entry(UF);
      Data.PerPartOutput[Def] = Entry;
    }
    Data.PerPartOutput[Def][Part] = V;
  }

  /// Hold state information used when constructing the CFG of the output IR,
  /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
  struct CFGState {
    /// The previous VPBasicBlock visited. Initially set to null.
    VPBasicBlock *PrevVPBB = nullptr;

    /// The previous IR BasicBlock created or used. Initially set to the new
    /// header BasicBlock.
    BasicBlock *PrevBB = nullptr;

    /// The last IR BasicBlock in the output IR. Set to the new latch
    /// BasicBlock, used for placing the newly created BasicBlocks.
    BasicBlock *LastBB = nullptr;

    /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
    /// of replication, maps the BasicBlock of the last replica created.
    SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;

    /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
    /// up at the end of vector code generation.
    SmallVector<VPBasicBlock *, 8> VPBBsToFix;

    CFGState() = default;
  } CFG;

  /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
  LoopInfo *LI;

  /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
  DominatorTree *DT;

  /// Hold a reference to the IRBuilder used to generate output IR code.
  IRBuilder<> &Builder;

  /// Hold a reference to the Value state information used when generating the
  /// Values of the output IR.
  VectorizerValueMap &ValueMap;

  /// Hold a reference to a mapping between VPValues in VPlan and original
  /// Values they correspond to.
  VPValue2ValueTy VPValue2Value;

  /// Hold the trip count of the scalar loop.
  Value *TripCount = nullptr;

  /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
  InnerLoopVectorizer *ILV;

  VPCallback &Callback;
};

/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
class VPBlockBase {
  friend class VPBlockUtils;

private:
  const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).

  /// An optional name for the block.
  std::string Name;

  /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
  /// it is a topmost VPBlockBase.
  VPRegionBlock *Parent = nullptr;

  /// List of predecessor blocks.
  SmallVector<VPBlockBase *, 1> Predecessors;

  /// List of successor blocks.
  SmallVector<VPBlockBase *, 1> Successors;

  /// Successor selector, null for zero or single successor blocks.
  VPValue *CondBit = nullptr;

  /// Current block predicate - null if the block does not need a predicate.
  VPValue *Predicate = nullptr;

  /// Add \p Successor as the last successor to this block.
  void appendSuccessor(VPBlockBase *Successor) {
    assert(Successor && "Cannot add nullptr successor!");
    Successors.push_back(Successor);
  }

  /// Add \p Predecessor as the last predecessor to this block.
  void appendPredecessor(VPBlockBase *Predecessor) {
    assert(Predecessor && "Cannot add nullptr predecessor!");
    Predecessors.push_back(Predecessor);
  }

  /// Remove \p Predecessor from the predecessors of this block.
  void removePredecessor(VPBlockBase *Predecessor) {
    auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
    assert(Pos && "Predecessor does not exist");
    Predecessors.erase(Pos);
  }

  /// Remove \p Successor from the successors of this block.
  void removeSuccessor(VPBlockBase *Successor) {
    auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
    assert(Pos && "Successor does not exist");
    Successors.erase(Pos);
  }

protected:
  VPBlockBase(const unsigned char SC, const std::string &N)
      : SubclassID(SC), Name(N) {}

public:
  /// An enumeration for keeping track of the concrete subclass of VPBlockBase
  /// that are actually instantiated. Values of this enumeration are kept in the
  /// SubclassID field of the VPBlockBase objects. They are used for concrete
  /// type identification.
  using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };

  using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;

  virtual ~VPBlockBase() = default;

  const std::string &getName() const { return Name; }

  void setName(const Twine &newName) { Name = newName.str(); }

  /// \return an ID for the concrete type of this object.
  /// This is used to implement the classof checks. This should not be used
  /// for any other purpose, as the values may change as LLVM evolves.
  unsigned getVPBlockID() const { return SubclassID; }

  VPRegionBlock *getParent() { return Parent; }
  const VPRegionBlock *getParent() const { return Parent; }

  void setParent(VPRegionBlock *P) { Parent = P; }

  /// \return the VPBasicBlock that is the entry of this VPBlockBase,
  /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
  /// VPBlockBase is a VPBasicBlock, it is returned.
  const VPBasicBlock *getEntryBasicBlock() const;
  VPBasicBlock *getEntryBasicBlock();

  /// \return the VPBasicBlock that is the exit of this VPBlockBase,
  /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
  /// VPBlockBase is a VPBasicBlock, it is returned.
  const VPBasicBlock *getExitBasicBlock() const;
  VPBasicBlock *getExitBasicBlock();

  const VPBlocksTy &getSuccessors() const { return Successors; }
  VPBlocksTy &getSuccessors() { return Successors; }

  const VPBlocksTy &getPredecessors() const { return Predecessors; }
  VPBlocksTy &getPredecessors() { return Predecessors; }

  /// \return the successor of this VPBlockBase if it has a single successor.
  /// Otherwise return a null pointer.
  VPBlockBase *getSingleSuccessor() const {
    return (Successors.size() == 1 ? *Successors.begin() : nullptr);
  }

  /// \return the predecessor of this VPBlockBase if it has a single
  /// predecessor. Otherwise return a null pointer.
  VPBlockBase *getSinglePredecessor() const {
    return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
  }

  size_t getNumSuccessors() const { return Successors.size(); }
  size_t getNumPredecessors() const { return Predecessors.size(); }

