Parser.h 22.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
//===- Parser.h - Toy Language Parser -------------------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parser for the Toy language. It processes the Token
// provided by the Lexer and returns an AST.
//
//===----------------------------------------------------------------------===//

#ifndef MLIR_TUTORIAL_TOY_PARSER_H
#define MLIR_TUTORIAL_TOY_PARSER_H

#include "toy/AST.h"
#include "toy/Lexer.h"

#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"

#include <map>
#include <utility>
#include <vector>

namespace toy {

/// This is a simple recursive parser for the Toy language. It produces a well
/// formed AST from a stream of Token supplied by the Lexer. No semantic checks
/// or symbol resolution is performed. For example, variables are referenced by
/// string and the code could reference an undeclared variable and the parsing
/// succeeds.
class Parser {
public:
  /// Create a Parser for the supplied lexer.
  Parser(Lexer &lexer) : lexer(lexer) {}

  /// Parse a full Module. A module is a list of function definitions.
  std::unique_ptr<ModuleAST> parseModule() {
    lexer.getNextToken(); // prime the lexer

    // Parse functions and structs one at a time and accumulate in this vector.
    std::vector<std::unique_ptr<RecordAST>> records;
    while (true) {
      std::unique_ptr<RecordAST> record;
      switch (lexer.getCurToken()) {
      case tok_eof:
        break;
      case tok_def:
        record = parseDefinition();
        break;
      case tok_struct:
        record = parseStruct();
        break;
      default:
        return parseError<ModuleAST>("'def' or 'struct'",
                                     "when parsing top level module records");
      }
      if (!record)
        break;
      records.push_back(std::move(record));
    }

    // If we didn't reach EOF, there was an error during parsing
    if (lexer.getCurToken() != tok_eof)
      return parseError<ModuleAST>("nothing", "at end of module");

    return std::make_unique<ModuleAST>(std::move(records));
  }

private:
  Lexer &lexer;

  /// Parse a return statement.
  /// return :== return ; | return expr ;
  std::unique_ptr<ReturnExprAST> parseReturn() {
    auto loc = lexer.getLastLocation();
    lexer.consume(tok_return);

    // return takes an optional argument
    llvm::Optional<std::unique_ptr<ExprAST>> expr;
    if (lexer.getCurToken() != ';') {
      expr = parseExpression();
      if (!expr)
        return nullptr;
    }
    return std::make_unique<ReturnExprAST>(std::move(loc), std::move(expr));
  }

  /// Parse a literal number.
  /// numberexpr ::= number
  std::unique_ptr<ExprAST> parseNumberExpr() {
    auto loc = lexer.getLastLocation();
    auto result =
        std::make_unique<NumberExprAST>(std::move(loc), lexer.getValue());
    lexer.consume(tok_number);
    return std::move(result);
  }

  /// Parse a literal array expression.
  /// tensorLiteral ::= [ literalList ] | number
  /// literalList ::= tensorLiteral | tensorLiteral, literalList
  std::unique_ptr<ExprAST> parseTensorLiteralExpr() {
    auto loc = lexer.getLastLocation();
    lexer.consume(Token('['));

    // Hold the list of values at this nesting level.
    std::vector<std::unique_ptr<ExprAST>> values;
    // Hold the dimensions for all the nesting inside this level.
    std::vector<int64_t> dims;
    do {
      // We can have either another nested array or a number literal.
      if (lexer.getCurToken() == '[') {
        values.push_back(parseTensorLiteralExpr());
        if (!values.back())
          return nullptr; // parse error in the nested array.
      } else {
        if (lexer.getCurToken() != tok_number)
          return parseError<ExprAST>("<num> or [", "in literal expression");
        values.push_back(parseNumberExpr());
      }

      // End of this list on ']'
      if (lexer.getCurToken() == ']')
        break;

      // Elements are separated by a comma.
      if (lexer.getCurToken() != ',')
        return parseError<ExprAST>("] or ,", "in literal expression");

      lexer.getNextToken(); // eat ,
    } while (true);
    if (values.empty())
      return parseError<ExprAST>("<something>", "to fill literal expression");
    lexer.getNextToken(); // eat ]

    /// Fill in the dimensions now. First the current nesting level:
    dims.push_back(values.size());

    /// If there is any nested array, process all of them and ensure that
    /// dimensions are uniform.
    if (llvm::any_of(values, [](std::unique_ptr<ExprAST> &expr) {
          return llvm::isa<LiteralExprAST>(expr.get());
        })) {
      auto *firstLiteral = llvm::dyn_cast<LiteralExprAST>(values.front().get());
      if (!firstLiteral)
        return parseError<ExprAST>("uniform well-nested dimensions",
                                   "inside literal expression");

