PassTiming.cpp 16.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
//===- PassTiming.cpp -----------------------------------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "PassDetail.h"
#include "mlir/Pass/PassManager.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Threading.h"
#include <chrono>

using namespace mlir;
using namespace mlir::detail;

constexpr StringLiteral kPassTimingDescription =
    "... Pass execution timing report ...";

namespace {
/// Simple record class to record timing information.
struct TimeRecord {
  TimeRecord(double wall = 0.0, double user = 0.0) : wall(wall), user(user) {}

  TimeRecord &operator+=(const TimeRecord &other) {
    wall += other.wall;
    user += other.user;
    return *this;
  }

  /// Print the current time record to 'os', with a breakdown showing
  /// contributions to the give 'total' time record.
  void print(raw_ostream &os, const TimeRecord &total) {
    if (total.user != total.wall)
      os << llvm::format("  %7.4f (%5.1f%%)  ", user,
                         100.0 * user / total.user);
    os << llvm::format("  %7.4f (%5.1f%%)  ", wall, 100.0 * wall / total.wall);
  }

  double wall, user;
};

/// An enumeration of the different types of timers.
enum class TimerKind {
  /// This timer represents an ordered collection of pass timers, corresponding
  /// to a pass pipeline.
  Pipeline,

  /// This timer represents a collection of pipeline timers.
  PipelineCollection,

  /// This timer represents an analysis or pass timer.
  PassOrAnalysis
};

struct Timer {
  explicit Timer(std::string &&name, TimerKind kind)
      : name(std::move(name)), kind(kind) {}

  /// Start the timer.
  void start() { startTime = std::chrono::system_clock::now(); }

  /// Stop the timer.
  void stop() {
    auto newTime = std::chrono::system_clock::now() - startTime;
    wallTime += newTime;
    userTime += newTime;
  }

  /// Get or create a child timer with the provided name and id.
  Timer *getChildTimer(const void *id, TimerKind kind,
                       std::function<std::string()> &&nameBuilder) {
    auto &child = children[id];
    if (!child)
      child = std::make_unique<Timer>(nameBuilder(), kind);
    return child.get();
  }

  /// Returns the total time for this timer in seconds.
  TimeRecord getTotalTime() {
    // If this is a pass or analysis timer, use the recorded time directly.
    if (kind == TimerKind::PassOrAnalysis) {
      return TimeRecord(
          std::chrono::duration_cast<std::chrono::duration<double>>(wallTime)
              .count(),
          std::chrono::duration_cast<std::chrono::duration<double>>(userTime)
              .count());
    }

    // Otherwise, accumulate the timing from each of the children.
    TimeRecord totalTime;
    for (auto &child : children)
      totalTime += child.second->getTotalTime();
    return totalTime;
  }

  /// A map of unique identifiers to child timers.
  using ChildrenMap = llvm::MapVector<const void *, std::unique_ptr<Timer>>;

  /// Merge the timing data from 'other' into this timer.
  void merge(Timer &&other) {
    if (wallTime < other.wallTime)
      wallTime = other.wallTime;
    userTime += other.userTime;
    mergeChildren(std::move(other.children));
  }

  /// Merge the timer children in 'otherChildren' with the children of this
  /// timer.
  void mergeChildren(ChildrenMap &&otherChildren) {
    // Check for an empty children list.
    if (children.empty()) {
      children = std::move(otherChildren);
      return;
    }

    // Pipeline merges are handled separately as the children are merged
    // lexicographically.
    if (kind == TimerKind::Pipeline) {
      assert(children.size() == otherChildren.size() &&
             "pipeline merge requires the same number of children");
      for (auto it : llvm::zip(children, otherChildren))
        std::get<0>(it).second->merge(std::move(*std::get<1>(it).second));
      return;
    }

    // Otherwise, we merge children based upon their timer key.
    for (auto &otherChild : otherChildren)
      mergeChild(std::move(otherChild));
  }

  /// Merge in the given child timer and id into this timer.
  void mergeChild(ChildrenMap::value_type &&childIt) {
    auto &child = children[childIt.first];
    if (!child)
      child = std::move(childIt.second);
    else
      child->merge(std::move(*childIt.second));
  }

