Fusion.cpp
15.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Dominance.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Intrinsics.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/EDSC/Helpers.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/STLExtras.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "linalg-fusion"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using namespace mlir::linalg::intrinsics;
using llvm::dbgs;
/// Implements a simple high-level fusion pass of linalg library operations.
///
/// In each block, linalg ops are processed in reverse textual order.
/// Given a linalg op `O`, fusion occurs by:
/// 1. inspecting the linalg ops that write into the views read by `O`. This
/// uses the SSA value of the views and a simple subview/slice analysis to
/// determine producer-consumer dependences;
/// 2. greedily fuse the linalg ops that produce subview
/// 3. inspect the fused ops and determine whether they have other remaining
/// LinalgOp uses. If not, then erase the original producing linalg op.
///
/// More advanced use cases, analyses as well as profitability heuristics are
/// left for future work.
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
static llvm::cl::list<unsigned> clTileSizes(
"linalg-fusion-tile-sizes",
llvm::cl::desc(
"Tile sizes by which to tile linalg operations during linalg fusion"),
llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated,
llvm::cl::cat(clOptionsCategory));
// Return a cloned version of `op` that operates on `loopRanges`, assumed to be
// a subset of the original loop ranges of `op`.
// This is achieved by applying the `loopToOperandRangesMaps` permutation maps
// to the `loopRanges` in order to obtain view ranges.
static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op,
ArrayRef<SubViewOp::Range> loopRanges) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
auto maps = loopToOperandRangesMaps(op);
SmallVector<Value, 8> clonedViews;
clonedViews.reserve(op.getNumInputsAndOutputs());
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
for (auto en : llvm::enumerate(ios)) {
unsigned idx = en.index();
auto map = maps[idx];
LLVM_DEBUG(dbgs() << "map: " << map << "\n");
Value view = en.value();
SmallVector<SubViewOp::Range, 4> viewRanges(map.getNumResults());
for (auto en2 : llvm::enumerate(map.getResults())) {
unsigned d = en2.index();
// loopToOperandRangesMaps are permutations-only.
unsigned loopPos = en2.value().cast<AffineDimExpr>().getPosition();
viewRanges[d] = loopRanges[loopPos];
LLVM_DEBUG(dbgs() << "\ni,j: " << en.index() << ", " << en2.index()
<< "\t"
<< "loopPos: " << loopPos << "\t" << viewRanges[d]);
}
// Construct a new subview for the tile.
unsigned rank = viewRanges.size();
SmallVector<Value, 4> offsets, sizes, strides;
offsets.reserve(rank);
sizes.reserve(rank);
strides.reserve(rank);
for (auto r : viewRanges) {
offsets.push_back(r.offset);
sizes.push_back(r.size);
strides.push_back(r.stride);
}
clonedViews.push_back(
b.create<SubViewOp>(loc, view, offsets, sizes, strides));
}
auto operands = getAssumedNonViewOperands(op);
clonedViews.append(operands.begin(), operands.end());
return op.clone(b, loc, clonedViews);
}
struct ViewDimension {
Value view;
unsigned dimension;
};
// Given an `op`, returns the first (`view`, `dimension`) pair that identifies
// the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
// guarantees at least one such dimension is found. If multiple candidates exist
// they must agree by construction (i.e. have the same size) and we just return
// the first one.