      // Append the nested dimensions to the current level
      auto firstDims = firstLiteral->getDims();
      dims.insert(dims.end(), firstDims.begin(), firstDims.end());

      // Sanity check that shape is uniform across all elements of the list.
      for (auto &expr : values) {
        auto *exprLiteral = llvm::cast<LiteralExprAST>(expr.get());
        if (!exprLiteral)
          return parseError<ExprAST>("uniform well-nested dimensions",
                                     "inside literal expression");
        if (exprLiteral->getDims() != firstDims)
          return parseError<ExprAST>("uniform well-nested dimensions",
                                     "inside literal expression");
      }
    }
    return std::make_unique<LiteralExprAST>(std::move(loc), std::move(values),
                                            std::move(dims));
  }

  /// Parse a literal struct expression.
  /// structLiteral ::= { (structLiteral | tensorLiteral)+ }
  std::unique_ptr<ExprAST> parseStructLiteralExpr() {
    auto loc = lexer.getLastLocation();
    lexer.consume(Token('{'));

    // Hold the list of values.
    std::vector<std::unique_ptr<ExprAST>> values;
    do {
      // We can have either another nested array or a number literal.
      if (lexer.getCurToken() == '[') {
        values.push_back(parseTensorLiteralExpr());
        if (!values.back())
          return nullptr;
      } else if (lexer.getCurToken() == tok_number) {
        values.push_back(parseNumberExpr());
        if (!values.back())
          return nullptr;
      } else {
        if (lexer.getCurToken() != '{')
          return parseError<ExprAST>("{, [, or number",
                                     "in struct literal expression");
        values.push_back(parseStructLiteralExpr());
      }

      // End of this list on '}'
      if (lexer.getCurToken() == '}')
        break;

      // Elements are separated by a comma.
      if (lexer.getCurToken() != ',')
        return parseError<ExprAST>("} or ,", "in struct literal expression");

      lexer.getNextToken(); // eat ,
    } while (true);
    if (values.empty())
      return parseError<ExprAST>("<something>",
                                 "to fill struct literal expression");
    lexer.getNextToken(); // eat }

    return std::make_unique<StructLiteralExprAST>(std::move(loc),
                                                  std::move(values));
  }

  /// parenexpr ::= '(' expression ')'
  std::unique_ptr<ExprAST> parseParenExpr() {
    lexer.getNextToken(); // eat (.
    auto v = parseExpression();
    if (!v)
      return nullptr;

    if (lexer.getCurToken() != ')')
      return parseError<ExprAST>(")", "to close expression with parentheses");
    lexer.consume(Token(')'));
    return v;
  }

  /// Parse a call expression.
  std::unique_ptr<ExprAST> parseCallExpr(llvm::StringRef name,
                                         const Location &loc) {
    lexer.consume(Token('('));
    std::vector<std::unique_ptr<ExprAST>> args;
    if (lexer.getCurToken() != ')') {
      while (true) {
        if (auto arg = parseExpression())
          args.push_back(std::move(arg));
        else
          return nullptr;

        if (lexer.getCurToken() == ')')
          break;

        if (lexer.getCurToken() != ',')
          return parseError<ExprAST>(", or )", "in argument list");
        lexer.getNextToken();
      }
    }
    lexer.consume(Token(')'));

    // It can be a builtin call to print
    if (name == "print") {
      if (args.size() != 1)
        return parseError<ExprAST>("<single arg>", "as argument to print()");

      return std::make_unique<PrintExprAST>(std::move(loc), std::move(args[0]));
    }

    // Call to a user-defined function
    return std::make_unique<CallExprAST>(std::move(loc), name, std::move(args));
  }

  /// identifierexpr
  ///   ::= identifier
  ///   ::= identifier '(' expression ')'
  std::unique_ptr<ExprAST> parseIdentifierExpr() {
    std::string name = lexer.getId();

    auto loc = lexer.getLastLocation();
    lexer.getNextToken(); // eat identifier.

    if (lexer.getCurToken() != '(') // Simple variable ref.
      return std::make_unique<VariableExprAST>(std::move(loc), name);