  /// An Enclosing Block of a block B is any block containing B, including B
  /// itself. \return the closest enclosing block starting from "this", which
  /// has successors. \return the root enclosing block if all enclosing blocks
  /// have no successors.
  VPBlockBase *getEnclosingBlockWithSuccessors();

  /// \return the closest enclosing block starting from "this", which has
  /// predecessors. \return the root enclosing block if all enclosing blocks
  /// have no predecessors.
  VPBlockBase *getEnclosingBlockWithPredecessors();

  /// \return the successors either attached directly to this VPBlockBase or, if
  /// this VPBlockBase is the exit block of a VPRegionBlock and has no
  /// successors of its own, search recursively for the first enclosing
  /// VPRegionBlock that has successors and return them. If no such
  /// VPRegionBlock exists, return the (empty) successors of the topmost
  /// VPBlockBase reached.
  const VPBlocksTy &getHierarchicalSuccessors() {
    return getEnclosingBlockWithSuccessors()->getSuccessors();
  }

  /// \return the hierarchical successor of this VPBlockBase if it has a single
  /// hierarchical successor. Otherwise return a null pointer.
  VPBlockBase *getSingleHierarchicalSuccessor() {
    return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
  }

  /// \return the predecessors either attached directly to this VPBlockBase or,
  /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
  /// predecessors of its own, search recursively for the first enclosing
  /// VPRegionBlock that has predecessors and return them. If no such
  /// VPRegionBlock exists, return the (empty) predecessors of the topmost
  /// VPBlockBase reached.
  const VPBlocksTy &getHierarchicalPredecessors() {
    return getEnclosingBlockWithPredecessors()->getPredecessors();
  }

  /// \return the hierarchical predecessor of this VPBlockBase if it has a
  /// single hierarchical predecessor. Otherwise return a null pointer.
  VPBlockBase *getSingleHierarchicalPredecessor() {
    return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
  }

  /// \return the condition bit selecting the successor.
  VPValue *getCondBit() { return CondBit; }

  const VPValue *getCondBit() const { return CondBit; }

  void setCondBit(VPValue *CV) { CondBit = CV; }

  VPValue *getPredicate() { return Predicate; }

  const VPValue *getPredicate() const { return Predicate; }

  void setPredicate(VPValue *Pred) { Predicate = Pred; }

  /// Set a given VPBlockBase \p Successor as the single successor of this
  /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
  /// This VPBlockBase must have no successors.
  void setOneSuccessor(VPBlockBase *Successor) {
    assert(Successors.empty() && "Setting one successor when others exist.");
    appendSuccessor(Successor);
  }

  /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
  /// successors of this VPBlockBase. \p Condition is set as the successor
  /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
  /// IfFalse. This VPBlockBase must have no successors.
  void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
                        VPValue *Condition) {
    assert(Successors.empty() && "Setting two successors when others exist.");
    assert(Condition && "Setting two successors without condition!");
    CondBit = Condition;
    appendSuccessor(IfTrue);
    appendSuccessor(IfFalse);
  }

  /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
  /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
  /// as successor of any VPBasicBlock in \p NewPreds.
  void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
    assert(Predecessors.empty() && "Block predecessors already set.");
    for (auto *Pred : NewPreds)
      appendPredecessor(Pred);
  }

  /// Remove all the predecessor of this block.
  void clearPredecessors() { Predecessors.clear(); }

  /// Remove all the successors of this block and set to null its condition bit
  void clearSuccessors() {
    Successors.clear();
    CondBit = nullptr;
  }

  /// The method which generates the output IR that correspond to this
  /// VPBlockBase, thereby "executing" the VPlan.
  virtual void execute(struct VPTransformState *State) = 0;

  /// Delete all blocks reachable from a given VPBlockBase, inclusive.
  static void deleteCFG(VPBlockBase *Entry);

  void printAsOperand(raw_ostream &OS, bool PrintType) const {
    OS << getName();
  }

  void print(raw_ostream &OS) const {
    // TODO: Only printing VPBB name for now since we only have dot printing
    // support for VPInstructions/Recipes.
    printAsOperand(OS, false);
  }

  /// Return true if it is legal to hoist instructions into this block.
  bool isLegalToHoistInto() {
    // There are currently no constraints that prevent an instruction to be
    // hoisted into a VPBlockBase.
    return true;
  }
};

/// VPRecipeBase is a base class modeling a sequence of one or more output IR
/// instructions.
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
  friend VPBasicBlock;
  friend class VPBlockUtils;

private:
  const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).

