OpBase.td 72.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
//===-- OpBase.td - Base op definition file ----------------*- tablegen -*-===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the base operation definition file.
//
//===----------------------------------------------------------------------===//

#ifndef OP_BASE
#define OP_BASE

//===----------------------------------------------------------------------===//
// Common utilities for defining TableGen mechanisms
//===----------------------------------------------------------------------===//

// A workaround for the inability to define functions in Tablegen.
//
// The template parameter defines a string that can be extracted from an
// instance of this class by accessing the "result" member. Subclasses can take
// their own template parameters as function "arguments" and use them to
// populate result.
// For example, if it didn't already exist, a concat function could be defined
// like:
//
// class StrConcat<list<string> strings> :
//     StrFunc<!foldl("", strings, prev, cur, prev # cur)>
//
// and then called like
//
// StrConcat<["a", "b", "c"]>.result
//
// to get the string "abc"
class StrFunc<string r> {
  string result = r;
}

// Concatenates a list of strings with a separator (default ", ")
class StrJoin<list<string> strings, string sep = ", "> :
    StrFunc<!if(!empty(strings), "",
         !foldl(!head(strings), !tail(strings), prev, cur, prev # sep # cur))>;

// Concatenates a list of integers into a string with a separator (default ", ")
class StrJoinInt<list<int> integers, string sep = ", "> :
    StrJoin<!foreach(i, integers, !cast<string>(i)), sep>;

//===----------------------------------------------------------------------===//
// Predicate definitions
//===----------------------------------------------------------------------===//

// Base class for logical predicates.
//
// Predicates are used to compose constraints (see next section for details).
// There are two categories of predicates:
//
// 1. CPred: the primitive leaf predicate.
// 2. Compound predicate: a predicate composed from child predicates using
//    predicate combiners ("conjunction", "disjunction", "negation" or
//    "substitution").
class Pred;

// A logical predicate wrapping any C expression.
//
// This is the basis for composing more complex predicates. It is the "atom"
// predicate from the perspective of TableGen and the "interface" between
// TableGen and C++. What is inside is already C++ code, which will be treated
// as opaque strings with special placeholders to be substituted.
//
// ## Special placeholders
//
// Special placeholders can be used to refer to entities in the context where
// this predicate is used. They serve as "hooks" to the enclosing environment.
// The following special placeholders are supported in constraints for an op:
//
// * `$_builder` will be replaced by a mlir::Builder instance.
// * `$_op` will be replaced by the current operation.
// * `$_self` will be replaced with the entity this predicate is attached to.
//   E.g., `BoolAttr` is an attribute constraint that wraps a
//   `CPred<"$_self.isa<BoolAttr>()">` (see the following sections for details).
//   Then for `F32:$attr`,`$_self` will be replaced by `$attr`.
//   For type constraints, it's a little bit special since we want the
//   constraints on each type definition reads naturally and we want to attach
//   type constraints directly to an operand/result, $_self will be replaced
//   by the operand/result's type. E.g., for `F32` in `F32:$operand`, its
//   `$_self` will be expanded as `getOperand(...).getType()`.
class CPred<code pred> : Pred {
  code predExpr = "(" # pred # ")";
}

// Kinds of predicate combiners.  These must closely match the predicates
// implemented by the C++ backend (tblgen::PredCombinerKind).
class PredCombinerKind;
def PredCombinerAnd : PredCombinerKind;
def PredCombinerOr : PredCombinerKind;
def PredCombinerNot : PredCombinerKind;
def PredCombinerSubstLeaves : PredCombinerKind;
def PredCombinerConcat : PredCombinerKind;

// A predicate that combines other predicates as defined by PredCombinerKind.
// Instantiated below.
class CombinedPred<PredCombinerKind k, list<Pred> c> : Pred {
  PredCombinerKind kind = k;
  list<Pred> children = c;
}

// Predicate combiners

// A predicate that holds if all of its children hold.  Always holds for zero
// children.
class And<list<Pred> children> : CombinedPred<PredCombinerAnd, children>;

// A predicate that holds if any of its children hold.  Never holds for zero
// children.
class Or<list<Pred> children> : CombinedPred<PredCombinerOr, children>;

// A predicate that holds if its child does not.
class Neg<Pred child> : CombinedPred<PredCombinerNot, [child]>;

// A predicate that substitutes "pat" with "repl" in predicate calls of the
// leaves of the predicate tree (i.e., not CombinedPred).
//
// This is plain string substitution without regular expressions or captures.
// New predicates with more complex logical can be introduced should the need
// arise.
class SubstLeaves<string pat, string repl, Pred child>
    : CombinedPred<PredCombinerSubstLeaves, [child]> {
  string pattern = pat;
  string replacement = repl;
}

// A predicate that prepends `pre` and appends `suf` to the final predicate
// string composed from `child`. This is plain string concatenation and there
// will be no substitution happening for `pre` and `suf`.
class Concat<string pre, Pred child, string suf> :
    CombinedPred<PredCombinerConcat, [child]> {
  string prefix = pre;
  string suffix = suf;
}

//===----------------------------------------------------------------------===//
// Constraint definitions
//===----------------------------------------------------------------------===//

// TODO(b/130064155): Merge Constraints into Pred.

// Base class for named constraints.
//
// An op's operands/attributes/results can have various requirements, e.g.,
// having certain types, having values inside a certain range, and so on.
// Besides, for a graph rewrite rule, the source pattern used to match against
// the existing graph has conditions, like the op's operand must be of a more
// constrained subtype, the attribute must have a certain value, and so on.
//
// These requirements and conditions are modeled using this class. Records of
// this class are used to generate verification code in op verifier, and
// matching code in pattern matcher.
//
// Constraints are predicates with descriptive names, to facilitate inspection,
// provide nice error messages, etc.
class Constraint<Pred pred, string desc = ""> {
  // The predicates that this constraint requires.
  Pred predicate = pred;
  // User-readable description used in error reporting messages. If empty, a
  // generic message will be used.
  string description = desc;
}

// Subclasses used to differentiate different constraint kinds. These are used
// as markers for the TableGen backend to handle different constraint kinds
// differently if needed. Constraints not deriving from the following subclasses
// are considered as uncategorized constraints.

// Subclass for constraints on a type.
class TypeConstraint<Pred predicate, string description = ""> :
    Constraint<predicate, description>;

// Subclass for constraints on an attribute.
class AttrConstraint<Pred predicate, string description = ""> :
    Constraint<predicate, description>;

// Subclass for constraints on a region.
class RegionConstraint<Pred predicate, string description = ""> :
    Constraint<predicate, description>;

// How to use these constraint categories:
//
// * Use TypeConstraint to specify
//   * Constraints on an op's operand/result definition
//   * Further constraints to match an op's operand/result in source pattern
//
// * Use Attr (a subclass for AttrConstraint) for
//   * Constraints on an op's attribute definition
// * Use AttrConstraint to specify
//   * Further constraints to match an op's attribute in source pattern
//
// * Use uncategorized constraint to specify
//   * Multi-entity constraints in rewrite rules

//===----------------------------------------------------------------------===//
// Common predicates
//===----------------------------------------------------------------------===//

// Whether a type is a VectorType.
def IsVectorTypePred : CPred<"$_self.isa<VectorType>()">;

// Whether a type is a TensorType.
def IsTensorTypePred : CPred<"$_self.isa<TensorType>()">;

// Whether a type is a MemRefType.
def IsMemRefTypePred : CPred<"$_self.isa<MemRefType>()">;

// Whether a type is an  IsUnrankedMemRefType
def IsUnrankedMemRefTypePred : CPred<"$_self.isa<UnrankedMemRefType>()">;

// Whether a type is a ShapedType.
def IsShapedTypePred : CPred<"$_self.isa<ShapedType>()">;

// For a ShapedType, verify that it has a static shape.
def HasStaticShapePred : CPred<"$_self.cast<ShapedType>().hasStaticShape()">;

// Whether a type is a TupleType.
def IsTupleTypePred : CPred<"$_self.isa<TupleType>()">;

//===----------------------------------------------------------------------===//
// Dialect definitions
//===----------------------------------------------------------------------===//

class Dialect {
  // The name of the dialect.
  string name = ?;

  // Short summary of the dialect.
  string summary = ?;

  // The description of the dialect.
  string description = ?;

  // The C++ namespace that ops of this dialect should be placed into.
  //
  // By default, uses the name of the dialect as the only namespace. To avoid
  // placing in any namespace, use "". To specify nested namespaces, use "::"
  // as the delimiter, e.g., given "A::B", ops will be placed in
  // `namespace A { namespace B { <ops> } }`.
  //
  // Note that this works in conjunction with dialect C++ code. Depending on how
  // the generated files are included into the dialect, you may want to specify
  // a full namespace path or a partial one.
  string cppNamespace = name;
}

//===----------------------------------------------------------------------===//
// Type definitions
//===----------------------------------------------------------------------===//

// A type, carries type constraints.
class Type<Pred condition, string descr = ""> :
    TypeConstraint<condition, descr> {
  string typeDescription = "";
}

// Allows providing an alternative name and description to an existing type def.
class TypeAlias<Type t, string description = t.description> :
    Type<t.predicate, description> {
  let typeDescription = t.typeDescription;
}

