X86FoldTablesEmitter.cpp 26.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting the memory fold tables of
// the X86 backend instructions.
//
//===----------------------------------------------------------------------===//

#include "CodeGenTarget.h"
#include "X86RecognizableInstr.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/TableGenBackend.h"

using namespace llvm;

namespace {

// 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the
// manual added entries.
enum UnfoldStrategy {
  UNFOLD,     // Allow unfolding
  NO_UNFOLD,  // Prevent unfolding
  NO_STRATEGY // Make decision according to operands' sizes
};

// Represents an entry in the manual mapped instructions set.
struct ManualMapEntry {
  const char *RegInstStr;
  const char *MemInstStr;
  UnfoldStrategy Strategy;

  ManualMapEntry(const char *RegInstStr, const char *MemInstStr,
                 UnfoldStrategy Strategy = NO_STRATEGY)
      : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {}
};

class IsMatch;

// List of instructions requiring explicitly aligned memory.
const char *ExplicitAlign[] = {"MOVDQA",  "MOVAPS",  "MOVAPD",  "MOVNTPS",
                               "MOVNTPD", "MOVNTDQ", "MOVNTDQA"};

// List of instructions NOT requiring explicit memory alignment.
const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
                                 "PCMPESTRM", "PCMPESTRI",
                                 "PCMPISTRM", "PCMPISTRI" };

// For manually mapping instructions that do not match by their encoding.
const ManualMapEntry ManualMapSet[] = {
    { "ADD16ri_DB",       "ADD16mi",         NO_UNFOLD  },
    { "ADD16ri8_DB",      "ADD16mi8",        NO_UNFOLD  },
    { "ADD16rr_DB",       "ADD16mr",         NO_UNFOLD  },
    { "ADD32ri_DB",       "ADD32mi",         NO_UNFOLD  },
    { "ADD32ri8_DB",      "ADD32mi8",        NO_UNFOLD  },
    { "ADD32rr_DB",       "ADD32mr",         NO_UNFOLD  },
    { "ADD64ri32_DB",     "ADD64mi32",       NO_UNFOLD  },
    { "ADD64ri8_DB",      "ADD64mi8",        NO_UNFOLD  },
    { "ADD64rr_DB",       "ADD64mr",         NO_UNFOLD  },
    { "ADD8ri_DB",        "ADD8mi",          NO_UNFOLD  },
    { "ADD8rr_DB",        "ADD8mr",          NO_UNFOLD  },
    { "ADD16rr_DB",       "ADD16rm",         NO_UNFOLD  },
    { "ADD32rr_DB",       "ADD32rm",         NO_UNFOLD  },
    { "ADD64rr_DB",       "ADD64rm",         NO_UNFOLD  },
    { "ADD8rr_DB",        "ADD8rm",          NO_UNFOLD  },
    { "PUSH16r",          "PUSH16rmm",       UNFOLD },
    { "PUSH32r",          "PUSH32rmm",       UNFOLD },
    { "PUSH64r",          "PUSH64rmm",       UNFOLD },
    { "TAILJMPr",         "TAILJMPm",        UNFOLD },
    { "TAILJMPr64",       "TAILJMPm64",      UNFOLD },
    { "TAILJMPr64_REX",   "TAILJMPm64_REX",  UNFOLD },
};


static bool isExplicitAlign(const CodeGenInstruction *Inst) {
  return any_of(ExplicitAlign, [Inst](const char *InstStr) {
    return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
  });
}

static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
  return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
    return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
  });
}

class X86FoldTablesEmitter {
  RecordKeeper &Records;
  CodeGenTarget Target;

  // Represents an entry in the folding table
  class X86FoldTableEntry {
    const CodeGenInstruction *RegInst;
    const CodeGenInstruction *MemInst;

  public:
    bool CannotUnfold = false;
    bool IsLoad = false;
    bool IsStore = false;
    bool IsAligned = false;
    unsigned int Alignment = 0;

    X86FoldTableEntry(const CodeGenInstruction *RegInst,
                      const CodeGenInstruction *MemInst)
        : RegInst(RegInst), MemInst(MemInst) {}

    void print(formatted_raw_ostream &OS) const {
      OS.indent(2);
      OS << "{ X86::" << RegInst->TheDef->getName() << ",";
      OS.PadToColumn(40);
      OS  << "X86::" << MemInst->TheDef->getName() << ",";
      OS.PadToColumn(75);

      if (IsLoad)
        OS << "TB_FOLDED_LOAD | ";
      if (IsStore)
        OS << "TB_FOLDED_STORE | ";
      if (CannotUnfold)
        OS << "TB_NO_REVERSE | ";
      if (IsAligned)
        OS << "TB_ALIGN_" << Alignment << " | ";

