CodeEmitterGen.cpp 22.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
//===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// CodeEmitterGen uses the descriptions of instructions and their fields to
// construct an automated code emitter: a function that, given a MachineInstr,
// returns the (currently, 32-bit unsigned) value of the instruction.
//
//===----------------------------------------------------------------------===//

#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "SubtargetFeatureInfo.h"
#include "Types.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

namespace {

class CodeEmitterGen {
  RecordKeeper &Records;

public:
  CodeEmitterGen(RecordKeeper &R) : Records(R) {}

  void run(raw_ostream &o);

private:
  int getVariableBit(const std::string &VarName, BitsInit *BI, int bit);
  std::string getInstructionCase(Record *R, CodeGenTarget &Target);
  std::string getInstructionCaseForEncoding(Record *R, Record *EncodingDef,
                                            CodeGenTarget &Target);
  void AddCodeToMergeInOperand(Record *R, BitsInit *BI,
                               const std::string &VarName,
                               unsigned &NumberedOp,
                               std::set<unsigned> &NamedOpIndices,
                               std::string &Case, CodeGenTarget &Target);

  void emitInstructionBaseValues(
      raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
      CodeGenTarget &Target, int HwMode = -1);
  unsigned BitWidth;
  bool UseAPInt;
};

// If the VarBitInit at position 'bit' matches the specified variable then
// return the variable bit position.  Otherwise return -1.
int CodeEmitterGen::getVariableBit(const std::string &VarName,
                                   BitsInit *BI, int bit) {
  if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) {
    if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar()))
      if (VI->getName() == VarName)
        return VBI->getBitNum();
  } else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) {
    if (VI->getName() == VarName)
      return 0;
  }

  return -1;
}

void CodeEmitterGen::
AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName,
                        unsigned &NumberedOp,
                        std::set<unsigned> &NamedOpIndices,
                        std::string &Case, CodeGenTarget &Target) {
  CodeGenInstruction &CGI = Target.getInstruction(R);

  // Determine if VarName actually contributes to the Inst encoding.
  int bit = BI->getNumBits()-1;

  // Scan for a bit that this contributed to.
  for (; bit >= 0; ) {
    if (getVariableBit(VarName, BI, bit) != -1)
      break;
    
    --bit;
  }
  
  // If we found no bits, ignore this value, otherwise emit the call to get the
  // operand encoding.
  if (bit < 0) return;
  
  // If the operand matches by name, reference according to that
  // operand number. Non-matching operands are assumed to be in
  // order.
  unsigned OpIdx;
  if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) {
    // Get the machine operand number for the indicated operand.
    OpIdx = CGI.Operands[OpIdx].MIOperandNo;
    assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) &&
           "Explicitly used operand also marked as not emitted!");
  } else {
    unsigned NumberOps = CGI.Operands.size();
    /// If this operand is not supposed to be emitted by the
    /// generated emitter, skip it.
    while (NumberedOp < NumberOps &&
           (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
              (!NamedOpIndices.empty() && NamedOpIndices.count(
                CGI.Operands.getSubOperandNumber(NumberedOp).first)))) {
      ++NumberedOp;

      if (NumberedOp >= CGI.Operands.back().MIOperandNo +
                        CGI.Operands.back().MINumOperands) {
        errs() << "Too few operands in record " << R->getName() <<
                  " (no match for variable " << VarName << "):\n";
        errs() << *R;
        errs() << '\n';

        return;
      }
    }

    OpIdx = NumberedOp++;
  }
  
  std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx);
  std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName;

  if (UseAPInt)
    Case += "      op.clearAllBits();\n";

  // If the source operand has a custom encoder, use it. This will
  // get the encoding for all of the suboperands.
  if (!EncoderMethodName.empty()) {
    // A custom encoder has all of the information for the
    // sub-operands, if there are more than one, so only
    // query the encoder once per source operand.
    if (SO.second == 0) {
      Case += "      // op: " + VarName + "\n";
      if (UseAPInt) {
        Case += "      " + EncoderMethodName + "(MI, " + utostr(OpIdx);
        Case += ", op";
      } else {
        Case += "      op = " + EncoderMethodName + "(MI, " + utostr(OpIdx);
      }
      Case += ", Fixups, STI);\n";
    }
  } else {
    Case += "      // op: " + VarName + "\n";
    if (UseAPInt) {
      Case += "      getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")";
      Case += ", op, Fixups, STI";
    } else {
      Case += "      op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")";
      Case += ", Fixups, STI";
    }
    Case += ");\n";
  }