// A type of a specific dialect.
class DialectType<Dialect d, Pred condition, string descr = ""> :
    Type<condition, descr> {
  Dialect dialect = d;
}

// A variadic type constraint. It expands to zero or more of the base type. This
// class is used for supporting variadic operands/results. An op can declare no
// more than one variadic operand/result, and that operand/result must be the
// last one in the operand/result list.
class Variadic<Type type> : TypeConstraint<type.predicate, type.description> {
  Type baseType = type;
}

// A type that can be constructed using MLIR::Builder.
// Note that this does not "inherit" from Type because it would require
// duplicating Type subclasses for buildable and non-buildable cases to avoid
// diamond "inheritance".
// TODO(zinenko): we may extend this to a more general 'Buildable' trait,
// making some Types and some Attrs buildable.
class BuildableType<code builder> {
  // The builder call to invoke (if specified) to construct the BuildableType.
  // Format: this will be affixed to the builder.
  code builderCall = builder;
}

// Any type at all.
def AnyType : Type<CPred<"true">, "any type">;

// None type
def NoneType : Type<CPred<"$_self.isa<NoneType>()">, "none type">;

// Any type from the given list
class AnyTypeOf<list<Type> allowedTypes, string description = ""> : Type<
    // Satisfy any of the allowed type's condition
    Or<!foreach(allowedtype, allowedTypes, allowedtype.predicate)>,
    !if(!eq(description, ""),
        StrJoin<!foreach(t, allowedTypes, t.description), " or ">.result,
        description)>;

// Integer types.
// Any integer type irrespective of its width.
def AnyInteger : Type<CPred<"$_self.isa<IntegerType>()">, "integer">;

// Index type.
def Index : Type<CPred<"$_self.isa<IndexType>()">, "index">;

// Integer type of a specific width.
class I<int width>
    : Type<CPred<"$_self.isInteger(" # width # ")">,
                  width # "-bit integer">,
      BuildableType<"getIntegerType(" # width # ")"> {
  int bitwidth = width;
}

class IntOfWidths<list<int> widths> :
    AnyTypeOf<!foreach(w, widths, I<w>),
              StrJoinInt<widths, "/">.result # "-bit integer">;

def I1  : I<1>;
def I8  : I<8>;
def I16 : I<16>;
def I32 : I<32>;
def I64 : I<64>;

// Floating point types.

// Any float type irrespective of its width.
def AnyFloat : Type<CPred<"$_self.isa<FloatType>()">, "floating-point">;

// Float type of a specific width.
class F<int width>
    : Type<CPred<"$_self.isF" # width # "()">,
                width # "-bit float">,
      BuildableType<"getF" # width # "Type()"> {
  int bitwidth = width;
}

class FloatOfWidths<list<int> widths> :
    AnyTypeOf<!foreach(w, widths, F<w>),
              StrJoinInt<widths, "/">.result # "-bit float">;

def F16 : F<16>;
def F32 : F<32>;
def F64 : F<64>;

def BF16 : Type<CPred<"$_self.isBF16()">, "bfloat16 type">,
           BuildableType<"getBF16Type()">;

class Complex<Type type>
    : Type<And<[
          CPred<"$_self.isa<ComplexType>()">,
          SubstLeaves<"$_self", "$_self.cast<ComplexType>().getElementType()",
           type.predicate>]>,
           "complex type with " # type.description # " elements"> {
  Type elementType = type;
}

def AnyComplex : Type<CPred<"$_self.isa<ComplexType>()">, "complex-type">;

class OpaqueType<string dialect, string name, string description>
  : Type<CPred<"isOpaqueTypeWithName($_self, \""#dialect#"\", \""#name#"\")">,
         description>;

// Function Type

// Any function type.
def FunctionType : Type<CPred<"$_self.isa<FunctionType>()">, "function type">;

// A container type is a type that has another type embedded within it.
class ContainerType<Type etype, Pred containerPred, code elementTypeCall,
                    string descr> :
    // First, check the container predicate.  Then, substitute the extracted
    // element into the element type checker.
    Type<And<[containerPred,
                SubstLeaves<"$_self", !cast<string>(elementTypeCall),
                etype.predicate>]>,
         descr # " of " # etype.description # " values"> {
  // The type of elements in the container.
  Type elementType = etype;

  // Call to retrieve.
  code getElementTypeCall = elementTypeCall;
}

class ShapedContainerType<list<Type> allowedTypes, Pred containerPred, string descr> :
    ContainerType<AnyTypeOf<allowedTypes>, containerPred,
                  "$_self.cast<ShapedType>().getElementType()", descr>;

// Whether a shaped type is ranked.
def HasRankPred : CPred<"$_self.cast<ShapedType>().hasRank()">;

// Whether a shaped type has one of the specified ranks.
class HasAnyRankOfPred<list<int> ranks> : And<[
    HasRankPred,
    Or<!foreach(rank, ranks,
                CPred<"$_self.cast<ShapedType>().getRank() == " # rank>)>]>;

// Vector types.

class VectorOf<list<Type> allowedTypes> :
  ShapedContainerType<allowedTypes, IsVectorTypePred, "vector">;

// Whether the number of elements of a vector is from the given
// `allowedLengths` list
class IsVectorOfLengthPred<list<int> allowedLengths> :
  And<[IsVectorTypePred,
       Or<!foreach(allowedlength, allowedLengths,
                   CPred<[{$_self.cast<VectorType>().getNumElements()
                           == }]
                         # allowedlength>)>]>;

// Any vector where the number of elements is from the given
// `allowedLengths` list
class VectorOfLength<list<int> allowedLengths> : Type<
  IsVectorOfLengthPred<allowedLengths>,
  " of length " # StrJoinInt<allowedLengths, "/">.result>;


// Any vector where the number of elements is from the given
// `allowedLengths` list and the type is from the given `allowedTypes`
// list
class VectorOfLengthAndType<list<int> allowedLengths,
                            list<Type> allowedTypes> : Type<
  And<[VectorOf<allowedTypes>.predicate,
       VectorOfLength<allowedLengths>.predicate]>,
  VectorOf<allowedTypes>.description #
  VectorOfLength<allowedLengths>.description>;

def AnyVector : VectorOf<[AnyType]>;

// Tensor types.

// Any tensor type whose element type is from the given `allowedTypes` list
class TensorOf<list<Type> allowedTypes> :
  ShapedContainerType<allowedTypes, IsTensorTypePred, "tensor">;

def AnyTensor : TensorOf<[AnyType]>;

def AnyRankedTensor :
  ShapedContainerType<[AnyType], And<[IsTensorTypePred, HasRankPred]>,
  "ranked tensor">;

// TODO(b/130064155) Have an easy way to add another constraint to a type.
class StaticShapeTensorOf<list<Type> allowedTypes>
    : Type<And<[TensorOf<allowedTypes>.predicate, HasStaticShapePred]>,
           "statically shaped " # TensorOf<allowedTypes>.description>;

def AnyStaticShapeTensor : StaticShapeTensorOf<[AnyType]>;

def I1Tensor   : TensorOf<[I1]>;
def I8Tensor   : TensorOf<[I8]>;
def I16Tensor  : TensorOf<[I16]>;
def I32Tensor  : TensorOf<[I32]>;
def I64Tensor  : TensorOf<[I64]>;

def BF16Tensor : TensorOf<[BF16]>;
def F16Tensor  : TensorOf<[F16]>;
def F32Tensor  : TensorOf<[F32]>;
def F64Tensor  : TensorOf<[F64]>;

// Ranked tensor type with one of the specified types and ranks.
class TensorRankOf<list<Type> allowedTypes, list<int> ranks> :
    Type<And<[TensorOf<allowedTypes>.predicate, HasAnyRankOfPred<ranks>]>,
         StrJoin<!foreach(rank, ranks, rank # "D"), "/">.result # " " #
         TensorOf<allowedTypes>.description>;

class 0DTensorOf<list<Type> allowedTypes> : TensorRankOf<allowedTypes, [0]>;
class 1DTensorOf<list<Type> allowedTypes> : TensorRankOf<allowedTypes, [1]>;
class 2DTensorOf<list<Type> allowedTypes> : TensorRankOf<allowedTypes, [2]>;
class 3DTensorOf<list<Type> allowedTypes> : TensorRankOf<allowedTypes, [3]>;
class 4DTensorOf<list<Type> allowedTypes> : TensorRankOf<allowedTypes, [4]>;

// Unranked Memref type
def AnyUnrankedMemRef : 
    ShapedContainerType<[AnyType], 
                        IsUnrankedMemRefTypePred, "unranked.memref">;
// Memref type.