  /// Raw timing information.
  std::chrono::time_point<std::chrono::system_clock> startTime;
  std::chrono::nanoseconds wallTime = std::chrono::nanoseconds(0);
  std::chrono::nanoseconds userTime = std::chrono::nanoseconds(0);

  /// A map of unique identifiers to child timers.
  ChildrenMap children;

  /// A descriptive name for this timer.
  std::string name;

  /// The type of timer this instance represents.
  TimerKind kind;
};

struct PassTiming : public PassInstrumentation {
  PassTiming(PassDisplayMode displayMode) : displayMode(displayMode) {}
  ~PassTiming() override { print(); }

  /// Setup the instrumentation hooks.
  void runBeforePipeline(const OperationName &name,
                         const PipelineParentInfo &parentInfo) override;
  void runAfterPipeline(const OperationName &name,
                        const PipelineParentInfo &parentInfo) override;
  void runBeforePass(Pass *pass, Operation *) override { startPassTimer(pass); }
  void runAfterPass(Pass *pass, Operation *) override;
  void runAfterPassFailed(Pass *pass, Operation *op) override {
    runAfterPass(pass, op);
  }
  void runBeforeAnalysis(StringRef name, AnalysisID *id, Operation *) override {
    startAnalysisTimer(name, id);
  }
  void runAfterAnalysis(StringRef, AnalysisID *, Operation *) override;

  /// Print and clear the timing results.
  void print();

  /// Start a new timer for the given pass.
  void startPassTimer(Pass *pass);

  /// Start a new timer for the given analysis.
  void startAnalysisTimer(StringRef name, AnalysisID *id);

  /// Pop the last active timer for the current thread.
  Timer *popLastActiveTimer() {
    auto tid = llvm::get_threadid();
    auto &activeTimers = activeThreadTimers[tid];
    assert(!activeTimers.empty() && "expected active timer");
    return activeTimers.pop_back_val();
  }

  /// Print the timing result in list mode.
  void printResultsAsList(raw_ostream &os, Timer *root, TimeRecord totalTime);

  /// Print the timing result in pipeline mode.
  void printResultsAsPipeline(raw_ostream &os, Timer *root,
                              TimeRecord totalTime);

  /// Returns a timer for the provided identifier and name.
  Timer *getTimer(const void *id, TimerKind kind,
                  std::function<std::string()> &&nameBuilder) {
    auto tid = llvm::get_threadid();

    // If there is no active timer then add to the root timer.
    auto &activeTimers = activeThreadTimers[tid];
    Timer *parentTimer;
    if (activeTimers.empty()) {
      auto &rootTimer = rootTimers[tid];
      if (!rootTimer)
        rootTimer = std::make_unique<Timer>("root", TimerKind::Pipeline);
      parentTimer = rootTimer.get();
    } else {
      // Otherwise, add this to the active timer.
      parentTimer = activeTimers.back();
    }

    auto timer = parentTimer->getChildTimer(id, kind, std::move(nameBuilder));
    activeTimers.push_back(timer);
    return timer;
  }

  /// The root top level timers for each thread.
  DenseMap<uint64_t, std::unique_ptr<Timer>> rootTimers;

  /// A stack of the currently active pass timers per thread.
  DenseMap<uint64_t, SmallVector<Timer *, 4>> activeThreadTimers;

  /// The display mode to use when printing the timing results.
  PassDisplayMode displayMode;

  /// A mapping of pipeline timers that need to be merged into the parent
  /// collection. The timers are mapped to the parent info to merge into.
  DenseMap<PipelineParentInfo, SmallVector<Timer::ChildrenMap::value_type, 4>>
      pipelinesToMerge;
};
} // end anonymous namespace

void PassTiming::runBeforePipeline(const OperationName &name,
                                   const PipelineParentInfo &parentInfo) {
  // We don't actually want to time the piplelines, they gather their total
  // from their held passes.
  getTimer(name.getAsOpaquePointer(), TimerKind::Pipeline,
           [&] { return ("'" + name.getStringRef() + "' Pipeline").str(); });
}

void PassTiming::runAfterPipeline(const OperationName &name,
                                  const PipelineParentInfo &parentInfo) {
  // Pop the timer for the pipeline.
  auto tid = llvm::get_threadid();
  auto &activeTimers = activeThreadTimers[tid];
  assert(!activeTimers.empty() && "expected active timer");
  activeTimers.pop_back();