  // Precalculate the number of lits this variable contributes to in the
  // operand. If there is a single lit (consecutive range of bits) we can use a
  // destructive sequence on APInt that reduces memory allocations.
  int numOperandLits = 0;
  for (int tmpBit = bit; tmpBit >= 0;) {
    int varBit = getVariableBit(VarName, BI, tmpBit);

    // If this bit isn't from a variable, skip it.
    if (varBit == -1) {
      --tmpBit;
      continue;
    }

    // Figure out the consecutive range of bits covered by this operand, in
    // order to generate better encoding code.
    int beginVarBit = varBit;
    int N = 1;
    for (--tmpBit; tmpBit >= 0;) {
      varBit = getVariableBit(VarName, BI, tmpBit);
      if (varBit == -1 || varBit != (beginVarBit - N))
        break;
      ++N;
      --tmpBit;
    }
    ++numOperandLits;
  }

  for (; bit >= 0; ) {
    int varBit = getVariableBit(VarName, BI, bit);
    
    // If this bit isn't from a variable, skip it.
    if (varBit == -1) {
      --bit;
      continue;
    }
    
    // Figure out the consecutive range of bits covered by this operand, in
    // order to generate better encoding code.
    int beginInstBit = bit;
    int beginVarBit = varBit;
    int N = 1;
    for (--bit; bit >= 0;) {
      varBit = getVariableBit(VarName, BI, bit);
      if (varBit == -1 || varBit != (beginVarBit - N)) break;
      ++N;
      --bit;
    }

    std::string maskStr;
    int opShift;

    unsigned loBit = beginVarBit - N + 1;
    unsigned hiBit = loBit + N;
    unsigned loInstBit = beginInstBit - N + 1;
    if (UseAPInt) {
      std::string extractStr;
      if (N >= 64) {
        extractStr = "op.extractBits(" + itostr(hiBit - loBit) + ", " +
                     itostr(loBit) + ")";
        Case += "      Value.insertBits(" + extractStr + ", " +
                itostr(loInstBit) + ");\n";
      } else {
        extractStr = "op.extractBitsAsZExtValue(" + itostr(hiBit - loBit) +
                     ", " + itostr(loBit) + ")";
        Case += "      Value.insertBits(" + extractStr + ", " +
                itostr(loInstBit) + ", " + itostr(hiBit - loBit) + ");\n";
      }
    } else {
      uint64_t opMask = ~(uint64_t)0 >> (64 - N);
      opShift = beginVarBit - N + 1;
      opMask <<= opShift;
      maskStr = "UINT64_C(" + utostr(opMask) + ")";
      opShift = beginInstBit - beginVarBit;

      if (numOperandLits == 1) {
        Case += "      op &= " + maskStr + ";\n";
        if (opShift > 0) {
          Case += "      op <<= " + itostr(opShift) + ";\n";
        } else if (opShift < 0) {
          Case += "      op >>= " + itostr(-opShift) + ";\n";
        }
        Case += "      Value |= op;\n";
      } else {
        if (opShift > 0) {
          Case += "      Value |= (op & " + maskStr + ") << " +
                  itostr(opShift) + ";\n";
        } else if (opShift < 0) {
          Case += "      Value |= (op & " + maskStr + ") >> " +
                  itostr(-opShift) + ";\n";
        } else {
          Case += "      Value |= (op & " + maskStr + ");\n";
        }
      }
    }
  }
}

std::string CodeEmitterGen::getInstructionCase(Record *R,
                                               CodeGenTarget &Target) {
  std::string Case;
  if (const RecordVal *RV = R->getValue("EncodingInfos")) {
    if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
      const CodeGenHwModes &HWM = Target.getHwModes();
      EncodingInfoByHwMode EBM(DI->getDef(), HWM);
      Case += "      switch (HwMode) {\n";
      Case += "      default: llvm_unreachable(\"Unhandled HwMode\");\n";
      for (auto &KV : EBM.Map) {
        Case += "      case " + itostr(KV.first) + ": {\n";
        Case += getInstructionCaseForEncoding(R, KV.second, Target);
        Case += "      break;\n";
        Case += "      }\n";
      }
      Case += "      }\n";
      return Case;
    }
  }
  return getInstructionCaseForEncoding(R, R, Target);
}

std::string CodeEmitterGen::getInstructionCaseForEncoding(Record *R, Record *EncodingDef,
                                                          CodeGenTarget &Target) {
  std::string Case;
  BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst");
  unsigned NumberedOp = 0;
  std::set<unsigned> NamedOpIndices;