  /// Each VPRecipe belongs to a single VPBasicBlock.
  VPBasicBlock *Parent = nullptr;

public:
  /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
  /// that is actually instantiated. Values of this enumeration are kept in the
  /// SubclassID field of the VPRecipeBase objects. They are used for concrete
  /// type identification.
  using VPRecipeTy = enum {
    VPBlendSC,
    VPBranchOnMaskSC,
    VPInstructionSC,
    VPInterleaveSC,
    VPPredInstPHISC,
    VPReplicateSC,
    VPWidenGEPSC,
    VPWidenIntOrFpInductionSC,
    VPWidenMemoryInstructionSC,
    VPWidenPHISC,
    VPWidenSC,
  };

  VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
  virtual ~VPRecipeBase() = default;

  /// \return an ID for the concrete type of this object.
  /// This is used to implement the classof checks. This should not be used
  /// for any other purpose, as the values may change as LLVM evolves.
  unsigned getVPRecipeID() const { return SubclassID; }

  /// \return the VPBasicBlock which this VPRecipe belongs to.
  VPBasicBlock *getParent() { return Parent; }
  const VPBasicBlock *getParent() const { return Parent; }

  /// The method which generates the output IR instructions that correspond to
  /// this VPRecipe, thereby "executing" the VPlan.
  virtual void execute(struct VPTransformState &State) = 0;

  /// Each recipe prints itself.
  virtual void print(raw_ostream &O, const Twine &Indent) const = 0;

  /// Insert an unlinked recipe into a basic block immediately before
  /// the specified recipe.
  void insertBefore(VPRecipeBase *InsertPos);

  /// Insert an unlinked Recipe into a basic block immediately after
  /// the specified Recipe.
  void insertAfter(VPRecipeBase *InsertPos);

  /// Unlink this recipe from its current VPBasicBlock and insert it into
  /// the VPBasicBlock that MovePos lives in, right after MovePos.
  void moveAfter(VPRecipeBase *MovePos);

  /// This method unlinks 'this' from the containing basic block, but does not
  /// delete it.
  void removeFromParent();

  /// This method unlinks 'this' from the containing basic block and deletes it.
  ///
  /// \returns an iterator pointing to the element after the erased one
  iplist<VPRecipeBase>::iterator eraseFromParent();
};

/// This is a concrete Recipe that models a single VPlan-level instruction.
/// While as any Recipe it may generate a sequence of IR instructions when
/// executed, these instructions would always form a single-def expression as
/// the VPInstruction is also a single def-use vertex.
class VPInstruction : public VPUser, public VPRecipeBase {
  friend class VPlanSlp;

public:
  /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
  enum {
    Not = Instruction::OtherOpsEnd + 1,
    ICmpULE,
    SLPLoad,
    SLPStore,
  };

private:
  typedef unsigned char OpcodeTy;
  OpcodeTy Opcode;

  /// Utility method serving execute(): generates a single instance of the
  /// modeled instruction.
  void generateInstruction(VPTransformState &State, unsigned Part);

protected:
  Instruction *getUnderlyingInstr() {
    return cast_or_null<Instruction>(getUnderlyingValue());
  }

  void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }

public:
  VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
      : VPUser(VPValue::VPInstructionSC, Operands),
        VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}

  VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
      : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPValue *V) {
    return V->getVPValueID() == VPValue::VPInstructionSC;
  }

  VPInstruction *clone() const {
    SmallVector<VPValue *, 2> Operands(operands());
    return new VPInstruction(Opcode, Operands);
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *R) {
    return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
  }

  unsigned getOpcode() const { return Opcode; }

  /// Generate the instruction.
  /// TODO: We currently execute only per-part unless a specific instance is
  /// provided.
  void execute(VPTransformState &State) override;

  /// Print the Recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;

  /// Print the VPInstruction.
  void print(raw_ostream &O) const;

  /// Return true if this instruction may modify memory.
  bool mayWriteToMemory() const {
    // TODO: we can use attributes of the called function to rule out memory
    //       modifications.
    return Opcode == Instruction::Store || Opcode == Instruction::Call ||
           Opcode == Instruction::Invoke || Opcode == SLPStore;
  }
};

/// VPWidenRecipe is a recipe for producing a copy of vector type for each
/// Instruction in its ingredients independently, in order. This recipe covers
/// most of the traditional vectorization cases where each ingredient transforms
/// into a vectorized version of itself.
class VPWidenRecipe : public VPRecipeBase {
private:
  /// Hold the ingredients by pointing to their original BasicBlock location.
  BasicBlock::iterator Begin;
  BasicBlock::iterator End;

public:
  VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
    End = I->getIterator();
    Begin = End++;
  }

  ~VPWidenRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
  }

  /// Produce widened copies of all Ingredients.
  void execute(VPTransformState &State) override;

  /// Augment the recipe to include Instr, if it lies at its End.
  bool appendInstruction(Instruction *Instr) {
    if (End != Instr->getIterator())
      return false;
    End++;
    return true;
  }

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A recipe for handling GEP instructions.
class VPWidenGEPRecipe : public VPRecipeBase {
private:
  GetElementPtrInst *GEP;
  bool IsPtrLoopInvariant;
  SmallBitVector IsIndexLoopInvariant;

public:
  VPWidenGEPRecipe(GetElementPtrInst *GEP, Loop *OrigLoop)
      : VPRecipeBase(VPWidenGEPSC), GEP(GEP),
        IsIndexLoopInvariant(GEP->getNumIndices(), false) {
    IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand());
    for (auto Index : enumerate(GEP->indices()))
      IsIndexLoopInvariant[Index.index()] =
          OrigLoop->isLoopInvariant(Index.value().get());
  }
  ~VPWidenGEPRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenGEPSC;
  }

  /// Generate the gep nodes.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A recipe for handling phi nodes of integer and floating-point inductions,
/// producing their vector and scalar values.
class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
private:
  PHINode *IV;
  TruncInst *Trunc;

public:
  VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
      : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
  ~VPWidenIntOrFpInductionRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
  }