      OS << "0 },\n";
    }
  };

  typedef std::vector<X86FoldTableEntry> FoldTable;
  // std::vector for each folding table.
  // Table2Addr - Holds instructions which their memory form performs load+store
  // Table#i - Holds instructions which the their memory form perform a load OR
  //           a store,  and their #i'th operand is folded.
  FoldTable Table2Addr;
  FoldTable Table0;
  FoldTable Table1;
  FoldTable Table2;
  FoldTable Table3;
  FoldTable Table4;

public:
  X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}

  // run - Generate the 6 X86 memory fold tables.
  void run(formatted_raw_ostream &OS);

private:
  // Decides to which table to add the entry with the given instructions.
  // S sets the strategy of adding the TB_NO_REVERSE flag.
  void updateTables(const CodeGenInstruction *RegInstr,
                    const CodeGenInstruction *MemInstr,
                    const UnfoldStrategy S = NO_STRATEGY);

  // Generates X86FoldTableEntry with the given instructions and fill it with
  // the appropriate flags - then adds it to Table.
  void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
                         const CodeGenInstruction *MemInstr,
                         const UnfoldStrategy S, const unsigned int FoldedInd);

  // Print the given table as a static const C++ array of type
  // X86MemoryFoldTableEntry.
  void printTable(const FoldTable &Table, StringRef TableName,
                  formatted_raw_ostream &OS) {
    OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName
       << "[] = {\n";

    for (const X86FoldTableEntry &E : Table)
      E.print(OS);

    OS << "};\n\n";
  }
};

// Return true if one of the instruction's operands is a RST register class
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
  return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
    return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
  });
}

// Return true if one of the instruction's operands is a ptr_rc_tailcall
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
  return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
    return OpIn.Rec->getName() == "ptr_rc_tailcall";
  });
}

// Calculates the integer value representing the BitsInit object
static inline uint64_t getValueFromBitsInit(const BitsInit *B) {
  assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!");

  uint64_t Value = 0;
  for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) {
    BitInit *Bit = cast<BitInit>(B->getBit(i));
    Value |= uint64_t(Bit->getValue()) << i;
  }
  return Value;
}

// Returns true if the two given BitsInits represent the same integer value
static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) {
  if (B1->getNumBits() != B2->getNumBits())
    PrintFatalError("Comparing two BitsInits with different sizes!");

  for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) {
    BitInit *Bit1 = cast<BitInit>(B1->getBit(i));
    BitInit *Bit2 = cast<BitInit>(B2->getBit(i));
    if (Bit1->getValue() != Bit2->getValue())
      return false;
  }
  return true;
}

// Return the size of the register operand
static inline unsigned int getRegOperandSize(const Record *RegRec) {
  if (RegRec->isSubClassOf("RegisterOperand"))
    RegRec = RegRec->getValueAsDef("RegClass");
  if (RegRec->isSubClassOf("RegisterClass"))
    return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size");

  llvm_unreachable("Register operand's size not known!");
}

// Return the size of the memory operand
static inline unsigned int
getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) {
  if (MemRec->isSubClassOf("Operand")) {
    // Intrinsic memory instructions use ssmem/sdmem.
    if (IntrinsicSensitive &&
        (MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem"))
      return 128;

    StringRef Name =
        MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name");
    if (Name == "Mem8")
      return 8;
    if (Name == "Mem16")
      return 16;
    if (Name == "Mem32")
      return 32;
    if (Name == "Mem64")
      return 64;
    if (Name == "Mem80")
      return 80;
    if (Name == "Mem128")
      return 128;
    if (Name == "Mem256")
      return 256;
    if (Name == "Mem512")
      return 512;
  }

  llvm_unreachable("Memory operand's size not known!");
}

// Return true if the instruction defined as a register flavor.
static inline bool hasRegisterFormat(const Record *Inst) {
  const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
  uint64_t FormBitsNum = getValueFromBitsInit(FormBits);

  // Values from X86Local namespace defined in X86RecognizableInstr.cpp
  return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r;
}