  // Collect the set of operand indices that might correspond to named
  // operand, and skip these when assigning operands based on position.
  if (Target.getInstructionSet()->
       getValueAsBit("noNamedPositionallyEncodedOperands")) {
    CodeGenInstruction &CGI = Target.getInstruction(R);
    for (const RecordVal &RV : R->getValues()) {
      unsigned OpIdx;
      if (!CGI.Operands.hasOperandNamed(RV.getName(), OpIdx))
        continue;

      NamedOpIndices.insert(OpIdx);
    }
  }

  // Loop over all of the fields in the instruction, determining which are the
  // operands to the instruction.
  for (const RecordVal &RV : EncodingDef->getValues()) {
    // Ignore fixed fields in the record, we're looking for values like:
    //    bits<5> RST = { ?, ?, ?, ?, ? };
    if (RV.getPrefix() || RV.getValue()->isComplete())
      continue;
    
    AddCodeToMergeInOperand(R, BI, RV.getName(), NumberedOp,
                            NamedOpIndices, Case, Target);
  }

  StringRef PostEmitter = R->getValueAsString("PostEncoderMethod");
  if (!PostEmitter.empty()) {
    Case += "      Value = ";
    Case += PostEmitter;
    Case += "(MI, Value";
    Case += ", STI";
    Case += ");\n";
  }
  
  return Case;
}

static std::string
getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
  std::string Name = "CEFBS";
  for (const auto &Feature : FeatureBitset)
    Name += ("_" + Feature->getName()).str();
  return Name;
}

static void emitInstBits(raw_ostream &OS, const APInt &Bits) {
  for (unsigned I = 0; I < Bits.getNumWords(); ++I)
    OS << ((I > 0) ? ", " : "") << "UINT64_C(" << utostr(Bits.getRawData()[I])
       << ")";
}

void CodeEmitterGen::emitInstructionBaseValues(
    raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
    CodeGenTarget &Target, int HwMode) {
  const CodeGenHwModes &HWM = Target.getHwModes();
  if (HwMode == -1)
    o << "  static const uint64_t InstBits[] = {\n";
  else
    o << "  static const uint64_t InstBits_" << HWM.getMode(HwMode).Name
      << "[] = {\n";

  for (const CodeGenInstruction *CGI : NumberedInstructions) {
    Record *R = CGI->TheDef;

    if (R->getValueAsString("Namespace") == "TargetOpcode" ||
        R->getValueAsBit("isPseudo")) {
      o << "    "; emitInstBits(o, APInt(BitWidth, 0)); o << ",\n";
      continue;
    }

    Record *EncodingDef = R;
    if (const RecordVal *RV = R->getValue("EncodingInfos")) {
      if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
        EncodingInfoByHwMode EBM(DI->getDef(), HWM);
        if (EBM.hasMode(HwMode))
          EncodingDef = EBM.get(HwMode);
      }
    }
    BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst");

    // Start by filling in fixed values.
    APInt Value(BitWidth, 0);
    for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) {
      if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e - i - 1)))
        Value |= APInt(BitWidth, (uint64_t)B->getValue()) << (e - i - 1);
    }
    o << "    ";
    emitInstBits(o, Value);
    o << "," << '\t' << "// " << R->getName() << "\n";
  }
  o << "    UINT64_C(0)\n  };\n";
}

void CodeEmitterGen::run(raw_ostream &o) {
  CodeGenTarget Target(Records);
  std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");

  // For little-endian instruction bit encodings, reverse the bit order
  Target.reverseBitsForLittleEndianEncoding();

  ArrayRef<const CodeGenInstruction*> NumberedInstructions =
    Target.getInstructionsByEnumValue();

  const CodeGenHwModes &HWM = Target.getHwModes();
  // The set of HwModes used by instruction encodings.
  std::set<unsigned> HwModes;
  BitWidth = 0;
  for (const CodeGenInstruction *CGI : NumberedInstructions) {
    Record *R = CGI->TheDef;
    if (R->getValueAsString("Namespace") == "TargetOpcode" ||
        R->getValueAsBit("isPseudo"))
      continue;

    if (const RecordVal *RV = R->getValue("EncodingInfos")) {
      if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
        EncodingInfoByHwMode EBM(DI->getDef(), HWM);
        for (auto &KV : EBM.Map) {
          BitsInit *BI = KV.second->getValueAsBitsInit("Inst");
          BitWidth = std::max(BitWidth, BI->getNumBits());
          HwModes.insert(KV.first);
        }
        continue;
      }
    }
    BitsInit *BI = R->getValueAsBitsInit("Inst");
    BitWidth = std::max(BitWidth, BI->getNumBits());
  }
  UseAPInt = BitWidth > 64;
  