  /// Generate the vectorized and scalarized versions of the phi node as
  /// needed by their users.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A recipe for handling all phi nodes except for integer and FP inductions.
class VPWidenPHIRecipe : public VPRecipeBase {
private:
  PHINode *Phi;

public:
  VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
  ~VPWidenPHIRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
  }

  /// Generate the phi/select nodes.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A recipe for vectorizing a phi-node as a sequence of mask-based select
/// instructions.
class VPBlendRecipe : public VPRecipeBase {
private:
  PHINode *Phi;

  /// The blend operation is a User of a mask, if not null.
  std::unique_ptr<VPUser> User;

public:
  VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
      : VPRecipeBase(VPBlendSC), Phi(Phi) {
    assert((Phi->getNumIncomingValues() == 1 ||
            Phi->getNumIncomingValues() == Masks.size()) &&
           "Expected the same number of incoming values and masks");
    if (!Masks.empty())
      User.reset(new VPUser(Masks));
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
  }

  /// Generate the phi/select nodes.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
/// or stores into one wide load/store and shuffles.
class VPInterleaveRecipe : public VPRecipeBase {
private:
  const InterleaveGroup<Instruction> *IG;
  VPUser User;

public:
  VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
                     VPValue *Mask)
      : VPRecipeBase(VPInterleaveSC), IG(IG), User({Addr}) {
    if (Mask)
      User.addOperand(Mask);
  }
  ~VPInterleaveRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
  }

  /// Return the address accessed by this recipe.
  VPValue *getAddr() const {
    return User.getOperand(0); // Address is the 1st, mandatory operand.
  }

  /// Return the mask used by this recipe. Note that a full mask is represented
  /// by a nullptr.
  VPValue *getMask() const {
    // Mask is optional and therefore the last, currently 2nd operand.
    return User.getNumOperands() == 2 ? User.getOperand(1) : nullptr;
  }

  /// Generate the wide load or store, and shuffles.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;

  const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
};

/// VPReplicateRecipe replicates a given instruction producing multiple scalar
/// copies of the original scalar type, one per lane, instead of producing a
/// single copy of widened type for all lanes. If the instruction is known to be
/// uniform only one copy, per lane zero, will be generated.
class VPReplicateRecipe : public VPRecipeBase {
private:
  /// The instruction being replicated.
  Instruction *Ingredient;

  /// Indicator if only a single replica per lane is needed.
  bool IsUniform;

  /// Indicator if the replicas are also predicated.
  bool IsPredicated;

  /// Indicator if the scalar values should also be packed into a vector.
  bool AlsoPack;

public:
  VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
      : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
        IsPredicated(IsPredicated) {
    // Retain the previous behavior of predicateInstructions(), where an
    // insert-element of a predicated instruction got hoisted into the
    // predicated basic block iff it was its only user. This is achieved by
    // having predicated instructions also pack their values into a vector by
    // default unless they have a replicated user which uses their scalar value.
    AlsoPack = IsPredicated && !I->use_empty();
  }

  ~VPReplicateRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
  }

  /// Generate replicas of the desired Ingredient. Replicas will be generated
  /// for all parts and lanes unless a specific part and lane are specified in
  /// the \p State.
  void execute(VPTransformState &State) override;

  void setAlsoPack(bool Pack) { AlsoPack = Pack; }

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A recipe for generating conditional branches on the bits of a mask.
class VPBranchOnMaskRecipe : public VPRecipeBase {
private:
  std::unique_ptr<VPUser> User;

public:
  VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
    if (BlockInMask) // nullptr means all-one mask.
      User.reset(new VPUser({BlockInMask}));
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
  }

  /// Generate the extraction of the appropriate bit from the block mask and the
  /// conditional branch.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override {
    O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
    if (User)
      O << *User->getOperand(0);
    else
      O << " All-One";
    O << "\\l\"";
  }
};

/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
/// control converges back from a Branch-on-Mask. The phi nodes are needed in
/// order to merge values that are set under such a branch and feed their uses.
/// The phi nodes can be scalar or vector depending on the users of the value.
/// This recipe works in concert with VPBranchOnMaskRecipe.
class VPPredInstPHIRecipe : public VPRecipeBase {
private:
  Instruction *PredInst;

public:
  /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
  /// nodes after merging back from a Branch-on-Mask.
  VPPredInstPHIRecipe(Instruction *PredInst)
      : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
  ~VPPredInstPHIRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
  }

  /// Generates phi nodes for live-outs as needed to retain SSA form.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// A Recipe for widening load/store operations.
/// TODO: We currently execute only per-part unless a specific instance is
/// provided.
class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
private:
  Instruction &Instr;
  VPUser User;

public:
  VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Addr,
                                 VPValue *Mask)
      : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr), User({Addr}) {
    if (Mask)
      User.addOperand(Mask);
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
  }

  /// Return the address accessed by this recipe.
  VPValue *getAddr() const {
    return User.getOperand(0); // Address is the 1st, mandatory operand.
  }

  /// Return the mask used by this recipe. Note that a full mask is represented
  /// by a nullptr.
  VPValue *getMask() const {
    // Mask is optional and therefore the last, currently 2nd operand.
    return User.getNumOperands() == 2 ? User.getOperand(1) : nullptr;
  }

  /// Generate the wide load/store.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;
};