    // This is a function call.
    return parseCallExpr(name, loc);
  }

  /// primary
  ///   ::= identifierexpr
  ///   ::= numberexpr
  ///   ::= parenexpr
  ///   ::= tensorliteral
  std::unique_ptr<ExprAST> parsePrimary() {
    switch (lexer.getCurToken()) {
    default:
      llvm::errs() << "unknown token '" << lexer.getCurToken()
                   << "' when expecting an expression\n";
      return nullptr;
    case tok_identifier:
      return parseIdentifierExpr();
    case tok_number:
      return parseNumberExpr();
    case '(':
      return parseParenExpr();
    case '[':
      return parseTensorLiteralExpr();
    case '{':
      return parseStructLiteralExpr();
    case ';':
      return nullptr;
    case '}':
      return nullptr;
    }
  }

  /// Recursively parse the right hand side of a binary expression, the ExprPrec
  /// argument indicates the precedence of the current binary operator.
  ///
  /// binoprhs ::= ('+' primary)*
  std::unique_ptr<ExprAST> parseBinOpRHS(int exprPrec,
                                         std::unique_ptr<ExprAST> lhs) {
    // If this is a binop, find its precedence.
    while (true) {
      int tokPrec = getTokPrecedence();

      // If this is a binop that binds at least as tightly as the current binop,
      // consume it, otherwise we are done.
      if (tokPrec < exprPrec)
        return lhs;

      // Okay, we know this is a binop.
      int binOp = lexer.getCurToken();
      lexer.consume(Token(binOp));
      auto loc = lexer.getLastLocation();

      // Parse the primary expression after the binary operator.
      auto rhs = parsePrimary();
      if (!rhs)
        return parseError<ExprAST>("expression", "to complete binary operator");

      // If BinOp binds less tightly with rhs than the operator after rhs, let
      // the pending operator take rhs as its lhs.
      int nextPrec = getTokPrecedence();
      if (tokPrec < nextPrec) {
        rhs = parseBinOpRHS(tokPrec + 1, std::move(rhs));
        if (!rhs)
          return nullptr;
      }

      // Merge lhs/RHS.
      lhs = std::make_unique<BinaryExprAST>(std::move(loc), binOp,
                                            std::move(lhs), std::move(rhs));
    }
  }

  /// expression::= primary binop rhs
  std::unique_ptr<ExprAST> parseExpression() {
    auto lhs = parsePrimary();
    if (!lhs)
      return nullptr;

    return parseBinOpRHS(0, std::move(lhs));
  }

  /// type ::= < shape_list >
  /// shape_list ::= num | num , shape_list
  std::unique_ptr<VarType> parseType() {
    if (lexer.getCurToken() != '<')
      return parseError<VarType>("<", "to begin type");
    lexer.getNextToken(); // eat <

    auto type = std::make_unique<VarType>();

    while (lexer.getCurToken() == tok_number) {
      type->shape.push_back(lexer.getValue());
      lexer.getNextToken();
      if (lexer.getCurToken() == ',')
        lexer.getNextToken();
    }

    if (lexer.getCurToken() != '>')
      return parseError<VarType>(">", "to end type");
    lexer.getNextToken(); // eat >
    return type;
  }

  /// Parse either a variable declaration or a call expression.
  std::unique_ptr<ExprAST> parseDeclarationOrCallExpr() {
    auto loc = lexer.getLastLocation();
    std::string id = lexer.getId();
    lexer.consume(tok_identifier);

    // Check for a call expression.
    if (lexer.getCurToken() == '(')
      return parseCallExpr(id, loc);

    // Otherwise, this is a variable declaration.
    return parseTypedDeclaration(id, /*requiresInitializer=*/true, loc);
  }

  /// Parse a typed variable declaration.
  std::unique_ptr<VarDeclExprAST>
  parseTypedDeclaration(llvm::StringRef typeName, bool requiresInitializer,
                        const Location &loc) {
    // Parse the variable name.
    if (lexer.getCurToken() != tok_identifier)
      return parseError<VarDeclExprAST>("name", "in variable declaration");
    std::string id = lexer.getId();
    lexer.getNextToken(); // eat id

    // Parse the initializer.
    std::unique_ptr<ExprAST> expr;
    if (requiresInitializer) {
      if (lexer.getCurToken() != '=')
        return parseError<VarDeclExprAST>("initializer",
                                          "in variable declaration");
      lexer.consume(Token('='));
      expr = parseExpression();
    }

    VarType type;
    type.name = typeName;
    return std::make_unique<VarDeclExprAST>(loc, std::move(id), std::move(type),
                                            std::move(expr));
  }