  // Emit function declaration
  if (UseAPInt) {
    o << "void " << Target.getName()
      << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
      << "    SmallVectorImpl<MCFixup> &Fixups,\n"
      << "    APInt &Inst,\n"
      << "    APInt &Scratch,\n"
      << "    const MCSubtargetInfo &STI) const {\n";
  } else {
    o << "uint64_t " << Target.getName();
    o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
      << "    SmallVectorImpl<MCFixup> &Fixups,\n"
      << "    const MCSubtargetInfo &STI) const {\n";
  }
  
  // Emit instruction base values
  if (HwModes.empty()) {
    emitInstructionBaseValues(o, NumberedInstructions, Target, -1);
  } else {
    for (unsigned HwMode : HwModes)
      emitInstructionBaseValues(o, NumberedInstructions, Target, (int)HwMode);
  }

  if (!HwModes.empty()) {
    o << "  const uint64_t *InstBits;\n";
    o << "  unsigned HwMode = STI.getHwMode();\n";
    o << "  switch (HwMode) {\n";
    o << "  default: llvm_unreachable(\"Unknown hardware mode!\"); break;\n";
    for (unsigned I : HwModes) {
      o << "  case " << I << ": InstBits = InstBits_" << HWM.getMode(I).Name
        << "; break;\n";
    }
    o << "  };\n";
  }

  // Map to accumulate all the cases.
  std::map<std::string, std::vector<std::string>> CaseMap;

  // Construct all cases statement for each opcode
  for (std::vector<Record*>::iterator IC = Insts.begin(), EC = Insts.end();
        IC != EC; ++IC) {
    Record *R = *IC;
    if (R->getValueAsString("Namespace") == "TargetOpcode" ||
        R->getValueAsBit("isPseudo"))
      continue;
    std::string InstName =
        (R->getValueAsString("Namespace") + "::" + R->getName()).str();
    std::string Case = getInstructionCase(R, Target);

    CaseMap[Case].push_back(std::move(InstName));
  }

  // Emit initial function code
  if (UseAPInt) {
    int NumWords = APInt::getNumWords(BitWidth);
    int NumBytes = (BitWidth + 7) / 8;
    o << "  const unsigned opcode = MI.getOpcode();\n"
      << "  if (Inst.getBitWidth() != " << BitWidth << ")\n"
      << "    Inst = Inst.zext(" << BitWidth << ");\n"
      << "  if (Scratch.getBitWidth() != " << BitWidth << ")\n"
      << "    Scratch = Scratch.zext(" << BitWidth << ");\n"
      << "  LoadIntFromMemory(Inst, (uint8_t*)&InstBits[opcode * " << NumWords
      << "], " << NumBytes << ");\n"
      << "  APInt &Value = Inst;\n"
      << "  APInt &op = Scratch;\n"
      << "  switch (opcode) {\n";
  } else {
    o << "  const unsigned opcode = MI.getOpcode();\n"
      << "  uint64_t Value = InstBits[opcode];\n"
      << "  uint64_t op = 0;\n"
      << "  (void)op;  // suppress warning\n"
      << "  switch (opcode) {\n";
  }

  // Emit each case statement
  std::map<std::string, std::vector<std::string>>::iterator IE, EE;
  for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) {
    const std::string &Case = IE->first;
    std::vector<std::string> &InstList = IE->second;

    for (int i = 0, N = InstList.size(); i < N; i++) {
      if (i) o << "\n";
      o << "    case " << InstList[i]  << ":";
    }
    o << " {\n";
    o << Case;
    o << "      break;\n"
      << "    }\n";
  }

  // Default case: unhandled opcode
  o << "  default:\n"
    << "    std::string msg;\n"
    << "    raw_string_ostream Msg(msg);\n"
    << "    Msg << \"Not supported instr: \" << MI;\n"
    << "    report_fatal_error(Msg.str());\n"
    << "  }\n";
  if (UseAPInt)
    o << "  Inst = Value;\n";
  else
    o << "  return Value;\n";
  o << "}\n\n";

  const auto &All = SubtargetFeatureInfo::getAll(Records);
  std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
  SubtargetFeatures.insert(All.begin(), All.end());

  o << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n"
    << "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n"
    << "#include <sstream>\n\n";