  // If the current thread is the same as the parent, there is nothing left to
  // do.
  if (tid == parentInfo.parentThreadID)
    return;

  // Otherwise, mark the pipeline timer for merging into the correct parent
  // thread.
  assert(activeTimers.empty() && "expected parent timer to be root");
  auto *parentTimer = rootTimers[tid].get();
  assert(parentTimer->children.size() == 1 &&
         parentTimer->children.count(name.getAsOpaquePointer()) &&
         "expected a single pipeline timer");
  pipelinesToMerge[parentInfo].push_back(
      std::move(*parentTimer->children.begin()));
  rootTimers.erase(tid);
}

/// Start a new timer for the given pass.
void PassTiming::startPassTimer(Pass *pass) {
  auto kind = isAdaptorPass(pass) ? TimerKind::PipelineCollection
                                  : TimerKind::PassOrAnalysis;
  Timer *timer = getTimer(pass, kind, [pass]() -> std::string {
    if (auto *adaptor = getAdaptorPassBase(pass))
      return adaptor->getName();
    return pass->getName();
  });

  // We don't actually want to time the adaptor passes, they gather their total
  // from their held passes.
  if (!isAdaptorPass(pass))
    timer->start();
}

/// Start a new timer for the given analysis.
void PassTiming::startAnalysisTimer(StringRef name, AnalysisID *id) {
  Timer *timer = getTimer(id, TimerKind::PassOrAnalysis,
                          [name] { return "(A) " + name.str(); });
  timer->start();
}

/// Stop a pass timer.
void PassTiming::runAfterPass(Pass *pass, Operation *) {
  Timer *timer = popLastActiveTimer();

  // If this is an OpToOpPassAdaptorParallel, then we need to merge in the
  // timing data for the pipelines running on other threads.
  if (isa<OpToOpPassAdaptorParallel>(pass)) {
    auto toMerge = pipelinesToMerge.find({llvm::get_threadid(), pass});
    if (toMerge != pipelinesToMerge.end()) {
      for (auto &it : toMerge->second)
        timer->mergeChild(std::move(it));
      pipelinesToMerge.erase(toMerge);
    }
    return;
  }

  // Adaptor passes aren't timed directly, so we don't need to stop their
  // timers.
  if (!isAdaptorPass(pass))
    timer->stop();
}

/// Stop a timer.
void PassTiming::runAfterAnalysis(StringRef, AnalysisID *, Operation *) {
  popLastActiveTimer()->stop();
}

/// Utility to print the timer heading information.
static void printTimerHeader(raw_ostream &os, TimeRecord total) {
  os << "===" << std::string(73, '-') << "===\n";
  // Figure out how many spaces to description name.
  unsigned padding = (80 - kPassTimingDescription.size()) / 2;
  os.indent(padding) << kPassTimingDescription << '\n';
  os << "===" << std::string(73, '-') << "===\n";

  // Print the total time followed by the section headers.
  os << llvm::format("  Total Execution Time: %5.4f seconds\n\n", total.wall);
  if (total.user != total.wall)
    os << "   ---User Time---";
  os << "   ---Wall Time---  --- Name ---\n";
}

/// Utility to print a single line entry in the timer output.
static void printTimeEntry(raw_ostream &os, unsigned indent, StringRef name,
                           TimeRecord time, TimeRecord totalTime) {
  time.print(os, totalTime);
  os.indent(indent) << name << "\n";
}

/// Print out the current timing information.
void PassTiming::print() {
  // Don't print anything if there is no timing data.
  if (rootTimers.empty())
    return;

  assert(rootTimers.size() == 1 && "expected one remaining root timer");
  auto &rootTimer = rootTimers.begin()->second;
  auto os = llvm::CreateInfoOutputFile();

