PassTiming.cpp
16.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//===- PassTiming.cpp -----------------------------------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Pass/PassManager.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Threading.h"
#include <chrono>
using namespace mlir;
using namespace mlir::detail;
constexpr StringLiteral kPassTimingDescription =
"... Pass execution timing report ...";
namespace {
/// Simple record class to record timing information.
struct TimeRecord {
TimeRecord(double wall = 0.0, double user = 0.0) : wall(wall), user(user) {}
TimeRecord &operator+=(const TimeRecord &other) {
wall += other.wall;
user += other.user;
return *this;
}
/// Print the current time record to 'os', with a breakdown showing
/// contributions to the give 'total' time record.
void print(raw_ostream &os, const TimeRecord &total) {
if (total.user != total.wall)
os << llvm::format(" %7.4f (%5.1f%%) ", user,
100.0 * user / total.user);
os << llvm::format(" %7.4f (%5.1f%%) ", wall, 100.0 * wall / total.wall);
}
double wall, user;
};
/// An enumeration of the different types of timers.
enum class TimerKind {
/// This timer represents an ordered collection of pass timers, corresponding
/// to a pass pipeline.
Pipeline,
/// This timer represents a collection of pipeline timers.
PipelineCollection,
/// This timer represents an analysis or pass timer.
PassOrAnalysis
};
struct Timer {
explicit Timer(std::string &&name, TimerKind kind)
: name(std::move(name)), kind(kind) {}
/// Start the timer.
void start() { startTime = std::chrono::system_clock::now(); }
/// Stop the timer.
void stop() {
auto newTime = std::chrono::system_clock::now() - startTime;
wallTime += newTime;
userTime += newTime;
}
/// Get or create a child timer with the provided name and id.
Timer *getChildTimer(const void *id, TimerKind kind,
std::function<std::string()> &&nameBuilder) {
auto &child = children[id];
if (!child)
child = std::make_unique<Timer>(nameBuilder(), kind);
return child.get();
}
/// Returns the total time for this timer in seconds.
TimeRecord getTotalTime() {
// If this is a pass or analysis timer, use the recorded time directly.
if (kind == TimerKind::PassOrAnalysis) {
return TimeRecord(
std::chrono::duration_cast<std::chrono::duration<double>>(wallTime)
.count(),
std::chrono::duration_cast<std::chrono::duration<double>>(userTime)
.count());
}
// Otherwise, accumulate the timing from each of the children.
TimeRecord totalTime;
for (auto &child : children)
totalTime += child.second->getTotalTime();
return totalTime;
}
/// A map of unique identifiers to child timers.
using ChildrenMap = llvm::MapVector<const void *, std::unique_ptr<Timer>>;
/// Merge the timing data from 'other' into this timer.
void merge(Timer &&other) {
if (wallTime < other.wallTime)
wallTime = other.wallTime;
userTime += other.userTime;
mergeChildren(std::move(other.children));
}
/// Merge the timer children in 'otherChildren' with the children of this
/// timer.
void mergeChildren(ChildrenMap &&otherChildren) {
// Check for an empty children list.
if (children.empty()) {
children = std::move(otherChildren);
return;
}
// Pipeline merges are handled separately as the children are merged
// lexicographically.
if (kind == TimerKind::Pipeline) {
assert(children.size() == otherChildren.size() &&
"pipeline merge requires the same number of children");
for (auto it : llvm::zip(children, otherChildren))
std::get<0>(it).second->merge(std::move(*std::get<1>(it).second));
return;
}
// Otherwise, we merge children based upon their timer key.
for (auto &otherChild : otherChildren)
mergeChild(std::move(otherChild));
}
/// Merge in the given child timer and id into this timer.
void mergeChild(ChildrenMap::value_type &&childIt) {
auto &child = children[childIt.first];
if (!child)
child = std::move(childIt.second);
else
child->merge(std::move(*childIt.second));
}
/// Raw timing information.
std::chrono::time_point<std::chrono::system_clock> startTime;
std::chrono::nanoseconds wallTime = std::chrono::nanoseconds(0);
std::chrono::nanoseconds userTime = std::chrono::nanoseconds(0);
/// A map of unique identifiers to child timers.
ChildrenMap children;
/// A descriptive name for this timer.
std::string name;
/// The type of timer this instance represents.
TimerKind kind;
};
struct PassTiming : public PassInstrumentation {
PassTiming(PassDisplayMode displayMode) : displayMode(displayMode) {}
~PassTiming() override { print(); }
/// Setup the instrumentation hooks.
void runBeforePipeline(const OperationName &name,
const PipelineParentInfo &parentInfo) override;
void runAfterPipeline(const OperationName &name,
const PipelineParentInfo &parentInfo) override;
void runBeforePass(Pass *pass, Operation *) override { startPassTimer(pass); }
void runAfterPass(Pass *pass, Operation *) override;
void runAfterPassFailed(Pass *pass, Operation *op) override {
runAfterPass(pass, op);
}
void runBeforeAnalysis(StringRef name, AnalysisID *id, Operation *) override {
startAnalysisTimer(name, id);
}
void runAfterAnalysis(StringRef, AnalysisID *, Operation *) override;
/// Print and clear the timing results.
void print();
/// Start a new timer for the given pass.
void startPassTimer(Pass *pass);
/// Start a new timer for the given analysis.
void startAnalysisTimer(StringRef name, AnalysisID *id);
/// Pop the last active timer for the current thread.