// Memrefs are blocks of data with fixed type and rank.
class MemRefOf<list<Type> allowedTypes> :
    ShapedContainerType<allowedTypes, IsMemRefTypePred, "memref">;

def AnyMemRef : MemRefOf<[AnyType]>;

def AnyRankedOrUnrankedMemRef: AnyTypeOf<[AnyUnrankedMemRef, AnyMemRef]>;

// Memref declarations handle any memref, independent of rank, size, (static or
// dynamic), layout, or memory space.
def I1MemRef  : MemRefOf<[I1]>;
def I8MemRef  : MemRefOf<[I8]>;
def I16MemRef : MemRefOf<[I16]>;
def I32MemRef : MemRefOf<[I32]>;
def I64MemRef : MemRefOf<[I64]>;

def BF16MemRef : MemRefOf<[BF16]>;
def F16MemRef  : MemRefOf<[F16]>;
def F32MemRef  : MemRefOf<[F32]>;
def F64MemRef  : MemRefOf<[F64]>;

// TODO(b/130064155) Have an easy way to add another constraint to a type.
class MemRefRankOf<list<Type> allowedTypes, list<int> ranks> :
    Type<And<[MemRefOf<allowedTypes>.predicate, HasAnyRankOfPred<ranks>]>,
         StrJoin<!foreach(rank, ranks, rank # "D"), "/">.result # " " #
         MemRefOf<allowedTypes>.description>;

class StaticShapeMemRefOf<list<Type> allowedTypes>
    : Type<And<[MemRefOf<allowedTypes>.predicate, HasStaticShapePred]>,
           "statically shaped " # MemRefOf<allowedTypes>.description>;

def AnyStaticShapeMemRef : StaticShapeMemRefOf<[AnyType]>;

// For a MemRefType, verify that it has strides.
def HasStridesPred : CPred<[{ isStrided($_self.cast<MemRefType>()) }]>;

class StridedMemRefOf<list<Type> allowedTypes>
    : Type<And<[MemRefOf<allowedTypes>.predicate, HasStridesPred]>,
           "strided " # MemRefOf<allowedTypes>.description>;

def AnyStridedMemRef : StridedMemRefOf<[AnyType]>;

class AnyStridedMemRefOfRank<int rank> :
  Type<And<[AnyStridedMemRef.predicate,
            MemRefRankOf<[AnyType], [rank]>.predicate]>,
       AnyStridedMemRef.description # " of rank " # rank>;

// This represents a generic tuple without any constraints on element type.
def AnyTuple : Type<IsTupleTypePred, "tuple">;

// A container type that has other types embedded in it, but (unlike
// ContainerType) can hold elements with a mix of types. Requires a call that
// produces a list of all elements' types.
class MixedContainerType<Type etype, Pred containerPred, code elementTypesCall,
                         string descr> :
    Type<
        And<[
            containerPred,
            Concat<
                "llvm::all_of(" # elementTypesCall # ", [](Type t) { return ",
                SubstLeaves<"$_self", "t", etype.predicate>,
                "; })"
            >
        ]>,
        descr # " with any combination of " # etype.description # " values"> {
  // The type of elements in the container.
  Type elementType = etype;

  // Call to retrieve.
  code getElementTypesCall = elementTypesCall;
}

// A Tuple that holds a mix of elements of the allowed types.
class TupleOf<list<Type> allowedTypes>
    : MixedContainerType<AnyTypeOf<allowedTypes>, IsTupleTypePred,
                         "$_self.cast<TupleType>().getTypes()", "tuple">;

// A Tuple with arbitrary nesting, where all elements are a mix of the allowed
// types.
class NestedTupleOf<list<Type> allowedTypes> :
    MixedContainerType<AnyTypeOf<allowedTypes>, IsTupleTypePred,
                       "getFlattenedTypes($_self.cast<TupleType>())",
                       "nested tuple">;

//===----------------------------------------------------------------------===//
// Common type constraints
//===----------------------------------------------------------------------===//

// Type constraint for bool-like types: bools, vectors of bools, tensors of
// bools.
def BoolLike : TypeConstraint<Or<[I1.predicate, VectorOf<[I1]>.predicate,
                                  TensorOf<[I1]>.predicate]>,
    "bool-like">;

// Type constraint for integer-like types: integers, indices, vectors of
// integers, tensors of integers.
def IntegerLike : TypeConstraint<Or<[AnyInteger.predicate, Index.predicate,
        VectorOf<[AnyInteger]>.predicate, TensorOf<[AnyInteger]>.predicate]>,
    "integer-like">;

// Type constraint for float-like types: floats, vectors or tensors thereof.
def FloatLike : TypeConstraint<Or<[AnyFloat.predicate,
        VectorOf<[AnyFloat]>.predicate, TensorOf<[AnyFloat]>.predicate]>,
    "floating-point-like">;


//===----------------------------------------------------------------------===//
// Attribute definitions
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Base attribute definition

// Base class for all attributes.
class Attr<Pred condition, string descr = ""> :
    AttrConstraint<condition, descr> {
  code storageType = ?; // The backing mlir::Attribute type
  code returnType = ?;  // The underlying C++ value type

  // The call expression to convert from the storage type to the return
  // type. For example, an enum can be stored as an int but returned as an
  // enum class.
  //
  // Format: $_self will be expanded to the attribute.
  //
  // For example, `$_self.getValue().getSExtValue()` for `IntegerAttr val` will
  // expand to `getAttrOfType<IntegerAttr>("val").getValue().getSExtValue()`.
  code convertFromStorage = "$_self.getValue()";

  // The call expression to build an attribute from a constant value.
  //
  // Format: $0 will be expanded to the constant value of the attribute.
  //
  // For example, `$_builder.getStringAttr("$0")` for `StringAttr:"foo"` will
  // expand to `builder.getStringAttr("foo")`.
  string constBuilderCall = ?;

  // Default value for attribute.
  // Requires a constBuilderCall defined.
  string defaultValue = ?;

  // Whether the attribute is optional. Typically requires a custom
  // convertFromStorage method to handle the case where the attribute is
  // not present.
  bit isOptional = 0;

  // What is the base-level Attr instantiation that this Attr is built upon.
  // Unset means this is a base-level Attr.
  //
  // This field is used by attribute wrapper classes (DefaultValuedAttr,
  // OptionalAttr, etc.) to retrieve the base-level attribute definition.
  // This can be used for getting its name; otherwise, we will see
  // "anonymous_<number>" as the attribute def name because of template
  // instantiation.
  // TOOD(b/132458159): deduplicate the fields in attribute wrapper classes.
  Attr baseAttr = ?;
}

//===----------------------------------------------------------------------===//
// Attribute modifier definition

// Decorates an attribute to have an (unvalidated) default value if not present.
class DefaultValuedAttr<Attr attr, string val> :
    Attr<attr.predicate, attr.description> {
  // Construct this attribute with the input attribute and change only
  // the default value.
  // Note: this has to be kept up to date with Attr above.
  let storageType = attr.storageType;
  let returnType = attr.returnType;
  let convertFromStorage = attr.convertFromStorage;
  let constBuilderCall = attr.constBuilderCall;
  let defaultValue = val;

  let baseAttr = attr;
}

// Decorates an attribute as optional. The return type of the generated
// attribute accessor method will be Optional<>.
class OptionalAttr<Attr attr> : Attr<attr.predicate, attr.description> {
  // Rewrite the attribute to be optional.
  // Note: this has to be kept up to date with Attr above.
  let storageType = attr.storageType;
  let returnType = "Optional<" # attr.returnType #">";
  let convertFromStorage = "$_self ? " # returnType # "(" #
                           attr.convertFromStorage # ") : (llvm::None)";
  let isOptional = 1;

  let baseAttr = attr;
}

//===----------------------------------------------------------------------===//
// Primitive attribute kinds

// A generic attribute that must be constructed around a specific type
// `attrValType`. Backed by MLIR attribute kind `attrKind`.
class TypedAttrBase<BuildableType attrValType, string attrKind,
                    Pred condition, string descr> :
    Attr<condition, descr> {
  let constBuilderCall = "$_builder.get" # attrKind # "($_builder." #
                         attrValType.builderCall # ", $0)";
  let storageType = attrKind;
}

// Any attribute.
def AnyAttr : Attr<CPred<"true">, "any attribute"> {
  let storageType = "Attribute";
  let returnType = "Attribute";
  let convertFromStorage = "$_self";
  let constBuilderCall = "$0";
}

def BoolAttr : Attr<CPred<"$_self.isa<BoolAttr>()">, "bool attribute"> {
  let storageType = [{ BoolAttr }];
  let returnType = [{ bool }];
  let constBuilderCall = "$_builder.getBoolAttr($0)";
}