static ViewDimension getViewDefiningLoopRange(LinalgOp op, unsigned loopDepth) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
auto maps = loopToOperandRangesMaps(op);
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
for (auto en : llvm::enumerate(ios)) {
unsigned idx = en.index();
auto map = maps[idx];
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange I/O idx: " << idx << "\n");
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange map: " << map << "\n");
Value view = en.value();
SmallVector<Value, 8> viewRanges(map.getNumResults(), nullptr);
for (auto en2 : llvm::enumerate(map.getResults())) {
if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) {
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange loopDepth: " << loopDepth
<< "\n");
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange view: " << view << "\n");
return ViewDimension{view, static_cast<unsigned>(en2.index())};
}
}
}
llvm_unreachable("Expect to be able to extract a view defining loop range");
}
static LinalgOp fuse(Value producedView, LinalgOp producer, LinalgOp consumer,
unsigned consumerIdx, unsigned producerIdx,
OperationFolder *folder) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
auto subView = dyn_cast_or_null<SubViewOp>(
consumer.getInput(consumerIdx).getDefiningOp());
auto slice =
dyn_cast_or_null<SliceOp>(consumer.getInput(consumerIdx).getDefiningOp());
assert(subView || slice);
(void)subView;
(void)slice;
// loopToOperandRangesMaps are permutations-only by construction:
// we can always identify a data dimension with a (at least one) loop
// dimension.
AffineMap producerMap =
loopToOperandRangesMaps(producer)[producer.getNumInputs() + producerIdx];
LLVM_DEBUG(dbgs() << "Producer Idx: " << producerIdx
<< ", producer map: " << producerMap << "\n");
unsigned nPar = producer.getNumParallelLoops();
unsigned nRed = producer.getNumReductionLoops();
unsigned nWin = producer.getNumWindowLoops();
SmallVector<SubViewOp::Range, 8> loopRanges(nPar + nRed + nWin);
// Iterate over dimensions identified by the producer map for `producerIdx`.
// This defines a subset of the loop ranges that we need to complete later.
for (auto en : llvm::enumerate(producerMap.getResults())) {
unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
loopRanges[posInProducerLoop] = subView.getRanges()[en.index()];
}
OpBuilder b(consumer.getOperation());
auto loc = consumer.getLoc();
// Iterate over all dimensions. For the dimensions not identified by the
// producer map for `producerIdx`, we need to explicitly compute the view that
// defines the loop ranges using the `producer`.
for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) {
if (loopRanges[i].offset)
LLVM_DEBUG(llvm::dbgs()
<< "existing LoopRange: " << loopRanges[i] << "\n");
else {
auto viewDim = getViewDefiningLoopRange(producer, i);
loopRanges[i] = SubViewOp::Range{constant_index(folder, 0),
dim(viewDim.view, viewDim.dimension),
constant_index(folder, 1)};
LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n");
}
}
return cloneWithLoopRanges(b, loc, producer, loopRanges);
}
// Encode structural fusion safety preconditions.
// Some of these will be lifted in the future with better analysis.
static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
LinalgOp consumer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (producer.getNumOutputs() != 1) {
LLVM_DEBUG(dbgs() << "\nNot structurally fusable (multi-output)");
return false;
}
// Only fuse when the producer block dominates.
DominanceInfo dom(producer.getOperation());
if (!dom.dominates(producer.getOperation()->getBlock(),
consumer.getOperation()->getBlock())) {
LLVM_DEBUG(
dbgs()
<< "\nNot structurally fusable (producer block does not dominate)");
return false;
}
return true;
}
bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
LinalgOp consumer,
Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
// Make some simple structural checks that alleviate the need for more
// complex analyses.
if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
LLVM_DEBUG(dbgs() << "\n***Not static last write due to structure:\t"
<< *producer.getOperation());
return false;
}
// Check for any interleaved write to consumedView.
if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
LLVM_DEBUG(dbgs() << "\n***Not fusable due to interleaved write:\t"
<< *producer.getOperation());
return false;
}
return true;
}
bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
LinalgOp consumer, Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
return false;
// Check for any fusion-preventing dependence to any view read/written that
// would violate dependences.
if (!graph.findCoveringDependences(producer, consumer).empty()) {
LLVM_DEBUG(dbgs() << "\n***Not fusable due to an interleaved dependence:\t"
<< *producer.getOperation());
return false;
}
return true;
}
// Only consider RAW atm.