// Return true if the instruction defined as a memory flavor.
static inline bool hasMemoryFormat(const Record *Inst) {
  const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
  uint64_t FormBitsNum = getValueFromBitsInit(FormBits);

  // Values from X86Local namespace defined in X86RecognizableInstr.cpp
  return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m;
}

static inline bool isNOREXRegClass(const Record *Op) {
  return Op->getName().find("_NOREX") != StringRef::npos;
}

static inline bool isRegisterOperand(const Record *Rec) {
  return Rec->isSubClassOf("RegisterClass") ||
         Rec->isSubClassOf("RegisterOperand") ||
         Rec->isSubClassOf("PointerLikeRegClass");
}

static inline bool isMemoryOperand(const Record *Rec) {
  return Rec->isSubClassOf("Operand") &&
         Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
}

static inline bool isImmediateOperand(const Record *Rec) {
  return Rec->isSubClassOf("Operand") &&
         Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
}

// Get the alternative instruction pointed by "FoldGenRegForm" field.
static inline const CodeGenInstruction *
getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records,
              const CodeGenTarget &Target) {

  StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm");
  Record *AltRegInstRec = Records.getDef(AltRegInstStr);
  assert(AltRegInstRec &&
         "Alternative register form instruction def not found");
  CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec);
  return &AltRegInst;
}

// Function object - Operator() returns true if the given VEX instruction
// matches the EVEX instruction of this object.
class IsMatch {
  const CodeGenInstruction *MemInst;

public:
  IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records)
      : MemInst(Inst) {}

  bool operator()(const CodeGenInstruction *RegInst) {
    Record *MemRec = MemInst->TheDef;
    Record *RegRec = RegInst->TheDef;

    // Return false if one (at least) of the encoding fields of both
    // instructions do not match.
    if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") ||
        !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"),
                        MemRec->getValueAsBitsInit("Opcode")) ||
        // VEX/EVEX fields
        RegRec->getValueAsDef("OpPrefix") !=
            MemRec->getValueAsDef("OpPrefix") ||
        RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") ||
        RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") ||
        RegRec->getValueAsDef("AdSize") != MemRec->getValueAsDef("AdSize") ||
        RegRec->getValueAsBit("hasVEX_4V") !=
            MemRec->getValueAsBit("hasVEX_4V") ||
        RegRec->getValueAsBit("hasEVEX_K") !=
            MemRec->getValueAsBit("hasEVEX_K") ||
        RegRec->getValueAsBit("hasEVEX_Z") !=
            MemRec->getValueAsBit("hasEVEX_Z") ||
        // EVEX_B means different things for memory and register forms.
        RegRec->getValueAsBit("hasEVEX_B") != 0 ||
        MemRec->getValueAsBit("hasEVEX_B") != 0 ||
        RegRec->getValueAsBit("hasEVEX_RC") !=
            MemRec->getValueAsBit("hasEVEX_RC") ||
        RegRec->getValueAsBit("hasREX_WPrefix") !=
            MemRec->getValueAsBit("hasREX_WPrefix") ||
        RegRec->getValueAsBit("hasLockPrefix") !=
            MemRec->getValueAsBit("hasLockPrefix") ||
        RegRec->getValueAsBit("hasNoTrackPrefix") !=
            MemRec->getValueAsBit("hasNoTrackPrefix") ||
        RegRec->getValueAsBit("hasVEX_L") !=
            MemRec->getValueAsBit("hasVEX_L") ||
        RegRec->getValueAsBit("hasEVEX_L2") !=
            MemRec->getValueAsBit("hasEVEX_L2") ||
        RegRec->getValueAsBit("ignoresVEX_L") !=
            MemRec->getValueAsBit("ignoresVEX_L") ||
        RegRec->getValueAsBit("HasVEX_W") !=
            MemRec->getValueAsBit("HasVEX_W") ||
        RegRec->getValueAsBit("IgnoresVEX_W") !=
            MemRec->getValueAsBit("IgnoresVEX_W") ||
        RegRec->getValueAsBit("EVEX_W1_VEX_W0") !=
            MemRec->getValueAsBit("EVEX_W1_VEX_W0") ||
        // Instruction's format - The register form's "Form" field should be
        // the opposite of the memory form's "Form" field.
        !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"),
                          MemRec->getValueAsBitsInit("FormBits")) ||
        RegRec->getValueAsBit("isAsmParserOnly") !=
            MemRec->getValueAsBit("isAsmParserOnly"))
      return false;