  // Print the timer header.
  TimeRecord totalTime = rootTimer->getTotalTime();
  printTimerHeader(*os, totalTime);

  // Defer to a specialized printer for each display mode.
  switch (displayMode) {
  case PassDisplayMode::List:
    printResultsAsList(*os, rootTimer.get(), totalTime);
    break;
  case PassDisplayMode::Pipeline:
    printResultsAsPipeline(*os, rootTimer.get(), totalTime);
    break;
  }
  printTimeEntry(*os, 0, "Total", totalTime, totalTime);
  os->flush();

  // Reset root timers.
  rootTimers.clear();
  activeThreadTimers.clear();
}

/// Print the timing result in list mode.
void PassTiming::printResultsAsList(raw_ostream &os, Timer *root,
                                    TimeRecord totalTime) {
  llvm::StringMap<TimeRecord> mergedTimings;

  std::function<void(Timer *)> addTimer = [&](Timer *timer) {
    // Only add timing information for passes and analyses.
    if (timer->kind == TimerKind::PassOrAnalysis)
      mergedTimings[timer->name] += timer->getTotalTime();
    for (auto &children : timer->children)
      addTimer(children.second.get());
  };

  // Add each of the top level timers.
  for (auto &topLevelTimer : root->children)
    addTimer(topLevelTimer.second.get());

  // Sort the timing information by wall time.
  std::vector<std::pair<StringRef, TimeRecord>> timerNameAndTime;
  for (auto &it : mergedTimings)
    timerNameAndTime.emplace_back(it.first(), it.second);
  llvm::array_pod_sort(timerNameAndTime.begin(), timerNameAndTime.end(),
                       [](const std::pair<StringRef, TimeRecord> *lhs,
                          const std::pair<StringRef, TimeRecord> *rhs) {
                         return llvm::array_pod_sort_comparator<double>(
                             &rhs->second.wall, &lhs->second.wall);
                       });

  // Print the timing information sequentially.
  for (auto &timeData : timerNameAndTime)
    printTimeEntry(os, 0, timeData.first, timeData.second, totalTime);
}

/// Print the timing result in pipeline mode.
void PassTiming::printResultsAsPipeline(raw_ostream &os, Timer *root,
                                        TimeRecord totalTime) {
  std::function<void(unsigned, Timer *)> printTimer = [&](unsigned indent,
                                                          Timer *timer) {
    // If this is a timer for a pipeline collection and the collection only has
    // one pipeline child, then only print the child.
    if (timer->kind == TimerKind::PipelineCollection &&
        timer->children.size() == 1)
      return printTimer(indent, timer->children.begin()->second.get());

    printTimeEntry(os, indent, timer->name, timer->getTotalTime(), totalTime);

    // If this timer is a pipeline, then print the children in-order.
    if (timer->kind == TimerKind::Pipeline) {
      for (auto &child : timer->children)
        printTimer(indent + 2, child.second.get());
      return;
    }

    // Otherwise, sort the children by name to give a deterministic ordering
    // when emitting the time.
    SmallVector<Timer *, 4> children;
    children.reserve(timer->children.size());
    for (auto &child : timer->children)
      children.push_back(child.second.get());
    llvm::array_pod_sort(children.begin(), children.end(),
                         [](Timer *const *lhs, Timer *const *rhs) {
                           return (*lhs)->name.compare((*rhs)->name);
                         });
    for (auto &child : children)
      printTimer(indent + 2, child);
  };

  // Print each of the top level timers.
  for (auto &topLevelTimer : root->children)
    printTimer(0, topLevelTimer.second.get());
}

//===----------------------------------------------------------------------===//
// PassManager
//===----------------------------------------------------------------------===//

/// Add an instrumentation to time the execution of passes and the computation
/// of analyses.
void PassManager::enableTiming(PassDisplayMode displayMode) {
  // Check if pass timing is already enabled.
  if (passTiming)
    return;
  addInstrumentation(std::make_unique<PassTiming>(displayMode));
  passTiming = true;
}