Optional<FusionInfo> mlir::linalg::fuseProducerOf(
OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
const LinalgDependenceGraph &graph, OperationFolder *folder) {
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
LLVM_DEBUG(dbgs() << "\nStart examining consumer: "
<< *consumer.getOperation());
for (auto dependence : graph.getDependencesInto(
consumer, LinalgDependenceGraph::DependenceType::RAW)) {
LLVM_DEBUG(dbgs() << "\n***Consider producer:\t"
<< *dependence.dependentOpView.op << "\n");
auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
// Check that the dependence is indeed on the input `consumerIdx` view.
auto consumedView = dependence.indexingView;
if (consumer.getInput(consumerIdx) != consumedView)
continue;
// Consumer consumes this view, `isStructurallyFusableProducer` also checks
// whether it is a strict subview of the producer view.
auto producedView = dependence.dependentOpView.view;
auto producerIdx = producer.getIndexOfOutputBuffer(producedView).getValue();
// `consumerIdx` and `producerIdx` exist by construction.
LLVM_DEBUG(dbgs() << "\nRAW producer: " << *producer.getOperation()
<< " view: " << producedView
<< " output index: " << producerIdx);
// Must be a subview or a slice to guarantee there are loops we can fuse
// into.
auto subView = dyn_cast_or_null<SubViewOp>(consumedView.getDefiningOp());
auto slice = dyn_cast_or_null<SliceOp>(consumedView.getDefiningOp());
if (!subView && !slice) {
LLVM_DEBUG(dbgs() << "\nNot fusable (not a subview or slice)");
continue;
}
// Simple fusability checks.
if (!isFusableInto(graph, consumer, consumedView, producer))
continue;
// Fuse `producer` just before `consumer`.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(consumer.getOperation());
ScopedContext scope(b, consumer.getLoc());
LLVM_DEBUG(dbgs() << "Fuse into consumer: " << *consumer << "\n");
auto fusedProducer = fuse(producedView, producer, consumer, consumerIdx,
producerIdx, folder);
return FusionInfo{producer, fusedProducer};
}
return llvm::None;
}
static void fuseLinalgOpsGreedily(FuncOp f) {
LLVM_DEBUG(f.print(dbgs() << "\nBefore linalg-fusion: \n"));
OpBuilder b(f);
OperationFolder folder(f.getContext());
DenseSet<Operation *> eraseSet;
// Save original Linalg ops, we only want to make a pass over those.
SmallVector<Operation *, 8> linalgOps;
f.walk([&](LinalgOp op) {
if (op.hasBufferSemantics())
linalgOps.push_back(op);
});
Aliases aliases;
LinalgDependenceGraph G(aliases, linalgOps);
for (auto *op : llvm::reverse(linalgOps)) {
for (unsigned consumerIdx = 0, e = LinalgOp(op).getNumInputs();
consumerIdx < e; ++consumerIdx) {
if (auto fusionInfo = fuseProducerOf(b, op, consumerIdx, G, &folder))
eraseSet.insert(fusionInfo->originalProducer.getOperation());
}
}
// The `fuseProducerOf` function performs structural checks and in particular
// that no covering read or write exist between the consumer and the producer.
// As a consequence, the only fusions that may occur preserve subsequent
// dependences and are guaranteed by construction to produce the whole view.
// We may thus erase the producer once it is fused.
for (auto *e : eraseSet)
e->erase();
LLVM_DEBUG(f.print(dbgs() << "\nAfter linalg-fusion: \n"));
}
namespace {
struct LinalgFusionPass : public FunctionPass<LinalgFusionPass> {
void runOnFunction() override { fuseLinalgOpsGreedily(getFunction()); }
};
} // namespace
std::unique_ptr<OpPassBase<FuncOp>> mlir::linalg::createLinalgFusionPass() {
return std::make_unique<LinalgFusionPass>();
}
static PassRegistration<LinalgFusionPass>
pass("linalg-fusion", "Fuse operations in the linalg dialect");