  // Emit the subtarget feature enumeration.
  SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
                                                           o);

  // Emit the name table for error messages.
  o << "#ifndef NDEBUG\n";
  SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, o);
  o << "#endif // NDEBUG\n";

  // Emit the available features compute function.
  SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
      Target.getName(), "MCCodeEmitter", "computeAvailableFeatures",
      SubtargetFeatures, o);

  std::vector<std::vector<Record *>> FeatureBitsets;
  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
    FeatureBitsets.emplace_back();
    for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
      const auto &I = SubtargetFeatures.find(Predicate);
      if (I != SubtargetFeatures.end())
        FeatureBitsets.back().push_back(I->second.TheDef);
    }
  }

  llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
                                 const std::vector<Record *> &B) {
    if (A.size() < B.size())
      return true;
    if (A.size() > B.size())
      return false;
    for (auto Pair : zip(A, B)) {
      if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
        return true;
      if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
        return false;
    }
    return false;
  });
  FeatureBitsets.erase(
      std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
      FeatureBitsets.end());
  o << "#ifndef NDEBUG\n"
    << "// Feature bitsets.\n"
    << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
    << "  CEFBS_None,\n";
  for (const auto &FeatureBitset : FeatureBitsets) {
    if (FeatureBitset.empty())
      continue;
    o << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
  }
  o << "};\n\n"
    << "static constexpr FeatureBitset FeatureBitsets[] = {\n"
    << "  {}, // CEFBS_None\n";
  for (const auto &FeatureBitset : FeatureBitsets) {
    if (FeatureBitset.empty())
      continue;
    o << "  {";
    for (const auto &Feature : FeatureBitset) {
      const auto &I = SubtargetFeatures.find(Feature);
      assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
      o << I->second.getEnumBitName() << ", ";
    }
    o << "},\n";
  }
  o << "};\n"
    << "#endif // NDEBUG\n\n";


  // Emit the predicate verifier.
  o << "void " << Target.getName()
    << "MCCodeEmitter::verifyInstructionPredicates(\n"
    << "    const MCInst &Inst, const FeatureBitset &AvailableFeatures) const {\n"
    << "#ifndef NDEBUG\n"
    << "  static " << getMinimalTypeForRange(FeatureBitsets.size())
    << " RequiredFeaturesRefs[] = {\n";
  unsigned InstIdx = 0;
  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
    o << "    CEFBS";
    unsigned NumPredicates = 0;
    for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
      const auto &I = SubtargetFeatures.find(Predicate);
      if (I != SubtargetFeatures.end()) {
        o << '_' << I->second.TheDef->getName();
        NumPredicates++;
      }
    }
    if (!NumPredicates)
      o << "_None";
    o << ", // " << Inst->TheDef->getName() << " = " << InstIdx << "\n";
    InstIdx++;
  }
  o << "  };\n\n";
  o << "  assert(Inst.getOpcode() < " << InstIdx << ");\n";
  o << "  const FeatureBitset &RequiredFeatures = "
       "FeatureBitsets[RequiredFeaturesRefs[Inst.getOpcode()]];\n";
  o << "  FeatureBitset MissingFeatures =\n"
    << "      (AvailableFeatures & RequiredFeatures) ^\n"
    << "      RequiredFeatures;\n"
    << "  if (MissingFeatures.any()) {\n"
    << "    std::ostringstream Msg;\n"
    << "    Msg << \"Attempting to emit \" << "
       "MCII.getName(Inst.getOpcode()).str()\n"
    << "        << \" instruction but the \";\n"
    << "    for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)\n"
    << "      if (MissingFeatures.test(i))\n"
    << "        Msg << SubtargetFeatureNames[i] << \" \";\n"
    << "    Msg << \"predicate(s) are not met\";\n"
    << "    report_fatal_error(Msg.str());\n"
    << "  }\n"
    << "#else\n"
    << "// Silence unused variable warning on targets that don't use MCII for "
       "other purposes (e.g. BPF).\n"
    << "(void)MCII;\n"
    << "#endif // NDEBUG\n";
  o << "}\n";
  o << "#endif\n";
}

} // end anonymous namespace

namespace llvm {

void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) {
  emitSourceFileHeader("Machine Code Emitter", OS);
  CodeEmitterGen(RK).run(OS);
}

} // end namespace llvm