/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
/// output IR instructions.
class VPBasicBlock : public VPBlockBase {
public:
  using RecipeListTy = iplist<VPRecipeBase>;

private:
  /// The VPRecipes held in the order of output instructions to generate.
  RecipeListTy Recipes;

public:
  VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
      : VPBlockBase(VPBasicBlockSC, Name.str()) {
    if (Recipe)
      appendRecipe(Recipe);
  }

  ~VPBasicBlock() override { Recipes.clear(); }

  /// Instruction iterators...
  using iterator = RecipeListTy::iterator;
  using const_iterator = RecipeListTy::const_iterator;
  using reverse_iterator = RecipeListTy::reverse_iterator;
  using const_reverse_iterator = RecipeListTy::const_reverse_iterator;

  //===--------------------------------------------------------------------===//
  /// Recipe iterator methods
  ///
  inline iterator begin() { return Recipes.begin(); }
  inline const_iterator begin() const { return Recipes.begin(); }
  inline iterator end() { return Recipes.end(); }
  inline const_iterator end() const { return Recipes.end(); }

  inline reverse_iterator rbegin() { return Recipes.rbegin(); }
  inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
  inline reverse_iterator rend() { return Recipes.rend(); }
  inline const_reverse_iterator rend() const { return Recipes.rend(); }

  inline size_t size() const { return Recipes.size(); }
  inline bool empty() const { return Recipes.empty(); }
  inline const VPRecipeBase &front() const { return Recipes.front(); }
  inline VPRecipeBase &front() { return Recipes.front(); }
  inline const VPRecipeBase &back() const { return Recipes.back(); }
  inline VPRecipeBase &back() { return Recipes.back(); }

  /// Returns a reference to the list of recipes.
  RecipeListTy &getRecipeList() { return Recipes; }

  /// Returns a pointer to a member of the recipe list.
  static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
    return &VPBasicBlock::Recipes;
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPBlockBase *V) {
    return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
  }

  void insert(VPRecipeBase *Recipe, iterator InsertPt) {
    assert(Recipe && "No recipe to append.");
    assert(!Recipe->Parent && "Recipe already in VPlan");
    Recipe->Parent = this;
    Recipes.insert(InsertPt, Recipe);
  }

  /// Augment the existing recipes of a VPBasicBlock with an additional
  /// \p Recipe as the last recipe.
  void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }

  /// The method which generates the output IR instructions that correspond to
  /// this VPBasicBlock, thereby "executing" the VPlan.
  void execute(struct VPTransformState *State) override;

private:
  /// Create an IR BasicBlock to hold the output instructions generated by this
  /// VPBasicBlock, and return it. Update the CFGState accordingly.
  BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
};

/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
/// A VPRegionBlock may indicate that its contents are to be replicated several
/// times. This is designed to support predicated scalarization, in which a
/// scalar if-then code structure needs to be generated VF * UF times. Having
/// this replication indicator helps to keep a single model for multiple
/// candidate VF's. The actual replication takes place only once the desired VF
/// and UF have been determined.
class VPRegionBlock : public VPBlockBase {
private:
  /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
  VPBlockBase *Entry;

  /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
  VPBlockBase *Exit;

  /// An indicator whether this region is to generate multiple replicated
  /// instances of output IR corresponding to its VPBlockBases.
  bool IsReplicator;

public:
  VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
                const std::string &Name = "", bool IsReplicator = false)
      : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
        IsReplicator(IsReplicator) {
    assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
    assert(Exit->getSuccessors().empty() && "Exit block has successors.");
    Entry->setParent(this);
    Exit->setParent(this);
  }
  VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
      : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
        IsReplicator(IsReplicator) {}

  ~VPRegionBlock() override {
    if (Entry)
      deleteCFG(Entry);
  }

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPBlockBase *V) {
    return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
  }

  const VPBlockBase *getEntry() const { return Entry; }
  VPBlockBase *getEntry() { return Entry; }

  /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
  /// EntryBlock must have no predecessors.
  void setEntry(VPBlockBase *EntryBlock) {
    assert(EntryBlock->getPredecessors().empty() &&
           "Entry block cannot have predecessors.");
    Entry = EntryBlock;
    EntryBlock->setParent(this);
  }

  // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
  // specific interface of llvm::Function, instead of using
  // GraphTraints::getEntryNode. We should add a new template parameter to
  // DominatorTreeBase representing the Graph type.
  VPBlockBase &front() const { return *Entry; }

  const VPBlockBase *getExit() const { return Exit; }
  VPBlockBase *getExit() { return Exit; }

  /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
  /// ExitBlock must have no successors.
  void setExit(VPBlockBase *ExitBlock) {
    assert(ExitBlock->getSuccessors().empty() &&
           "Exit block cannot have successors.");
    Exit = ExitBlock;
    ExitBlock->setParent(this);
  }

  /// An indicator whether this region is to generate multiple replicated
  /// instances of output IR corresponding to its VPBlockBases.
  bool isReplicator() const { return IsReplicator; }

  /// The method which generates the output IR instructions that correspond to
  /// this VPRegionBlock, thereby "executing" the VPlan.
  void execute(struct VPTransformState *State) override;
};

//===----------------------------------------------------------------------===//
// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
//===----------------------------------------------------------------------===//

