Canonicalizer.cpp
1.69 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
//===- Canonicalizer.cpp - Canonicalize MLIR operations -------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transformation pass converts operations into their canonical forms by
// folding constants, applying operation identity transformations etc.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/Passes.h"
using namespace mlir;
namespace {
/// Canonicalize operations in nested regions.
struct Canonicalizer : public OperationPass<Canonicalizer> {
void runOnOperation() override {
OwningRewritePatternList patterns;
// TODO: Instead of adding all known patterns from the whole system lazily
// add and cache the canonicalization patterns for ops we see in practice
// when building the worklist. For now, we just grab everything.
auto *context = &getContext();
for (auto *op : context->getRegisteredOperations())
op->getCanonicalizationPatterns(patterns, context);
Operation *op = getOperation();
applyPatternsGreedily(op->getRegions(), patterns);
}
};
} // end anonymous namespace
/// Create a Canonicalizer pass.
std::unique_ptr<Pass> mlir::createCanonicalizerPass() {
return std::make_unique<Canonicalizer>();
}
static PassRegistration<Canonicalizer> pass("canonicalize",
"Canonicalize operations");