    // Make sure the sizes of the operands of both instructions suit each other.
    // This is needed for instructions with intrinsic version (_Int).
    // Where the only difference is the size of the operands.
    // For example: VUCOMISDZrm and Int_VUCOMISDrm
    // Also for instructions that their EVEX version was upgraded to work with
    // k-registers. For example VPCMPEQBrm (xmm output register) and
    // VPCMPEQBZ128rm (k register output register).
    bool ArgFolded = false;
    unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
    unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
    unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
    unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();

    // Instructions with one output in their memory form use the memory folded
    // operand as source and destination (Read-Modify-Write).
    unsigned RegStartIdx =
        (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;

    for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
      Record *MemOpRec = MemInst->Operands[i].Rec;
      Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;

      if (MemOpRec == RegOpRec)
        continue;

      if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
        if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
            isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
          return false;
      } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
        if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
          return false;
      } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
        if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
          return false;
      } else {
        // Only one operand can be folded.
        if (ArgFolded)
          return false;

        assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
        ArgFolded = true;
      }
    }

    return true;
  }

private:
  // Return true of the 2 given forms are the opposite of each other.
  bool areOppositeForms(const BitsInit *RegFormBits,
                        const BitsInit *MemFormBits) {
    uint64_t MemFormNum = getValueFromBitsInit(MemFormBits);
    uint64_t RegFormNum = getValueFromBitsInit(RegFormBits);

    if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) ||
        (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) ||
        (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) ||
        (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) ||
        (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) ||
        (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) ||
        (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) ||
        (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) ||
        (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) ||
        (MemFormNum == X86Local::MRMXmCC && RegFormNum == X86Local::MRMXrCC) ||
        (MemFormNum == X86Local::MRMDestMem &&
         RegFormNum == X86Local::MRMDestReg) ||
        (MemFormNum == X86Local::MRMSrcMem &&
         RegFormNum == X86Local::MRMSrcReg) ||
        (MemFormNum == X86Local::MRMSrcMem4VOp3 &&
         RegFormNum == X86Local::MRMSrcReg4VOp3) ||
        (MemFormNum == X86Local::MRMSrcMemOp4 &&
         RegFormNum == X86Local::MRMSrcRegOp4) ||
        (MemFormNum == X86Local::MRMSrcMemCC &&
         RegFormNum == X86Local::MRMSrcRegCC))
      return true;

    return false;
  }
};

} // end anonymous namespace

void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
                                             const CodeGenInstruction *RegInstr,
                                             const CodeGenInstruction *MemInstr,
                                             const UnfoldStrategy S,
                                             const unsigned int FoldedInd) {

  X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
  Record *RegRec = RegInstr->TheDef;
  Record *MemRec = MemInstr->TheDef;

  // Only table0 entries should explicitly specify a load or store flag.
  if (&Table == &Table0) {
    unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
    unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
    // If the instruction writes to the folded operand, it will appear as an
    // output in the register form instruction and as an input in the memory
    // form instruction.
    // If the instruction reads from the folded operand, it well appear as in
    // input in both forms.
    if (MemInOpsNum == RegInOpsNum)
      Result.IsLoad = true;
    else
      Result.IsStore = true;
  }

  Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
  Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;

  // Unfolding code generates a load/store instruction according to the size of
  // the register in the register form instruction.
  // If the register's size is greater than the memory's operand size, do not
  // allow unfolding.
  if (S == UNFOLD)
    Result.CannotUnfold = false;
  else if (S == NO_UNFOLD)
    Result.CannotUnfold = true;
  else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
    Result.CannotUnfold = true; // S == NO_STRATEGY

  uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
  if (isExplicitAlign(RegInstr)) {
    // The instruction require explicitly aligned memory.
    BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
    uint64_t Value = getValueFromBitsInit(VectSize);
    Result.IsAligned = true;
    Result.Alignment = Value;
  } else if (Enc != X86Local::XOP && Enc != X86Local::VEX &&
             Enc != X86Local::EVEX) {
    // Instructions with VEX encoding do not require alignment.
    if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) {
      // SSE packed vector instructions require a 16 byte alignment.
      Result.IsAligned = true;
      Result.Alignment = 16;
    }
  }

  Table.push_back(Result);
}

void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
                                        const CodeGenInstruction *MemInstr,
                                        const UnfoldStrategy S) {

  Record *RegRec = RegInstr->TheDef;
  Record *MemRec = MemInstr->TheDef;
  unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
  unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
  unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
  unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();