// Base class for integer attributes of fixed width.
class IntegerAttrBase<I attrValType, string descr> :
    TypedAttrBase<
      attrValType, "IntegerAttr",
      And<[CPred<"$_self.isa<IntegerAttr>()">,
           CPred<"$_self.cast<IntegerAttr>().getType()."
                 "isInteger(" # attrValType.bitwidth # ")">]>,
      descr> {
  let returnType = [{ APInt }];
}

def APIntAttr : Attr<CPred<"$_self.isa<IntegerAttr>()">,
                     "arbitrary integer attribute"> {
  let storageType = [{ IntegerAttr }];
  let returnType = [{ APInt }];
}

def I1Attr  : IntegerAttrBase<I1,  "1-bit integer attribute">;
def I8Attr  : IntegerAttrBase<I8,  "8-bit integer attribute">;
def I16Attr : IntegerAttrBase<I16, "16-bit integer attribute">;
def I32Attr : IntegerAttrBase<I32, "32-bit integer attribute">;
def I64Attr : IntegerAttrBase<I64, "64-bit integer attribute">;

class NonNegativeIntAttrBase<I attrValType, string descr> :
    TypedAttrBase<
      attrValType, "IntegerAttr",
      And<[IntegerAttrBase<attrValType, "">.predicate,
           CPred<"!$_self.cast<IntegerAttr>().getValue().isNegative()">]>,
      descr> {
  let returnType = [{ APInt }];
}

def NonNegativeI32Attr : NonNegativeIntAttrBase<
    I32, "non-negative 32-bit integer attribute">;
def NonNegativeI64Attr : NonNegativeIntAttrBase<
    I64, "non-negative 64-bit integer attribute">;

class PositiveIntAttrBase<I attrValType, string descr> :
    TypedAttrBase<
      attrValType, "IntegerAttr",
      And<[IntegerAttrBase<attrValType, "">.predicate,
           CPred<"$_self.cast<IntegerAttr>().getValue()"
                 ".isStrictlyPositive()">]>,
      descr> {
  let returnType = [{ APInt }];
}

def PositiveI32Attr : PositiveIntAttrBase<
    I32, "positive 32-bit integer attribute">;
def PositiveI64Attr : PositiveIntAttrBase<
    I64, "positive 64-bit integer attribute">;

// Base class for float attributes of fixed width.
class FloatAttrBase<F attrValType, string descr> :
    TypedAttrBase<attrValType, "FloatAttr",
              And<[CPred<"$_self.isa<FloatAttr>()">,
                     CPred<"$_self.cast<FloatAttr>().getType().isF" #
                           attrValType.bitwidth # "()">]>,
              descr> {
  let returnType = [{ APFloat }];
}

def F32Attr : FloatAttrBase<F32, "32-bit float attribute">;
def F64Attr : FloatAttrBase<F64, "64-bit float attribute">;

// An attribute backed by a string type.
class StringBasedAttr<Pred condition, string descr> : Attr<condition, descr> {
  let constBuilderCall = "$_builder.getStringAttr(\"$0\")";
  let storageType = [{ StringAttr }];
  let returnType = [{ StringRef }];
}

def StrAttr : StringBasedAttr<CPred<"$_self.isa<StringAttr>()">,
                              "string attribute">;

// Base class for attributes containing types. Example:
//   def IntTypeAttr : TypeAttrBase<"IntegerType", "integer type attribute">
// defines a type attribute containing an integer type.
class TypeAttrBase<string retType, string description> :
    Attr<And<[
      CPred<"$_self.isa<TypeAttr>()">,
      CPred<"$_self.cast<TypeAttr>().getValue().isa<" # retType # ">()">]>,
    description> {
  let storageType = [{ TypeAttr }];
  let returnType = retType;
  let convertFromStorage = "$_self.getValue().cast<" # retType # ">()";
}

def TypeAttr : TypeAttrBase<"Type", "any type attribute">;

// The mere presence of unit attributes has a meaning.  Therefore, unit
// attributes are always treated as optional and accessors to them return
// "true" if the attribute is present and "false" otherwise.
def UnitAttr : Attr<CPred<"$_self.isa<UnitAttr>()">, "unit attribute"> {
  let storageType = [{ UnitAttr }];
  let constBuilderCall = "$_builder.getUnitAttr()";
  let convertFromStorage = "$_self != nullptr";
  let returnType = "bool";
  let isOptional = 1;
}

//===----------------------------------------------------------------------===//
// Enum attribute kinds

// Additional information for an enum attribute case.
class EnumAttrCaseInfo<string sym, int val> {
  // The C++ enumerant symbol
  string symbol = sym;

  // The C++ enumerant value
  // If less than zero, there will be no explicit discriminator values assigned
  // to enumerators in the generated enum class.
  int value = val;
}

// An enum attribute case stored with StringAttr.
class StrEnumAttrCase<string sym, int val = -1> :
    EnumAttrCaseInfo<sym, val>,
    StringBasedAttr<
      CPred<"$_self.cast<StringAttr>().getValue() == \"" # sym # "\"">,
      "case " # sym>;

// An enum attribute case stored with IntegerAttr.
class IntEnumAttrCaseBase<I intType, string sym, int val> :
    EnumAttrCaseInfo<sym, val>,
    IntegerAttrBase<intType, "case " # sym> {
  let predicate =
    CPred<"$_self.cast<IntegerAttr>().getInt() == " # val>;
}

class I32EnumAttrCase<string sym, int val> : IntEnumAttrCaseBase<I32, sym, val>;
class I64EnumAttrCase<string sym, int val> : IntEnumAttrCaseBase<I64, sym, val>;

// A bit enum case stored with 32-bit IntegerAttr. `val` here is *not* the
// ordinal number of the bit that is set. It is the 32-bit integer with only
// one bit set.
class BitEnumAttrCase<string sym, int val> :
    EnumAttrCaseInfo<sym, val>,
    IntegerAttrBase<I32, "case " # sym> {
  let predicate = CPred<
    "$_self.cast<IntegerAttr>().getValue().getZExtValue() & " # val # "u">;
}

// Additional information for an enum attribute.
class EnumAttrInfo<string name, list<EnumAttrCaseInfo> cases> {
  // The C++ enum class name
  string className = name;

  // List of all accepted cases
  list<EnumAttrCaseInfo> enumerants = cases;

  // The following fields are only used by the EnumsGen backend to generate
  // an enum class definition and conversion utility functions.

  // The underlying type for the C++ enum class. An empty string mean the
  // underlying type is not explicitly specified.
  string underlyingType = "";

  // The C++ namespaces that the enum class definition and utility functions
  // should be placed into.
  //
  // Normally you want to place the full namespace path here. If it is nested,
  // use "::" as the delimiter, e.g., given "A::B", generated code will be
  // placed in `namespace A { namespace B { ... } }`. To avoid placing in any
  // namespace, use "".
  // TODO(b/134741431): use dialect to provide the namespace.
  string cppNamespace = "";

  // The name of the utility function that converts a value of the underlying
  // type to the corresponding symbol. It will have the following signature:
  //
  // ```c++
  // llvm::Optional<<qualified-enum-class-name>> <fn-name>(<underlying-type>);
  // ```
  string underlyingToSymbolFnName = "symbolize" # name;

  // The name of the utility function that converts a string to the
  // corresponding symbol. It will have the following signature:
  //
  // ```c++
  // llvm::Optional<<qualified-enum-class-name>> <fn-name>(llvm::StringRef);
  // ```
  string stringToSymbolFnName = "symbolize" # name;

  // The name of the utility function that converts a symbol to the
  // corresponding string. It will have the following signature:
  //
  // ```c++
  // <return-type> <fn-name>(<qualified-enum-class-name>);
  // ```
  string symbolToStringFnName = "stringify" # name;
  string symbolToStringFnRetType = "llvm::StringRef";

  // The name of the utility function that returns the max enum value used
  // within the enum class. It will have the following signature:
  //
  // ```c++
  // static constexpr unsigned <fn-name>();
  // ```
  string maxEnumValFnName = "getMaxEnumValFor" # name;
}

// An enum attribute backed by StringAttr.
//
// Op attributes of this kind are stored as StringAttr. Extra verification will
// be generated on the string though: only the symbols of the allowed cases are
// permitted as the string value.
class StrEnumAttr<string name, string description,
                  list<StrEnumAttrCase> cases> :
    EnumAttrInfo<name, cases>,
    StringBasedAttr<
      And<[StrAttr.predicate, Or<!foreach(case, cases, case.predicate)>]>,
      !if(!empty(description), "allowed string cases: " #
          StrJoin<!foreach(case, cases, "'" # case.symbol # "'")>.result,
          description)>;

// An enum attribute backed by IntegerAttr.
//
// Op attributes of this kind are stored as IntegerAttr. Extra verification will
// be generated on the integer though: only the values of the allowed cases are
// permitted as the integer value.
class IntEnumAttr<I intType, string name, string description,
                  list<IntEnumAttrCaseBase> cases> :
    EnumAttrInfo<name, cases>,
    IntegerAttrBase<intType,
      !if(!empty(description), "allowed " # intType.description # " cases: " #
          StrJoinInt<!foreach(case, cases, case.value)>.result, description)> {
  let predicate = And<[
    IntegerAttrBase<intType, "">.predicate,
    Or<!foreach(case, cases, case.predicate)>]>;
}

class I32EnumAttr<string name, string description,
                  list<I32EnumAttrCase> cases> :
    IntEnumAttr<I32, name, description, cases> {
  let returnType = cppNamespace # "::" # name;
  let underlyingType = "uint32_t";
  let convertFromStorage = "static_cast<" # returnType # ">($_self.getInt())";
  let constBuilderCall = "$_builder.getI32IntegerAttr(static_cast<int32_t>($0))";
}
class I64EnumAttr<string name, string description,
                  list<I64EnumAttrCase> cases> :
    IntEnumAttr<I64, name, description, cases> {
  let returnType = cppNamespace # "::" # name;
  let underlyingType = "uint64_t";
  let convertFromStorage = "static_cast<" # returnType # ">($_self.getInt())";
  let constBuilderCall = "$_builder.getI64IntegerAttr(static_cast<int64_t>($0))";
}