// The following set of template specializations implement GraphTraits to treat
// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
// VPBlockBase is a VPRegionBlock, this specialization provides access to its
// successors/predecessors but not to the blocks inside the region.

template <> struct GraphTraits<VPBlockBase *> {
  using NodeRef = VPBlockBase *;
  using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;

  static NodeRef getEntryNode(NodeRef N) { return N; }

  static inline ChildIteratorType child_begin(NodeRef N) {
    return N->getSuccessors().begin();
  }

  static inline ChildIteratorType child_end(NodeRef N) {
    return N->getSuccessors().end();
  }
};

template <> struct GraphTraits<const VPBlockBase *> {
  using NodeRef = const VPBlockBase *;
  using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;

  static NodeRef getEntryNode(NodeRef N) { return N; }

  static inline ChildIteratorType child_begin(NodeRef N) {
    return N->getSuccessors().begin();
  }

  static inline ChildIteratorType child_end(NodeRef N) {
    return N->getSuccessors().end();
  }
};

// Inverse order specialization for VPBasicBlocks. Predecessors are used instead
// of successors for the inverse traversal.
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
  using NodeRef = VPBlockBase *;
  using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;

  static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }

  static inline ChildIteratorType child_begin(NodeRef N) {
    return N->getPredecessors().begin();
  }

  static inline ChildIteratorType child_end(NodeRef N) {
    return N->getPredecessors().end();
  }
};

// The following set of template specializations implement GraphTraits to
// treat VPRegionBlock as a graph and recurse inside its nodes. It's important
// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
// there won't be automatic recursion into other VPBlockBases that turn to be
// VPRegionBlocks.

template <>
struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
  using GraphRef = VPRegionBlock *;
  using nodes_iterator = df_iterator<NodeRef>;

  static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }

  static nodes_iterator nodes_begin(GraphRef N) {
    return nodes_iterator::begin(N->getEntry());
  }

  static nodes_iterator nodes_end(GraphRef N) {
    // df_iterator::end() returns an empty iterator so the node used doesn't
    // matter.
    return nodes_iterator::end(N);
  }
};

template <>
struct GraphTraits<const VPRegionBlock *>
    : public GraphTraits<const VPBlockBase *> {
  using GraphRef = const VPRegionBlock *;
  using nodes_iterator = df_iterator<NodeRef>;

  static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }

  static nodes_iterator nodes_begin(GraphRef N) {
    return nodes_iterator::begin(N->getEntry());
  }

  static nodes_iterator nodes_end(GraphRef N) {
    // df_iterator::end() returns an empty iterator so the node used doesn't
    // matter.
    return nodes_iterator::end(N);
  }
};

template <>
struct GraphTraits<Inverse<VPRegionBlock *>>
    : public GraphTraits<Inverse<VPBlockBase *>> {
  using GraphRef = VPRegionBlock *;
  using nodes_iterator = df_iterator<NodeRef>;

  static NodeRef getEntryNode(Inverse<GraphRef> N) {
    return N.Graph->getExit();
  }

  static nodes_iterator nodes_begin(GraphRef N) {
    return nodes_iterator::begin(N->getExit());
  }

  static nodes_iterator nodes_end(GraphRef N) {
    // df_iterator::end() returns an empty iterator so the node used doesn't
    // matter.
    return nodes_iterator::end(N);
  }
};

/// VPlan models a candidate for vectorization, encoding various decisions take
/// to produce efficient output IR, including which branches, basic-blocks and
/// output IR instructions to generate, and their cost. VPlan holds a
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
/// VPBlock.
class VPlan {
  friend class VPlanPrinter;

private:
  /// Hold the single entry to the Hierarchical CFG of the VPlan.
  VPBlockBase *Entry;

  /// Holds the VFs applicable to this VPlan.
  SmallSet<unsigned, 2> VFs;

  /// Holds the name of the VPlan, for printing.
  std::string Name;

  /// Holds all the external definitions created for this VPlan.
  // TODO: Introduce a specific representation for external definitions in
  // VPlan. External definitions must be immutable and hold a pointer to its
  // underlying IR that will be used to implement its structural comparison
  // (operators '==' and '<').
  SmallPtrSet<VPValue *, 16> VPExternalDefs;

  /// Represents the backedge taken count of the original loop, for folding
  /// the tail.
  VPValue *BackedgeTakenCount = nullptr;

  /// Holds a mapping between Values and their corresponding VPValue inside
  /// VPlan.
  Value2VPValueTy Value2VPValue;

  /// Holds the VPLoopInfo analysis for this VPlan.
  VPLoopInfo VPLInfo;

  /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
  SmallVector<VPValue *, 4> VPCBVs;

public:
  VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}

  ~VPlan() {
    if (Entry)
      VPBlockBase::deleteCFG(Entry);
    for (auto &MapEntry : Value2VPValue)
      if (MapEntry.second != BackedgeTakenCount)
        delete MapEntry.second;
    if (BackedgeTakenCount)
      delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
    for (VPValue *Def : VPExternalDefs)
      delete Def;
    for (VPValue *CBV : VPCBVs)
      delete CBV;
  }

  /// Generate the IR code for this VPlan.
  void execute(struct VPTransformState *State);

  VPBlockBase *getEntry() { return Entry; }
  const VPBlockBase *getEntry() const { return Entry; }

  VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }

  /// The backedge taken count of the original loop.
  VPValue *getOrCreateBackedgeTakenCount() {
    if (!BackedgeTakenCount)
      BackedgeTakenCount = new VPValue();
    return BackedgeTakenCount;
  }

  void addVF(unsigned VF) { VFs.insert(VF); }

  bool hasVF(unsigned VF) { return VFs.count(VF); }

  const std::string &getName() const { return Name; }

  void setName(const Twine &newName) { Name = newName.str(); }

  /// Add \p VPVal to the pool of external definitions if it's not already
  /// in the pool.
  void addExternalDef(VPValue *VPVal) {
    VPExternalDefs.insert(VPVal);
  }

  /// Add \p CBV to the vector of condition bit values.
  void addCBV(VPValue *CBV) {
    VPCBVs.push_back(CBV);
  }

  void addVPValue(Value *V) {
    assert(V && "Trying to add a null Value to VPlan");
    assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
    Value2VPValue[V] = new VPValue();
  }

  VPValue *getVPValue(Value *V) {
    assert(V && "Trying to get the VPValue of a null Value");
    assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
    return Value2VPValue[V];
  }

  VPValue *getOrAddVPValue(Value *V) {
    assert(V && "Trying to get or add the VPValue of a null Value");
    if (!Value2VPValue.count(V))
      addVPValue(V);
    return getVPValue(V);
  }

  /// Return the VPLoopInfo analysis for this VPlan.
  VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
  const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }

  /// Dump the plan to stderr (for debugging).
  void dump() const;

private:
  /// Add to the given dominator tree the header block and every new basic block
  /// that was created between it and the latch block, inclusive.
  static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
                                  BasicBlock *LoopPreHeaderBB,
                                  BasicBlock *LoopExitBB);
};

/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
/// indented and follows the dot format.
class VPlanPrinter {
  friend inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan);
  friend inline raw_ostream &operator<<(raw_ostream &OS,
                                        const struct VPlanIngredient &I);

private:
  raw_ostream &OS;
  const VPlan &Plan;
  unsigned Depth = 0;
  unsigned TabWidth = 2;
  std::string Indent;
  unsigned BID = 0;
  SmallDenseMap<const VPBlockBase *, unsigned> BlockID;

  VPlanPrinter(raw_ostream &O, const VPlan &P) : OS(O), Plan(P) {}

  /// Handle indentation.
  void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }

  /// Print a given \p Block of the Plan.
  void dumpBlock(const VPBlockBase *Block);

  /// Print the information related to the CFG edges going out of a given
  /// \p Block, followed by printing the successor blocks themselves.
  void dumpEdges(const VPBlockBase *Block);

  /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
  /// its successor blocks.
  void dumpBasicBlock(const VPBasicBlock *BasicBlock);

  /// Print a given \p Region of the Plan.
  void dumpRegion(const VPRegionBlock *Region);

  unsigned getOrCreateBID(const VPBlockBase *Block) {
    return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
  }

  const Twine getOrCreateName(const VPBlockBase *Block);

  const Twine getUID(const VPBlockBase *Block);

  /// Print the information related to a CFG edge between two VPBlockBases.
  void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
                const Twine &Label);

  void dump();

  static void printAsIngredient(raw_ostream &O, Value *V);
};

struct VPlanIngredient {
  Value *V;

  VPlanIngredient(Value *V) : V(V) {}
};

inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
  VPlanPrinter::printAsIngredient(OS, I.V);
  return OS;
}

inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
  VPlanPrinter Printer(OS, Plan);
  Printer.dump();
  return OS;
}

//===----------------------------------------------------------------------===//
// VPlan Utilities
//===----------------------------------------------------------------------===//

/// Class that provides utilities for VPBlockBases in VPlan.
class VPBlockUtils {
public:
  VPBlockUtils() = delete;

  /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
  /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
  /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
  /// has more than one successor, its conditional bit is propagated to \p
  /// NewBlock. \p NewBlock must have neither successors nor predecessors.
  static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
    assert(NewBlock->getSuccessors().empty() &&
           "Can't insert new block with successors.");
    // TODO: move successors from BlockPtr to NewBlock when this functionality
    // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
    // already has successors.
    BlockPtr->setOneSuccessor(NewBlock);
    NewBlock->setPredecessors({BlockPtr});
    NewBlock->setParent(BlockPtr->getParent());
  }

  /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
  /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
  /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
  /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
  /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
  /// must have neither successors nor predecessors.
  static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
                                   VPValue *Condition, VPBlockBase *BlockPtr) {
    assert(IfTrue->getSuccessors().empty() &&
           "Can't insert IfTrue with successors.");
    assert(IfFalse->getSuccessors().empty() &&
           "Can't insert IfFalse with successors.");
    BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
    IfTrue->setPredecessors({BlockPtr});
    IfFalse->setPredecessors({BlockPtr});
    IfTrue->setParent(BlockPtr->getParent());
    IfFalse->setParent(BlockPtr->getParent());
  }

  /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
  /// the successors of \p From and \p From to the predecessors of \p To. Both
  /// VPBlockBases must have the same parent, which can be null. Both
  /// VPBlockBases can be already connected to other VPBlockBases.
  static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
    assert((From->getParent() == To->getParent()) &&
           "Can't connect two block with different parents");
    assert(From->getNumSuccessors() < 2 &&
           "Blocks can't have more than two successors.");
    From->appendSuccessor(To);
    To->appendPredecessor(From);
  }