  /// Parse a variable declaration, for either a tensor value or a struct value,
  /// with an optionally required initializer.
  /// decl ::= var identifier [ type ] (= expr)?
  /// decl ::= identifier identifier (= expr)?
  std::unique_ptr<VarDeclExprAST> parseDeclaration(bool requiresInitializer) {
    // Check to see if this is a 'var' declaration.
    if (lexer.getCurToken() == tok_var)
      return parseVarDeclaration(requiresInitializer);

    // Parse the type name.
    if (lexer.getCurToken() != tok_identifier)
      return parseError<VarDeclExprAST>("type name", "in variable declaration");
    auto loc = lexer.getLastLocation();
    std::string typeName = lexer.getId();
    lexer.getNextToken(); // eat id

    // Parse the rest of the declaration.
    return parseTypedDeclaration(typeName, requiresInitializer, loc);
  }

  /// Parse a variable declaration, it starts with a `var` keyword followed by
  /// and identifier and an optional type (shape specification) before the
  /// optionally required initializer.
  /// decl ::= var identifier [ type ] (= expr)?
  std::unique_ptr<VarDeclExprAST>
  parseVarDeclaration(bool requiresInitializer) {
    if (lexer.getCurToken() != tok_var)
      return parseError<VarDeclExprAST>("var", "to begin declaration");
    auto loc = lexer.getLastLocation();
    lexer.getNextToken(); // eat var

    if (lexer.getCurToken() != tok_identifier)
      return parseError<VarDeclExprAST>("identified",
                                        "after 'var' declaration");
    std::string id = lexer.getId();
    lexer.getNextToken(); // eat id

    std::unique_ptr<VarType> type; // Type is optional, it can be inferred
    if (lexer.getCurToken() == '<') {
      type = parseType();
      if (!type)
        return nullptr;
    }
    if (!type)
      type = std::make_unique<VarType>();

    std::unique_ptr<ExprAST> expr;
    if (requiresInitializer) {
      lexer.consume(Token('='));
      expr = parseExpression();
    }
    return std::make_unique<VarDeclExprAST>(std::move(loc), std::move(id),
                                            std::move(*type), std::move(expr));
  }

  /// Parse a block: a list of expression separated by semicolons and wrapped in
  /// curly braces.
  ///
  /// block ::= { expression_list }
  /// expression_list ::= block_expr ; expression_list
  /// block_expr ::= decl | "return" | expr
  std::unique_ptr<ExprASTList> parseBlock() {
    if (lexer.getCurToken() != '{')
      return parseError<ExprASTList>("{", "to begin block");
    lexer.consume(Token('{'));

    auto exprList = std::make_unique<ExprASTList>();

    // Ignore empty expressions: swallow sequences of semicolons.
    while (lexer.getCurToken() == ';')
      lexer.consume(Token(';'));

    while (lexer.getCurToken() != '}' && lexer.getCurToken() != tok_eof) {
      if (lexer.getCurToken() == tok_identifier) {
        // Variable declaration or call
        auto expr = parseDeclarationOrCallExpr();
        if (!expr)
          return nullptr;
        exprList->push_back(std::move(expr));
      } else if (lexer.getCurToken() == tok_var) {
        // Variable declaration
        auto varDecl = parseDeclaration(/*requiresInitializer=*/true);
        if (!varDecl)
          return nullptr;
        exprList->push_back(std::move(varDecl));
      } else if (lexer.getCurToken() == tok_return) {
        // Return statement
        auto ret = parseReturn();
        if (!ret)
          return nullptr;
        exprList->push_back(std::move(ret));
      } else {
        // General expression
        auto expr = parseExpression();
        if (!expr)
          return nullptr;
        exprList->push_back(std::move(expr));
      }
      // Ensure that elements are separated by a semicolon.
      if (lexer.getCurToken() != ';')
        return parseError<ExprASTList>(";", "after expression");

      // Ignore empty expressions: swallow sequences of semicolons.
      while (lexer.getCurToken() == ';')
        lexer.consume(Token(';'));
    }

    if (lexer.getCurToken() != '}')
      return parseError<ExprASTList>("}", "to close block");

    lexer.consume(Token('}'));
    return exprList;
  }

  /// prototype ::= def id '(' decl_list ')'
  /// decl_list ::= identifier | identifier, decl_list
  std::unique_ptr<PrototypeAST> parsePrototype() {
    auto loc = lexer.getLastLocation();
    lexer.consume(tok_def);
    if (lexer.getCurToken() != tok_identifier)
      return parseError<PrototypeAST>("function name", "in prototype");

    std::string fnName = lexer.getId();
    lexer.consume(tok_identifier);

    if (lexer.getCurToken() != '(')
      return parseError<PrototypeAST>("(", "in prototype");
    lexer.consume(Token('('));

    std::vector<std::unique_ptr<VarDeclExprAST>> args;
    if (lexer.getCurToken() != ')') {
      do {
        VarType type;
        std::string name;