// A bit enum stored with 32-bit IntegerAttr.
//
// Op attributes of this kind are stored as IntegerAttr. Extra verification will
// be generated on the integer to make sure only allowed bit are set. Besides,
// helper methods are generated to parse a string separated with a specified
// delimiter to a symbol and vice versa.
class BitEnumAttr<string name, string description,
                  list<BitEnumAttrCase> cases> :
    EnumAttrInfo<name, cases>, IntegerAttrBase<I32, description> {
  let predicate = And<[
    IntegerAttrBase<I32, "">.predicate,
    // Make sure we don't have unknown bit set.
    CPred<"!($_self.cast<IntegerAttr>().getValue().getZExtValue() & (~(" #
          StrJoin<!foreach(case, cases, case.value # "u"), "|">.result #
          ")))">
  ]>;

  let returnType = cppNamespace # "::" # name;
  let underlyingType = "uint32_t";
  let convertFromStorage = "static_cast<" # returnType # ">($_self.getInt())";
  let constBuilderCall = "$_builder.getI32IntegerAttr(static_cast<int32_t>($0))";

  // We need to return a string because we may concatenate symbols for multiple
  // bits together.
  let symbolToStringFnRetType = "std::string";

  // The delimiter used to separate bit enum cases in strings.
  string separator = "|";
}

//===----------------------------------------------------------------------===//
// Composite attribute kinds

class DictionaryAttrBase : Attr<CPred<"$_self.isa<DictionaryAttr>()">,
                          "dictionary of named attribute values"> {
  let storageType = [{ DictionaryAttr }];
  let returnType = [{ DictionaryAttr }];
  let convertFromStorage = "$_self";
}

def DictionaryAttr : DictionaryAttrBase;

class ElementsAttrBase<Pred condition, string description> :
    Attr<condition, description> {
  let storageType = [{ ElementsAttr }];
  let returnType = [{ ElementsAttr }];
  let convertFromStorage = "$_self";
}

def ElementsAttr : ElementsAttrBase<CPred<"$_self.isa<ElementsAttr>()">,
                                   "constant vector/tensor attribute">;

class IntElementsAttr<int width> : ElementsAttrBase<
  CPred<"$_self.isa<DenseIntElementsAttr>() &&"
      "$_self.cast<DenseIntElementsAttr>().getType()."
      "getElementType().isInteger(" # width # ")">,
  width # "-bit integer elements attribute"> {

  let storageType = [{ DenseIntElementsAttr }];
  let returnType = [{ DenseIntElementsAttr }];

  // Note that this is only constructing scalar elements attribute.
  let constBuilderCall = "DenseElementsAttr::get("
    "RankedTensorType::get({}, $_builder.getIntegerType(" # width # ")), "
    "llvm::makeArrayRef($0)).cast<DenseIntElementsAttr>()";
  let convertFromStorage = "$_self";
}

def I32ElementsAttr : IntElementsAttr<32>;
def I64ElementsAttr : IntElementsAttr<64>;

class FloatElementsAttr<int width> : ElementsAttrBase<
  CPred<"$_self.isa<DenseFPElementsAttr>() &&"
      "$_self.cast<DenseElementsAttr>().getType()."
      "getElementType().isF" # width # "()">,
  width # "-bit float elements attribute"> {

  let storageType = [{ DenseElementsAttr }];
  let returnType = [{ DenseElementsAttr }];

  // Note that this is only constructing scalar elements attribute.
  let constBuilderCall = "DenseElementsAttr::get("
    "RankedTensorType::get({}, $_builder.getF" # width # "Type()),"
    "llvm::makeArrayRef($0))";
  let convertFromStorage = "$_self";
}

def F64ElementsAttr : FloatElementsAttr<64>;

// A `width`-bit floating point elements attribute. The attribute should be
// ranked and has a shape as specified in `dims`.
class RankedFloatElementsAttr<int width, list<int> dims> : ElementsAttrBase<
  CPred<"$_self.isa<DenseFPElementsAttr>() &&"
      "$_self.cast<DenseFPElementsAttr>().getType()."
      "getElementType().isF" # width # "() && "
      // Check that this is ranked and has the specified shape.
      "$_self.cast<DenseFPElementsAttr>().getType().hasRank() && "
      "$_self.cast<DenseFPElementsAttr>().getType().getShape() == "
      "llvm::ArrayRef<int64_t>({" # StrJoinInt<dims>.result # "})">,
  width # "-bit float elements attribute of shape [" #
  StrJoinInt<dims>.result # "]"> {

  let storageType = [{ DenseFPElementsAttr }];
  let returnType = [{ DenseFPElementsAttr }];

  let constBuilderCall = "DenseElementsAttr::get("
    "RankedTensorType::get({" # StrJoinInt<dims>.result #
    "}, $_builder.getF" # width # "Type()), "
    "llvm::makeArrayRef($0)).cast<DenseFPElementsAttr>()";
  let convertFromStorage = "$_self";
}

class RankedF32ElementsAttr<list<int> dims> : RankedFloatElementsAttr<32, dims>;
class RankedF64ElementsAttr<list<int> dims> : RankedFloatElementsAttr<64, dims>;

// Base class for array attributes.
class ArrayAttrBase<Pred condition, string description> :
    Attr<condition, description> {
  let storageType = [{ ArrayAttr }];
  let returnType = [{ ArrayAttr }];
  let convertFromStorage = "$_self";
}

def ArrayAttr : ArrayAttrBase<CPred<"$_self.isa<ArrayAttr>()">,
                              "array attribute">;

// Base class for array attributes whose elements are of the same kind.
// `element` specifies the element attribute kind stored in this array.
class TypedArrayAttrBase<Attr element, string description>: ArrayAttrBase<
    And<[
      // Guarantee this is an ArrayAttr first
      CPred<"$_self.isa<ArrayAttr>()">,
      // Guarantee all elements satisfy the constraints from `element`
      Concat<"llvm::all_of($_self.cast<ArrayAttr>(), "
                          "[](Attribute attr) { return ",
                             SubstLeaves<"$_self", "attr", element.predicate>,
                          "; })">]>,
    description> {
  let constBuilderCall = "$_builder.getArrayAttr($0)";
}

def I32ArrayAttr : TypedArrayAttrBase<I32Attr,
                                      "32-bit integer array attribute"> {
  let constBuilderCall = "$_builder.getI32ArrayAttr($0)";
}
def I64ArrayAttr : TypedArrayAttrBase<I64Attr,
                                      "64-bit integer array attribute"> {
  let constBuilderCall = "$_builder.getI64ArrayAttr($0)";
}
def F32ArrayAttr : TypedArrayAttrBase<F32Attr, "32-bit float array attribute"> {
  let constBuilderCall = "$_builder.getF32ArrayAttr($0)";
}
def F64ArrayAttr : TypedArrayAttrBase<F64Attr, "64-bit float array attribute"> {
  let constBuilderCall = "$_builder.getF64ArrayAttr($0)";
}
def StrArrayAttr : TypedArrayAttrBase<StrAttr, "string array attribute"> {
  let constBuilderCall = "$_builder.getStrArrayAttr($0)";
}
def TypeArrayAttr : TypedArrayAttrBase<TypeAttr, "type array attribute"> {
  let constBuilderCall = ?;
}

// Attribute information for an Attribute field within a StructAttr.
class StructFieldAttr<string thisName, Attr thisType> {
  // Name of this field in the StructAttr.
  string name = thisName;

  // Attribute type wrapped by the struct attr.
  Attr type = thisType;
}

// Structured attribute that wraps a DictionaryAttr and provides both a
// validation method and set of accessors for a fixed set of fields. This is
// useful when representing data that would normally be in a structure.
class StructAttr<string name, Dialect dialect,
                 list<StructFieldAttr> attributes> : DictionaryAttrBase {
  // Name for this StructAttr.
  string className = name;

  // Return type should match the name of the structure.
  let returnType = name;

  // Storage type should match the name of the structure.
  let storageType = name;

  // The dialect this StructAttr belongs to.
  Dialect structDialect = dialect;

  // List of fields that the StructAttr contains.
  list<StructFieldAttr> fields = attributes;
}

// Attributes containing symbol references.
def SymbolRefAttr : Attr<CPred<"$_self.isa<SymbolRefAttr>()">,
                        "symbol reference attribute"> {
  let storageType = [{ SymbolRefAttr }];
  let returnType = [{ SymbolRefAttr }];
  let constBuilderCall = "$_builder.getSymbolRefAttr($0)";
  let convertFromStorage = "$_self";
}
def FlatSymbolRefAttr : Attr<CPred<"$_self.isa<FlatSymbolRefAttr>()">,
                                   "flat symbol reference attribute"> {
  let storageType = [{ FlatSymbolRefAttr }];
  let returnType = [{ StringRef }];
  let constBuilderCall = "$_builder.getSymbolRefAttr($0)";
  let convertFromStorage = "$_self.getValue()";
}

def SymbolRefArrayAttr :
  TypedArrayAttrBase<SymbolRefAttr, "symbol ref array attribute"> {
  let constBuilderCall = ?;
}

//===----------------------------------------------------------------------===//
// Derive attribute kinds