Timer *popLastActiveTimer() {
auto tid = llvm::get_threadid();
auto &activeTimers = activeThreadTimers[tid];
assert(!activeTimers.empty() && "expected active timer");
return activeTimers.pop_back_val();
}
/// Print the timing result in list mode.
void printResultsAsList(raw_ostream &os, Timer *root, TimeRecord totalTime);
/// Print the timing result in pipeline mode.
void printResultsAsPipeline(raw_ostream &os, Timer *root,
TimeRecord totalTime);
/// Returns a timer for the provided identifier and name.
Timer *getTimer(const void *id, TimerKind kind,
std::function<std::string()> &&nameBuilder) {
auto tid = llvm::get_threadid();
// If there is no active timer then add to the root timer.
auto &activeTimers = activeThreadTimers[tid];
Timer *parentTimer;
if (activeTimers.empty()) {
auto &rootTimer = rootTimers[tid];
if (!rootTimer)
rootTimer = std::make_unique<Timer>("root", TimerKind::Pipeline);
parentTimer = rootTimer.get();
} else {
// Otherwise, add this to the active timer.
parentTimer = activeTimers.back();
}
auto timer = parentTimer->getChildTimer(id, kind, std::move(nameBuilder));
activeTimers.push_back(timer);
return timer;
}
/// The root top level timers for each thread.
DenseMap<uint64_t, std::unique_ptr<Timer>> rootTimers;
/// A stack of the currently active pass timers per thread.
DenseMap<uint64_t, SmallVector<Timer *, 4>> activeThreadTimers;
/// The display mode to use when printing the timing results.
PassDisplayMode displayMode;
/// A mapping of pipeline timers that need to be merged into the parent
/// collection. The timers are mapped to the parent info to merge into.
DenseMap<PipelineParentInfo, SmallVector<Timer::ChildrenMap::value_type, 4>>
pipelinesToMerge;
};
} // end anonymous namespace
void PassTiming::runBeforePipeline(const OperationName &name,
const PipelineParentInfo &parentInfo) {
// We don't actually want to time the piplelines, they gather their total
// from their held passes.
getTimer(name.getAsOpaquePointer(), TimerKind::Pipeline,
[&] { return ("'" + name.getStringRef() + "' Pipeline").str(); });
}
void PassTiming::runAfterPipeline(const OperationName &name,
const PipelineParentInfo &parentInfo) {
// Pop the timer for the pipeline.
auto tid = llvm::get_threadid();
auto &activeTimers = activeThreadTimers[tid];
assert(!activeTimers.empty() && "expected active timer");
activeTimers.pop_back();
// If the current thread is the same as the parent, there is nothing left to
// do.
if (tid == parentInfo.parentThreadID)
return;
// Otherwise, mark the pipeline timer for merging into the correct parent
// thread.
assert(activeTimers.empty() && "expected parent timer to be root");
auto *parentTimer = rootTimers[tid].get();
assert(parentTimer->children.size() == 1 &&
parentTimer->children.count(name.getAsOpaquePointer()) &&
"expected a single pipeline timer");
pipelinesToMerge[parentInfo].push_back(
std::move(*parentTimer->children.begin()));
rootTimers.erase(tid);
}
/// Start a new timer for the given pass.
void PassTiming::startPassTimer(Pass *pass) {
auto kind = isAdaptorPass(pass) ? TimerKind::PipelineCollection
: TimerKind::PassOrAnalysis;
Timer *timer = getTimer(pass, kind, [pass]() -> std::string {
if (auto *adaptor = getAdaptorPassBase(pass))
return adaptor->getName();
return pass->getName();
});
// We don't actually want to time the adaptor passes, they gather their total
// from their held passes.
if (!isAdaptorPass(pass))
timer->start();
}
/// Start a new timer for the given analysis.
void PassTiming::startAnalysisTimer(StringRef name, AnalysisID *id) {
Timer *timer = getTimer(id, TimerKind::PassOrAnalysis,
[name] { return "(A) " + name.str(); });
timer->start();
}
/// Stop a pass timer.
void PassTiming::runAfterPass(Pass *pass, Operation *) {
Timer *timer = popLastActiveTimer();
// If this is an OpToOpPassAdaptorParallel, then we need to merge in the
// timing data for the pipelines running on other threads.
if (isa<OpToOpPassAdaptorParallel>(pass)) {
auto toMerge = pipelinesToMerge.find({llvm::get_threadid(), pass});
if (toMerge != pipelinesToMerge.end()) {
for (auto &it : toMerge->second)
timer->mergeChild(std::move(it));
pipelinesToMerge.erase(toMerge);
}
return;
}
// Adaptor passes aren't timed directly, so we don't need to stop their
// timers.
if (!isAdaptorPass(pass))
timer->stop();
}
/// Stop a timer.