  /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
  /// from the successors of \p From and \p From from the predecessors of \p To.
  static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
    assert(To && "Successor to disconnect is null.");
    From->removeSuccessor(To);
    To->removePredecessor(From);
  }

  /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
  static bool isBackEdge(const VPBlockBase *FromBlock,
                         const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
    assert(FromBlock->getParent() == ToBlock->getParent() &&
           FromBlock->getParent() && "Must be in same region");
    const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
    const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
    if (!FromLoop || !ToLoop || FromLoop != ToLoop)
      return false;

    // A back-edge is a branch from the loop latch to its header.
    return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
  }

  /// Returns true if \p Block is a loop latch
  static bool blockIsLoopLatch(const VPBlockBase *Block,
                               const VPLoopInfo *VPLInfo) {
    if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
      return ParentVPL->isLoopLatch(Block);

    return false;
  }

  /// Count and return the number of succesors of \p PredBlock excluding any
  /// backedges.
  static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
                                      VPLoopInfo *VPLI) {
    unsigned Count = 0;
    for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
      if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
        Count++;
    }
    return Count;
  }
};

class VPInterleavedAccessInfo {
private:
  DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
      InterleaveGroupMap;

  /// Type for mapping of instruction based interleave groups to VPInstruction
  /// interleave groups
  using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
                             InterleaveGroup<VPInstruction> *>;

  /// Recursively \p Region and populate VPlan based interleave groups based on
  /// \p IAI.
  void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
                   InterleavedAccessInfo &IAI);
  /// Recursively traverse \p Block and populate VPlan based interleave groups
  /// based on \p IAI.
  void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
                  InterleavedAccessInfo &IAI);

public:
  VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);

  ~VPInterleavedAccessInfo() {
    SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
    // Avoid releasing a pointer twice.
    for (auto &I : InterleaveGroupMap)
      DelSet.insert(I.second);
    for (auto *Ptr : DelSet)
      delete Ptr;
  }

  /// Get the interleave group that \p Instr belongs to.
  ///
  /// \returns nullptr if doesn't have such group.
  InterleaveGroup<VPInstruction> *
  getInterleaveGroup(VPInstruction *Instr) const {
    if (InterleaveGroupMap.count(Instr))
      return InterleaveGroupMap.find(Instr)->second;
    return nullptr;
  }
};

/// Class that maps (parts of) an existing VPlan to trees of combined
/// VPInstructions.
class VPlanSlp {
private:
  enum class OpMode { Failed, Load, Opcode };

  /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
  /// DenseMap keys.
  struct BundleDenseMapInfo {
    static SmallVector<VPValue *, 4> getEmptyKey() {
      return {reinterpret_cast<VPValue *>(-1)};
    }

    static SmallVector<VPValue *, 4> getTombstoneKey() {
      return {reinterpret_cast<VPValue *>(-2)};
    }

    static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
      return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
    }

    static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
                        const SmallVector<VPValue *, 4> &RHS) {
      return LHS == RHS;
    }
  };

  /// Mapping of values in the original VPlan to a combined VPInstruction.
  DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
      BundleToCombined;

  VPInterleavedAccessInfo &IAI;

  /// Basic block to operate on. For now, only instructions in a single BB are
  /// considered.
  const VPBasicBlock &BB;

  /// Indicates whether we managed to combine all visited instructions or not.
  bool CompletelySLP = true;

  /// Width of the widest combined bundle in bits.
  unsigned WidestBundleBits = 0;

  using MultiNodeOpTy =
      typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;

  // Input operand bundles for the current multi node. Each multi node operand
  // bundle contains values not matching the multi node's opcode. They will
  // be reordered in reorderMultiNodeOps, once we completed building a
  // multi node.
  SmallVector<MultiNodeOpTy, 4> MultiNodeOps;

  /// Indicates whether we are building a multi node currently.
  bool MultiNodeActive = false;

  /// Check if we can vectorize Operands together.
  bool areVectorizable(ArrayRef<VPValue *> Operands) const;

  /// Add combined instruction \p New for the bundle \p Operands.
  void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);

  /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
  VPInstruction *markFailed();

  /// Reorder operands in the multi node to maximize sequential memory access
  /// and commutative operations.
  SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();

  /// Choose the best candidate to use for the lane after \p Last. The set of
  /// candidates to choose from are values with an opcode matching \p Last's
  /// or loads consecutive to \p Last.
  std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
                                       SmallPtrSetImpl<VPValue *> &Candidates,
                                       VPInterleavedAccessInfo &IAI);

  /// Print bundle \p Values to dbgs().
  void dumpBundle(ArrayRef<VPValue *> Values);

public:
  VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}

  ~VPlanSlp() {
    for (auto &KV : BundleToCombined)
      delete KV.second;
  }

  /// Tries to build an SLP tree rooted at \p Operands and returns a
  /// VPInstruction combining \p Operands, if they can be combined.
  VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);

  /// Return the width of the widest combined bundle in bits.
  unsigned getWidestBundleBits() const { return WidestBundleBits; }

  /// Return true if all visited instruction can be combined.
  bool isCompletelySLP() const { return CompletelySLP; }
};
} // end namespace llvm

#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H