// DerivedAttr are attributes whose value is computed from properties
// of the operation. They do not require additional storage and are
// materialized as needed.
class DerivedAttr<code ret, code b> : Attr<CPred<"true">, "derived attribute"> {
  let returnType = ret;
  code body = b;
}

// Derived attribute that returns a mlir::Type.
class DerivedTypeAttr<code body> : DerivedAttr<"Type", body>;

//===----------------------------------------------------------------------===//
// Constant attribute kinds

// Represents a constant attribute of specific Attr type. A constant
// attribute can be specified only of attributes that have a constant
// builder call defined. The constant value is specified as a string.
//
// If used as a constraint, it generates a matcher on a constant attribute by
// using the constant value builder of the attribute and the value.
class ConstantAttr<Attr attribute, string val> : AttrConstraint<
    CPred<"$_self == " # !subst("$0", val, attribute.constBuilderCall)>,
    "constant attribute " # val> {
  Attr attr = attribute;
  string value = val;
}

class ConstF32Attr<string val> : ConstantAttr<F32Attr, val>;
def ConstBoolAttrFalse : ConstantAttr<BoolAttr, "false">;
def ConstBoolAttrTrue : ConstantAttr<BoolAttr, "true">;
def ConstUnitAttr : ConstantAttr<UnitAttr, "unit">;

//===----------------------------------------------------------------------===//
// Common attribute constraints
//===----------------------------------------------------------------------===//

// A general mechanism to further confine the given `attr` with all the
// `constraints`. This allows to compose complex constraints out of a series
// of more primitive ones.
class Confined<Attr attr, list<AttrConstraint> constraints> : Attr<
    And<!listconcat([attr.predicate],
                      !foreach(pred, constraints, pred.predicate))>,
    !foldl(/*init*/attr.description, /*list*/constraints,
           prev, cur, prev # " " # cur.description)> {
  let storageType = attr.storageType;
  let returnType = attr.returnType;
  let convertFromStorage = attr.convertFromStorage;
  let constBuilderCall = attr.constBuilderCall;
  let defaultValue = attr.defaultValue;
  let isOptional = attr.isOptional;

  let baseAttr = attr;
}

// An AttrConstraint that holds if all attr constraints specified in
// 'constraints' hold.
class AllAttrConstraintsOf<list<AttrConstraint> constraints> : AttrConstraint<
    And<!listconcat([!head(constraints).predicate],
                      !foreach(pred, !tail(constraints), pred.predicate))>,
    !foldl(/*init*/!head(constraints).description, /*list*/!tail(constraints),
           prev, cur, prev # " and " # cur.description)> {
}

class IntMinValue<int n> : AttrConstraint<
    CPred<"$_self.cast<IntegerAttr>().getInt() >= " # n>,
    "whose minimum value is " # n>;

class IntMaxValue<int n> : AttrConstraint<
    CPred<"$_self.cast<IntegerAttr>().getInt() <= " # n>,
    "whose maximum value is " # n>;

class ArrayMinCount<int n> : AttrConstraint<
    CPred<"$_self.cast<ArrayAttr>().size() >= " # n>,
    "with at least " # n # " elements">;

class ArrayCount<int n> : AttrConstraint<
    CPred<"$_self.cast<ArrayAttr>().size() == " #n>,
    "with exactly " # n # " elements">;

class IntArrayNthElemEq<int index, int value> : AttrConstraint<
    And<[
      CPred<"$_self.cast<ArrayAttr>().size() > " # index>,
      CPred<"$_self.cast<ArrayAttr>().getValue()[" # index # "]"
        ".cast<IntegerAttr>().getInt() == " # value>
       ]>,
    "whose " # index # "-th element must be " # value>;

class IntArrayNthElemMinValue<int index, int min> : AttrConstraint<
    And<[
      CPred<"$_self.cast<ArrayAttr>().size() > " # index>,
      CPred<"$_self.cast<ArrayAttr>().getValue()[" # index # "]"
        ".cast<IntegerAttr>().getInt() >= " # min>
        ]>,
    "whose " # index # "-th element must be at least " # min>;

def IsNullAttr : AttrConstraint<
    CPred<"!$_self">, "empty attribute (for optional attributes)">;

// An attribute constraint on FlatSymbolRefAttr that requires that the
// reference point to an op of `opClass` within the closest parent with a symbol
// table.
// TODO(riverriddle) Add support for nested symbol references.
class ReferToOp<string opClass> : AttrConstraint<
    CPred<"isa_and_nonnull<" # opClass # ">("
            "::mlir::SymbolTable::lookupNearestSymbolFrom("
              "&$_op, $_self.cast<FlatSymbolRefAttr>().getValue()))">,
    "referencing to a '" # opClass # "' symbol">;

//===----------------------------------------------------------------------===//
// Region definitions
//===----------------------------------------------------------------------===//

class Region<Pred condition, string descr = ""> :
    RegionConstraint<condition, descr>;

// Any region.
def AnyRegion : Region<CPred<"true">, "any region">;

// A region with the given number of blocks.
class SizedRegion<int numBlocks> : Region<
  CPred<"$_self.getBlocks().size() == " # numBlocks>,
  "region with " # numBlocks # " blocks">;

//===----------------------------------------------------------------------===//
// OpTrait definitions
//===----------------------------------------------------------------------===//

// OpTrait represents a trait regarding an op.
class OpTrait;

// NativeOpTrait corresponds to the MLIR C++ OpTrait mechanism. The
// purpose to wrap around C++ symbol string with this class is to make
// traits specified for ops in TableGen less alien and more integrated.
class NativeOpTrait<string prop> : OpTrait {
  string trait = "OpTrait::" # prop;
}

// ParamNativeOpTrait corresponds to the template-parameterized traits in the
// C++ implementation.  MLIR uses nested class templates to implement such
// traits leading to constructs of the form "TraitName<Parameters>::Impl". Use
// the value in `prop` as the trait name and the value in `params` as
// parameters to construct the native trait class name.
class ParamNativeOpTrait<string prop, string params>
    : NativeOpTrait<prop # "<" # params # ">::Impl">;

// GenInternalOpTrait is an op trait that does not have direct C++ mapping but
// affects op definition generator internals, like how op builders and
// operand/attribute/result getters are generated.
class GenInternalOpTrait<string prop> : OpTrait {
  string trait = "OpTrait::" # prop;
}

// PredOpTrait is an op trait implemented by way of a predicate on the op.
class PredOpTrait<string descr, Pred pred> : OpTrait {
  string description = descr;
  Pred predicate = pred;
}

// Op supports operand broadcast behavior.
def Broadcastable  : NativeOpTrait<"BroadcastableTwoOperandsOneResult">;
// X op Y == Y op X
def Commutative  : NativeOpTrait<"IsCommutative">;
// Op behaves like a function.
def FunctionLike : NativeOpTrait<"FunctionLike">;
// Op is isolated from above.
def IsolatedFromAbove : NativeOpTrait<"IsIsolatedFromAbove">;
// Op results are float or vectors/tensors thereof.
def ResultsAreFloatLike : NativeOpTrait<"ResultsAreFloatLike">;
// Op has no side effect.
def NoSideEffect : NativeOpTrait<"HasNoSideEffect">;
// Op has the same operand type.
def SameTypeOperands : NativeOpTrait<"SameTypeOperands">;
// Op has same shape for all operands.
def SameOperandsShape : NativeOpTrait<"SameOperandsShape">;
// Op has same operand and result shape.
def SameOperandsAndResultShape : NativeOpTrait<"SameOperandsAndResultShape">;
// Op has the same operand and result type.
def SameOperandsAndResultType : NativeOpTrait<"SameOperandsAndResultType">;
// Op has the same element type (or type itself, if scalar) for all operands.
def SameOperandsElementType : NativeOpTrait<"SameOperandsElementType">;
// Op has the same operand and result element type (or type itself, if scalar).
def SameOperandsAndResultElementType :
  NativeOpTrait<"SameOperandsAndResultElementType">;
// Op is a symbol.
def Symbol : NativeOpTrait<"Symbol">;
// Op defines a symbol table.
def SymbolTable : NativeOpTrait<"SymbolTable">;
// Op is a terminator.
def Terminator : NativeOpTrait<"IsTerminator">;

// Op's regions have a single block with the specified terminator.
class SingleBlockImplicitTerminator<string op>
    : ParamNativeOpTrait<"SingleBlockImplicitTerminator", op>;

// Op's parent operation is the provided one.
class HasParent<string op>
    : ParamNativeOpTrait<"HasParent", op>;

// Op result type is derived from the first attribute. If the attribute is an
// subclass of `TypeAttrBase`, its value is used, otherwise, the type of the
// attribute content is used.
def FirstAttrDerivedResultType :
  GenInternalOpTrait<"FirstAttrDerivedResultType">;

// TODO(antiagainst): Turn the following into normal traits and generate
// verification for them.