  // Instructions which Read-Modify-Write should be added to Table2Addr.
  if (MemOutSize != RegOutSize && MemInSize == RegInSize) {
    addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0);
    return;
  }

  if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
    // Load-Folding cases.
    // If the i'th register form operand is a register and the i'th memory form
    // operand is a memory operand, add instructions to Table#i.
    for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
      Record *RegOpRec = RegInstr->Operands[i].Rec;
      Record *MemOpRec = MemInstr->Operands[i].Rec;
      if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) {
        switch (i) {
        case 0:
          addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
          return;
        case 1:
          addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1);
          return;
        case 2:
          addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2);
          return;
        case 3:
          addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3);
          return;
        case 4:
          addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4);
          return;
        }
      }
    }
  } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
    // Store-Folding cases.
    // If the memory form instruction performs a store, the *output*
    // register of the register form instructions disappear and instead a
    // memory *input* operand appears in the memory form instruction.
    // For example:
    //   MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
    //   MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
    Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
    Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
    if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
        getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec))
      addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
  }

  return;
}

void X86FoldTablesEmitter::run(formatted_raw_ostream &OS) {
  emitSourceFileHeader("X86 fold tables", OS);

  // Holds all memory instructions
  std::vector<const CodeGenInstruction *> MemInsts;
  // Holds all register instructions - divided according to opcode.
  std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;

  ArrayRef<const CodeGenInstruction *> NumberedInstructions =
      Target.getInstructionsByEnumValue();

  for (const CodeGenInstruction *Inst : NumberedInstructions) {
    if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst"))
      continue;

    const Record *Rec = Inst->TheDef;

    // - Do not proceed if the instruction is marked as notMemoryFoldable.
    // - Instructions including RST register class operands are not relevant
    //   for memory folding (for further details check the explanation in
    //   lib/Target/X86/X86InstrFPStack.td file).
    // - Some instructions (listed in the manual map above) use the register
    //   class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
    //   safe mapping of these instruction we manually map them and exclude
    //   them from the automation.
    if (Rec->getValueAsBit("isMemoryFoldable") == false ||
        hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
      continue;

    // Add all the memory form instructions to MemInsts, and all the register
    // form instructions to RegInsts[Opc], where Opc in the opcode of each
    // instructions. this helps reducing the runtime of the backend.
    if (hasMemoryFormat(Rec))
      MemInsts.push_back(Inst);
    else if (hasRegisterFormat(Rec)) {
      uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
      RegInsts[Opc].push_back(Inst);
    }
  }

  // For each memory form instruction, try to find its register form
  // instruction.
  for (const CodeGenInstruction *MemInst : MemInsts) {
    uint8_t Opc =
        getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));

    auto RegInstsIt = RegInsts.find(Opc);
    if (RegInstsIt == RegInsts.end())
      continue;

    // Two forms (memory & register) of the same instruction must have the same
    // opcode. try matching only with register form instructions with the same
    // opcode.
    std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;

    auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records));
    if (Match != OpcRegInsts.end()) {
      const CodeGenInstruction *RegInst = *Match;
      // If the matched instruction has it's "FoldGenRegForm" set, map the
      // memory form instruction to the register form instruction pointed by
      // this field
      if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) {
        updateTables(RegInst, MemInst);
      } else {
        const CodeGenInstruction *AltRegInst =
            getAltRegInst(RegInst, Records, Target);
        updateTables(AltRegInst, MemInst);
      }
      OpcRegInsts.erase(Match);
    }
  }

  // Add the manually mapped instructions listed above.
  for (const ManualMapEntry &Entry : ManualMapSet) {
    Record *RegInstIter = Records.getDef(Entry.RegInstStr);
    Record *MemInstIter = Records.getDef(Entry.MemInstStr);

    updateTables(&(Target.getInstruction(RegInstIter)),
                 &(Target.getInstruction(MemInstIter)), Entry.Strategy);
  }

  // Print all tables.
  printTable(Table2Addr, "Table2Addr", OS);
  printTable(Table0, "Table0", OS);
  printTable(Table1, "Table1", OS);
  printTable(Table2, "Table2", OS);
  printTable(Table3, "Table3", OS);
  printTable(Table4, "Table4", OS);
}

namespace llvm {

void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &o) {
  formatted_raw_ostream OS(o);
  X86FoldTablesEmitter(RK).run(OS);
}
} // namespace llvm