        // Parse either the name of the variable, or its type.
        std::string nameOrType = lexer.getId();
        auto loc = lexer.getLastLocation();
        lexer.consume(tok_identifier);

        // If the next token is an identifier, we just parsed the type.
        if (lexer.getCurToken() == tok_identifier) {
          type.name = std::move(nameOrType);

          // Parse the name.
          name = lexer.getId();
          lexer.consume(tok_identifier);
        } else {
          // Otherwise, we just parsed the name.
          name = std::move(nameOrType);
        }

        args.push_back(
            std::make_unique<VarDeclExprAST>(std::move(loc), name, type));
        if (lexer.getCurToken() != ',')
          break;
        lexer.consume(Token(','));
        if (lexer.getCurToken() != tok_identifier)
          return parseError<PrototypeAST>(
              "identifier", "after ',' in function parameter list");
      } while (true);
    }
    if (lexer.getCurToken() != ')')
      return parseError<PrototypeAST>("}", "to end function prototype");

    // success.
    lexer.consume(Token(')'));
    return std::make_unique<PrototypeAST>(std::move(loc), fnName,
                                          std::move(args));
  }

  /// Parse a function definition, we expect a prototype initiated with the
  /// `def` keyword, followed by a block containing a list of expressions.
  ///
  /// definition ::= prototype block
  std::unique_ptr<FunctionAST> parseDefinition() {
    auto proto = parsePrototype();
    if (!proto)
      return nullptr;

    if (auto block = parseBlock())
      return std::make_unique<FunctionAST>(std::move(proto), std::move(block));
    return nullptr;
  }

  /// Parse a struct definition, we expect a struct initiated with the
  /// `struct` keyword, followed by a block containing a list of variable
  /// declarations.
  ///
  /// definition ::= `struct` identifier `{` decl+ `}`
  std::unique_ptr<StructAST> parseStruct() {
    auto loc = lexer.getLastLocation();
    lexer.consume(tok_struct);
    if (lexer.getCurToken() != tok_identifier)
      return parseError<StructAST>("name", "in struct definition");
    std::string name = lexer.getId();
    lexer.consume(tok_identifier);

    // Parse: '{'
    if (lexer.getCurToken() != '{')
      return parseError<StructAST>("{", "in struct definition");
    lexer.consume(Token('{'));

    // Parse: decl+
    std::vector<std::unique_ptr<VarDeclExprAST>> decls;
    do {
      auto decl = parseDeclaration(/*requiresInitializer=*/false);
      if (!decl)
        return nullptr;
      decls.push_back(std::move(decl));

      if (lexer.getCurToken() != ';')
        return parseError<StructAST>(";",
                                     "after variable in struct definition");
      lexer.consume(Token(';'));
    } while (lexer.getCurToken() != '}');

    // Parse: '}'
    lexer.consume(Token('}'));
    return std::make_unique<StructAST>(loc, name, std::move(decls));
  }

  /// Get the precedence of the pending binary operator token.
  int getTokPrecedence() {
    if (!isascii(lexer.getCurToken()))
      return -1;

    // 1 is lowest precedence.
    switch (static_cast<char>(lexer.getCurToken())) {
    case '-':
      return 20;
    case '+':
      return 20;
    case '*':
      return 40;
    case '.':
      return 60;
    default:
      return -1;
    }
  }

  /// Helper function to signal errors while parsing, it takes an argument
  /// indicating the expected token and another argument giving more context.
  /// Location is retrieved from the lexer to enrich the error message.
  template <typename R, typename T, typename U = const char *>
  std::unique_ptr<R> parseError(T &&expected, U &&context = "") {
    auto curToken = lexer.getCurToken();
    llvm::errs() << "Parse error (" << lexer.getLastLocation().line << ", "
                 << lexer.getLastLocation().col << "): expected '" << expected
                 << "' " << context << " but has Token " << curToken;
    if (isprint(curToken))
      llvm::errs() << " '" << (char)curToken << "'";
    llvm::errs() << "\n";
    return nullptr;
  }
};

} // namespace toy

#endif // MLIR_TUTORIAL_TOY_PARSER_H