// All variadic operands of the op have the same number of values.
// A variadic operand contains an array of values whose array size is only
// known at runtime. This trait requires all variadic operands of an op
// to have the same array size.
def SameVariadicOperandSize : GenInternalOpTrait<"SameVariadicOperandSize">;
// All variadic results of the op have the same number of values.
// A variadic result contains an array of values whose array size is only
// known at runtime. This trait requires all variadic results of an op
// to have the same array size.
def SameVariadicResultSize : GenInternalOpTrait<"SameVariadicResultSize">;

// Uses an attribute named `operand_segment_sizes` to specify how many actual
// operand each ODS-declared operand (variadic or not) corresponds to.
// This trait is used for ops that have multiple variadic operands but do
// not know statically their size relationship. The attribute must be a 1D
// vector that has the same number of elements as the number of ODS declared
// operands. That means even if some operands are non-variadic, the attribute
// still need to have an element for its size, which is always 1.
def AttrSizedOperandSegments : NativeOpTrait<"AttrSizedOperandSegments">;
// Similar to AttrSizedOperandSegments, but used for results. The attribute
// should be named as `result_segment_sizes`.
def AttrSizedResultSegments  : NativeOpTrait<"AttrSizedResultSegments">;

//===----------------------------------------------------------------------===//
// OpInterface definitions
//===----------------------------------------------------------------------===//

// Marker used to identify the argument list for an op or interface method.
def ins;

// OpInterfaceTrait corresponds to a specific 'OpInterface' class defined in
// C++. The purpose to wrap around C++ symbol string with this class is to make
// interfaces specified for ops in TableGen less alien and more integrated.
class OpInterfaceTrait<string name> : NativeOpTrait<""> {
  let trait = name # "::Trait";
}

// This class represents a single, optionally static, interface method.
// Note: non-static interface methods have an implicit 'op' parameter
// corresponding to an instance of the derived operation.
class InterfaceMethod<string desc, string retTy, string methodName,
                      dag args = (ins), code methodBody = [{}],
                      code defaultImplementation = [{}]> {
  // A human-readable description of what this method does.
  string description = desc;

  // The name of the interface method.
  string name = methodName;

  // The c++ type-name of the return type.
  string returnType = retTy;

  // A dag of string that correspond to the arguments of the method.
  dag arguments = args;

  // An optional body to the method.
  code body = methodBody;

  // An optional default implementation of the method.
  code defaultBody = defaultImplementation;
}

// This class represents a single static interface method.
class StaticInterfaceMethod<string desc, string retTy, string methodName,
                            dag args = (ins), code methodBody = [{}],
                            code defaultImplementation = [{}]>
    : InterfaceMethod<desc, retTy, methodName, args, methodBody,
                      defaultImplementation>;

// OpInterface represents an interface regarding an op.
class OpInterface<string name> : OpInterfaceTrait<name> {
  // A human-readable description of what this interface does.
  string description = "";

  // The name given to the c++ interface class.
  string cppClassName = name;

  // The list of methods defined by this interface.
  list<InterfaceMethod> methods = [];
}

// Whether to declare the op interface methods in the op's header. This class
// simply wraps an OpInterface but is used to indicate that the method
// declarations should be generated.
class DeclareOpInterfaceMethods<OpInterface interface> :
  OpInterface<interface.cppClassName> {
    let description = interface.description;
    let cppClassName = interface.cppClassName;
    let methods = interface.methods;
}

//===----------------------------------------------------------------------===//
// Op definitions
//===----------------------------------------------------------------------===//

// Marker used to identify the result list for an op.
def outs;

// Marker used to identify the region list for an op.
def region;

// Class for defining a custom builder.
//
// TableGen generates several generic builders for each op by default (see
// comment in the `Op` class). If the default generated ones cannot cover
// some use case, custom builders can be defined using instances of this class.
//
// The signature of the builder is always
//
// ```c++
// static void build(Builder *builder, OperationState &state,
//                   <other-parameters>...) {
//   <body>...
// }
// ```
//
// To define a custom builder, the parameter list (*including* the `Builder
// *builder, OperationState &state` part) and body should be passed in
// as separate template arguments to this class. This is because we generate
// op declaration and definition into separate files. If an empty string is
// passed in for `body`, then *only* the builder declaration will be
// generated; this provides a way to define complicated builders entirely
// in C++.
class OpBuilder<string p, code b = ""> {
  string params = p;
  code body = b;
}

// Base class for all ops.
class Op<Dialect dialect, string mnemonic, list<OpTrait> props = []> {
  // The dialect of the op.
  Dialect opDialect = dialect;

  // The mnemonic of the op.
  string opName = mnemonic;

  // One-line human-readable description of what the op does.
  string summary = "";

  // Additional, longer human-readable description of what the op does.
  string description = "";

  // Dag containing the arguments of the op. Default to 0 arguments.
  dag arguments = (ins);

  // The list of results of the op. Default to 0 results.
  dag results = (outs);

  // The list of regions of the op. Default to 0 regions.
  dag regions = (region);

  // Attribute getters can be added to the op by adding an Attr member
  // with the name and type of the attribute. E.g., adding int attribute
  // with name "value" and type "i32":
  //   I32Attr value;

  // Define the hooks used for building, parsing, printing, verification.

  // Custom builder.
  // In addition to the custom builder provided here, and unless
  // skipDefaultBuilders is set, two default builders are generated, with the
  // following signatures:
  //
  // ```c++
  // static void build(Builder *, OperationState &tblgen_state,
  //                   Type <result0-name>, Type <result1-name>, ...,
  //                   Value <arg0-name>, Value <arg1-name>, ...,
  //                   Attribute <attr0-name>, Attribute <attr1-name>, ...);
  // ```
  // * where the attributes follow the same declaration order as in the op.
  //
  // ```c++
  // static void build(Builder *, OperationState &tblgen_state,
  //                   ArrayRef<Type> resultTypes,
  //                   ArrayRef<Value> operands,
  //                   ArrayRef<NamedAttribute> attributes);
  // ```
  list<OpBuilder> builders = ?;

  // Avoid generating default build functions.  Custom builders must be
  // provided.
  bit skipDefaultBuilders = 0;

  // Custom parser.
  code parser = ?;

  // Custom printer.
  code printer = ?;

  // Custom verifier.
  code verifier = ?;

  // Whether this op has associated canonicalization patterns.
  // TODO(b/120163349): figure out a better way to write canonicalization
  // patterns in TableGen rules directly instead of using this marker
  // and C++ implementations.
  bit hasCanonicalizer = 0;

  // Whether this op has a folder.
  bit hasFolder = 0;

  // Op traits.
  // Note: The list of traits will be uniqued by ODS.
  list<OpTrait> traits = props;

  // Additional code that will be added to the public part of the generated
  // C++ code of the op declaration.
  code extraClassDeclaration = ?;
}

// The arguments of an op.
class Arguments<dag args> {
  dag arguments = args;
}

// The results of an op.
class Results<dag rets> {
  dag results = rets;
}

//===----------------------------------------------------------------------===//
// Common value constraints
//===----------------------------------------------------------------------===//

def HasNoUseOf: Constraint<
    CPred<"$_self.use_empty()">, "has no use">;

//===----------------------------------------------------------------------===//
// Common op type constraints
//===----------------------------------------------------------------------===//

// These traits are for verifying properties of an op that require knowledge of
// multiple arguments or results. For verifying properties of a single argument
// or result, prefer operand type constraints.

// These traits often require including "mlir/IR/TypeUtilities.h".

// TODO(b/135033717): Improve the autogenerated error messages.

class Rank<string name> :
    StrFunc<"$" # name # ".getType().cast<ShapedType>().getRank()">;

class Shape<string name> :
    StrFunc<"$" # name # ".getType().cast<ShapedType>().getShape()">;

class ElementCount<string name> :
  StrFunc<"$" # name # ".getType().cast<ShapedType>().getNumElements()">;

class ElementType<string name> : StrFunc<"getElementTypeOrSelf($" # name # ")">;

class AllMatchPred<list<string> values> :
    CPred<"llvm::is_splat(llvm::makeArrayRef({"# StrJoin<values>.result #"}))">;

class AllMatch<list<string> values, string description> :
    PredOpTrait<description, AllMatchPred<values>>;

// TODO(b/135032064): Only works for non-variadic.
class AllMatchSameOperatorPred<list<string> names, string operator> :
    AllMatchPred<!foreach(n, names, !subst("$_self", "$" # n, operator))>;

class AllMatchSameOperatorTrait<list<string> names, string operator,
                                string description> :
    PredOpTrait<
        "all of {" # StrJoin<names>.result # "} have same " # description,
        AllMatchSameOperatorPred<names, operator>>;

class AllElementCountsMatch<list<string> names> :
    AllMatchSameOperatorTrait<names, ElementCount<"_self">.result,
                              "element count">;

class AllElementTypesMatch<list<string> names> :
    AllMatchSameOperatorTrait<names, ElementType<"_self">.result,
                              "element type">;

class AllRanksMatch<list<string> names> :
    AllMatchSameOperatorTrait<names, Rank<"_self">.result, "rank">;

class AllShapesMatch<list<string> names> :
    AllMatchSameOperatorTrait<names, Shape<"_self">.result, "shape">;

class AllTypesMatch<list<string> names> :
    AllMatchSameOperatorTrait<names, "$_self.getType()", "type">;

// Type Constraint operand `idx`'s Element type is `type`.
class TCopVTEtIs<int idx, Type type> : And<[
   CPred<"$_op.getNumOperands() > " # idx>,
   SubstLeaves<"$_self", "$_op.getOperand(" # idx # ").getType()",
     IsShapedTypePred>,
   SubstLeaves<"$_self", "getElementTypeOrSelf($_op.getOperand(" # idx # "))",
     type.predicate>]>;