void PassTiming::runAfterAnalysis(StringRef, AnalysisID *, Operation *) {
popLastActiveTimer()->stop();
}
/// Utility to print the timer heading information.
static void printTimerHeader(raw_ostream &os, TimeRecord total) {
os << "===" << std::string(73, '-') << "===\n";
// Figure out how many spaces to description name.
unsigned padding = (80 - kPassTimingDescription.size()) / 2;
os.indent(padding) << kPassTimingDescription << '\n';
os << "===" << std::string(73, '-') << "===\n";
// Print the total time followed by the section headers.
os << llvm::format(" Total Execution Time: %5.4f seconds\n\n", total.wall);
if (total.user != total.wall)
os << " ---User Time---";
os << " ---Wall Time--- --- Name ---\n";
}
/// Utility to print a single line entry in the timer output.
static void printTimeEntry(raw_ostream &os, unsigned indent, StringRef name,
TimeRecord time, TimeRecord totalTime) {
time.print(os, totalTime);
os.indent(indent) << name << "\n";
}
/// Print out the current timing information.
void PassTiming::print() {
// Don't print anything if there is no timing data.
if (rootTimers.empty())
return;
assert(rootTimers.size() == 1 && "expected one remaining root timer");
auto &rootTimer = rootTimers.begin()->second;
auto os = llvm::CreateInfoOutputFile();
// Print the timer header.
TimeRecord totalTime = rootTimer->getTotalTime();
printTimerHeader(*os, totalTime);
// Defer to a specialized printer for each display mode.
switch (displayMode) {
case PassDisplayMode::List:
printResultsAsList(*os, rootTimer.get(), totalTime);
break;
case PassDisplayMode::Pipeline:
printResultsAsPipeline(*os, rootTimer.get(), totalTime);
break;
}
printTimeEntry(*os, 0, "Total", totalTime, totalTime);
os->flush();
// Reset root timers.
rootTimers.clear();
activeThreadTimers.clear();
}
/// Print the timing result in list mode.
void PassTiming::printResultsAsList(raw_ostream &os, Timer *root,
TimeRecord totalTime) {
llvm::StringMap<TimeRecord> mergedTimings;
std::function<void(Timer *)> addTimer = [&](Timer *timer) {
// Only add timing information for passes and analyses.
if (timer->kind == TimerKind::PassOrAnalysis)
mergedTimings[timer->name] += timer->getTotalTime();
for (auto &children : timer->children)
addTimer(children.second.get());
};
// Add each of the top level timers.
for (auto &topLevelTimer : root->children)
addTimer(topLevelTimer.second.get());
// Sort the timing information by wall time.
std::vector<std::pair<StringRef, TimeRecord>> timerNameAndTime;
for (auto &it : mergedTimings)
timerNameAndTime.emplace_back(it.first(), it.second);
llvm::array_pod_sort(timerNameAndTime.begin(), timerNameAndTime.end(),
[](const std::pair<StringRef, TimeRecord> *lhs,
const std::pair<StringRef, TimeRecord> *rhs) {
return llvm::array_pod_sort_comparator<double>(
&rhs->second.wall, &lhs->second.wall);
});
// Print the timing information sequentially.
for (auto &timeData : timerNameAndTime)
printTimeEntry(os, 0, timeData.first, timeData.second, totalTime);
}
/// Print the timing result in pipeline mode.
void PassTiming::printResultsAsPipeline(raw_ostream &os, Timer *root,
TimeRecord totalTime) {
std::function<void(unsigned, Timer *)> printTimer = [&](unsigned indent,
Timer *timer) {
// If this is a timer for a pipeline collection and the collection only has
// one pipeline child, then only print the child.
if (timer->kind == TimerKind::PipelineCollection &&
timer->children.size() == 1)
return printTimer(indent, timer->children.begin()->second.get());
printTimeEntry(os, indent, timer->name, timer->getTotalTime(), totalTime);
// If this timer is a pipeline, then print the children in-order.
if (timer->kind == TimerKind::Pipeline) {
for (auto &child : timer->children)
printTimer(indent + 2, child.second.get());
return;
}
// Otherwise, sort the children by name to give a deterministic ordering
// when emitting the time.
SmallVector<Timer *, 4> children;
children.reserve(timer->children.size());
for (auto &child : timer->children)
children.push_back(child.second.get());
llvm::array_pod_sort(children.begin(), children.end(),
[](Timer *const *lhs, Timer *const *rhs) {
return (*lhs)->name.compare((*rhs)->name);
});
for (auto &child : children)
printTimer(indent + 2, child);
};
// Print each of the top level timers.
for (auto &topLevelTimer : root->children)
printTimer(0, topLevelTimer.second.get());
}
//===----------------------------------------------------------------------===//
// PassManager
//===----------------------------------------------------------------------===//
/// Add an instrumentation to time the execution of passes and the computation
/// of analyses.
void PassManager::enableTiming(PassDisplayMode displayMode) {
// Check if pass timing is already enabled.
if (passTiming)
return;
addInstrumentation(std::make_unique<PassTiming>(displayMode));
passTiming = true;
}