// Predicate to verify that a named argument or result's element type matches a
// given type.
class TypeIsPred<string name, Type type> :
   SubstLeaves<"$_self", "$" # name # ".getType()", type.predicate>;
class TypeIs<string name, Type type> : PredOpTrait<
  "'" # name # "' is " # type.description, TypeIsPred<name, type>>;

// Predicate to verify that a named argument or result's element type matches a
// given type.
class ElementTypeIsPred<string name, Type type> : And<[
   SubstLeaves<"$_self", "$" # name # ".getType()", IsShapedTypePred>,
   SubstLeaves<"$_self", "getElementTypeOrSelf($" # name # ")",
     type.predicate>]>;
class ElementTypeIs<string name, Type type> : PredOpTrait<
  "'" # name # "' is " # type.description, ElementTypeIsPred<name, type>>;

// Predicate to verify that the i'th operand and the j'th operand have the same
// elemental type.
// Type Constraint operand `i`'s Element type is Same As operand `j`'s Element
// type.
class TCopVTEtIsSameAs<int i, int j> : And<[
    CPred<"$_op.getNumOperands() > std::max(" # i # "u," # j # "u)">,
    SubstLeaves<"$_self", "$_op.getOperand(" # i # ").getType()",
      IsShapedTypePred>,
    SubstLeaves<"$_self", "$_op.getOperand(" # j # ").getType()",
      IsShapedTypePred>,
    CPred<"mlir::getElementTypeOrSelf($_op.getOperand(" # i # ")) == "
          "mlir::getElementTypeOrSelf($_op.getOperand(" # j # "))">]>;

// Predicate to verify that the i'th result and the j'th operand exist and has
// shaped types.
class TCOpResIsShapedTypePred<int i, int j> : And<[
    CPred<"$_op.getNumResults() > " # i>,
    CPred<"$_op.getNumOperands() > " # j>,
    SubstLeaves<"$_self", "$_op.getResult(" # i # ").getType()",
      IsShapedTypePred>,
    SubstLeaves<"$_self", "$_op.getOperand(" # j # ").getType()",
      IsShapedTypePred>]>;

// Predicate to verify that the i'th result and the j'th operand have the same
// type.
class TCresIsSameAsOpBase<int i, int j> :
    CPred<"$_op.getResult(" # i # ").getType() == "
          "$_op.getOperand(" # j # ").getType()">;

// Basic Predicate to verify that the i'th result and the j'th operand have the
// same elemental type.
class TCresVTEtIsSameAsOpBase<int i, int j> :
    CPred<"getElementTypeOrSelf($_op.getResult(" # i # ")) == "
          "getElementTypeOrSelf($_op.getOperand(" # j # "))">;

// Predicate to verify that the i'th result and the j'th operand have the same
// elemental type.
// Type Constraint result`i`'s Element type is Same As Operand `j`'s Element
// type.
class TCresVTEtIsSameAsOp<int i, int j> : And<[
    TCOpResIsShapedTypePred<i, j>,
    TCresVTEtIsSameAsOpBase<i, j>]>;

// Predicate to verify that the opId'th operand can be broadcasted to the type
// of the resId'th result.
class TCOpIsBroadcastableToRes<int opId, int resId> : And<[
    TCOpResIsShapedTypePred<opId, resId>,
    CPred<"OpTrait::util::getBroadcastedType("
              "$_op.getOperand(" # opId # ").getType(), "
              "$_op.getResult(" # resId # ").getType())">]>;

// Predicate to verify that all the operands at the given `indices`
// have the same element type.
// Type Constraint operands' Element type are all Same At the given `indices`.
// We query the operands' types into a list and check they are all the same.
// Precondition:
// 1) all operands involved are of shaped type and
// 2) the indices are not out of range.
class TCopVTEtAreSameAt<list<int> indices> : CPred<
  "llvm::is_splat(mlir::functional::map("
    "[this](unsigned i) { return getElementTypeOrSelf(this->getOperand(i)); }, "
    "llvm::ArrayRef<unsigned>({" # StrJoinInt<indices>.result # "})))">;

//===----------------------------------------------------------------------===//
// Pattern definitions
//===----------------------------------------------------------------------===//

// Marker used to identify the delta value added to the default benefit value.
def addBenefit;

// Base class for op+ -> op+ rewrite rules. These allow declaratively
// specifying rewrite rules.
//
// A rewrite rule contains two components: a source pattern and one or more
// result patterns. Each pattern is specified as a (recursive) DAG node (tree)
// in the form of `(node arg0, arg1, ...)`.
//
// The `node` are normally MLIR ops, but it can also be one of the directives
// listed later in this section.
//
// ## Symbol binding
//
// In the source pattern, `argN` can be used to specify matchers (e.g., using
// type/attribute type constraints, etc.) and bound to a name for later use.
// We can also bound names to op instances to reference them later in
// multi-entity constraints.
//
// In the result pattern, `argN` can be used to refer to a previously bound
// name, with potential transformations (e.g., using tAttr, etc.). `argN` can
// itself be nested DAG node. We can also bound names to ops to reference
// them later in other result patterns.
//
// For example,
//
// ```
// def : Pattern<(OneResultOp1:$op1 $arg0, $arg1),
//               [(OneResultOp2:$op2 $arg0, $arg1),
//                (OneResultOp3 $op2 (OneResultOp4))],
//               [(HasStaticShapePred $op1)]>;
// ```
//
// `$argN` is bound to the `OneResultOp1`'s N-th argument and used later to
// build `OneResultOp2`. `$op1` is bound to `OneResultOp1` and used to
// check whether the result's shape is static. `$op2` is bound to
// `OneResultOp2` and used to build `OneResultOp3`.
//
// ## Multi-result op
//
// To create multi-result ops in result pattern, you can use a syntax similar
// to uni-result op, and it will act as a value pack for all results:
//
// ```
// def : Pattern<(ThreeResultOp ...),
//               [(TwoResultOp ...), (OneResultOp ...)]>;
// ```
//
// Then `TwoResultOp` will replace the first two values of `ThreeResultOp`.
//
// You can also use `$<name>__N` to explicitly access the N-th result.
// ```
// def : Pattern<(FiveResultOp ...),
//               [(TwoResultOp1:$res1__1 ...), (replaceWithValue $res1__0),
//                (TwoResultOp2:$res2 ...), (replaceWithValue $res2__1)]>;
// ```
//
// Then the values generated by `FiveResultOp` will be replaced by
//
// * `FiveResultOp`#0: `TwoResultOp1`#1
// * `FiveResultOp`#1: `TwoResultOp1`#0
// * `FiveResultOp`#2: `TwoResultOp2`#0
// * `FiveResultOp`#3: `TwoResultOp2`#1
// * `FiveResultOp`#4: `TwoResultOp2`#1
class Pattern<dag source, list<dag> results, list<dag> preds = [],
  dag benefitAdded = (addBenefit 0)> {
  dag sourcePattern = source;
  // Result patterns. Each result pattern is expected to replace one result
  // of the root op in the source pattern. In the case of more result patterns
  // than needed to replace the source op, only the last N results generated
  // by the last N result pattern is used to replace a N-result source op.
  // So that the beginning result patterns can be used to generate additional
  // ops to aid building the results used for replacement.
  list<dag> resultPatterns = results;
  // Multi-entity constraints. Each constraint here involves multiple entities
  // matched in source pattern and places further constraints on them as a
  // whole.
  list<dag> constraints = preds;
  // The delta value added to the default benefit value. The default value is
  // the number of ops in the source pattern. The rule with the highest final
  // benefit value will be applied first if there are multiple rules matches.
  // This delta value can be either positive or negative.
  dag benefitDelta = benefitAdded;
}

// Form of a pattern which produces a single result.
class Pat<dag pattern, dag result, list<dag> preds = [],
  dag benefitAdded = (addBenefit 0)> :
  Pattern<pattern, [result], preds, benefitAdded>;

// Native code call wrapper. This allows invoking an arbitrary C++ expression
// to create an op operand/attribute or replace an op result.
//
// ## Placeholders
//
// If used as a DAG leaf, i.e., `(... NativeCodeCall<"...">:$arg, ...)`,
// the wrapped expression can take special placeholders listed below:
//
// * `$_builder` will be replaced by the current `mlir::PatternRewriter`.
// * `$_self` will be replaced with the entity this transformer is attached to.
//   E.g., with the definition `def transform : NativeCodeCall<"$_self...">`,
//   `$_self` in `transform:$attr` will be replaced by the value for `$attr`.
//
// If used as a DAG node, i.e., `(NativeCodeCall<"..."> <arg0>, ..., <argN>)`,
// then positional placeholders are also supported; placeholder `$N` in the
// wrapped C++ expression will be replaced by `<argN>`.

class NativeCodeCall<string expr> {
  string expression = expr;
}

//===----------------------------------------------------------------------===//
// Common directives
//===----------------------------------------------------------------------===//

// Directive used in result pattern to indicate that no new op are generated,
// so to replace the matched DAG with an existing SSA value.
def replaceWithValue;

#endif // OP_BASE