divsf3.c
6.96 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
//===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements single-precision soft-float division
// with the IEEE-754 default rounding (to nearest, ties to even).
//
// For simplicity, this implementation currently flushes denormals to zero.
// It should be a fairly straightforward exercise to implement gradual
// underflow with correct rounding.
//
//===----------------------------------------------------------------------===//
#define SINGLE_PRECISION
#include "fp_lib.h"
COMPILER_RT_ABI fp_t __divsf3(fp_t a, fp_t b) {
const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
rep_t aSignificand = toRep(a) & significandMask;
rep_t bSignificand = toRep(b) & significandMask;
int scale = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent - 1U >= maxExponent - 1U ||
bExponent - 1U >= maxExponent - 1U) {
const rep_t aAbs = toRep(a) & absMask;
const rep_t bAbs = toRep(b) & absMask;
// NaN / anything = qNaN
if (aAbs > infRep)
return fromRep(toRep(a) | quietBit);
// anything / NaN = qNaN
if (bAbs > infRep)
return fromRep(toRep(b) | quietBit);
if (aAbs == infRep) {
// infinity / infinity = NaN
if (bAbs == infRep)
return fromRep(qnanRep);
// infinity / anything else = +/- infinity
else
return fromRep(aAbs | quotientSign);
}
// anything else / infinity = +/- 0
if (bAbs == infRep)
return fromRep(quotientSign);
if (!aAbs) {
// zero / zero = NaN
if (!bAbs)
return fromRep(qnanRep);
// zero / anything else = +/- zero
else
return fromRep(quotientSign);
}
// anything else / zero = +/- infinity
if (!bAbs)
return fromRep(infRep | quotientSign);
// One or both of a or b is denormal. The other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < implicitBit)
scale += normalize(&aSignificand);
if (bAbs < implicitBit)
scale -= normalize(&bSignificand);
}
// Set the implicit significand bit. If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.
aSignificand |= implicitBit;
bSignificand |= implicitBit;
int quotientExponent = aExponent - bExponent + scale;
// 0x7504F333 / 2^32 + 1 = 3/4 + 1/sqrt(2)
// Align the significand of b as a Q31 fixed-point number in the range
// [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
// is accurate to about 3.5 binary digits.
uint32_t q31b = bSignificand << 8;
uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
//
// x1 = x0 * (2 - x0 * b)
//
// This doubles the number of correct binary digits in the approximation
// with each iteration.
uint32_t correction;
correction = -((uint64_t)reciprocal * q31b >> 32);
reciprocal = (uint64_t)reciprocal * correction >> 31;
correction = -((uint64_t)reciprocal * q31b >> 32);
reciprocal = (uint64_t)reciprocal * correction >> 31;
correction = -((uint64_t)reciprocal * q31b >> 32);
reciprocal = (uint64_t)reciprocal * correction >> 31;
// Adust the final 32-bit reciprocal estimate downward to ensure that it is
// strictly smaller than the infinitely precise exact reciprocal. Because
// the computation of the Newton-Raphson step is truncating at every step,
// this adjustment is small; most of the work is already done.
reciprocal -= 2;
// The numerical reciprocal is accurate to within 2^-28, lies in the
// interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
// than the true reciprocal of b. Multiplying a by this reciprocal thus
// gives a numerical q = a/b in Q24 with the following properties:
//
// 1. q < a/b
// 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
// 3. The error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
// from the fact that we truncate the product, and the 2^27 term
// is the error in the reciprocal of b scaled by the maximum
// possible value of a. As a consequence of this error bound,
// either q or nextafter(q) is the correctly rounded.
rep_t quotient = (uint64_t)reciprocal * (aSignificand << 1) >> 32;
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
// In either case, we are going to compute a residual of the form
//
// r = a - q*b
//
// We know from the construction of q that r satisfies:
//
// 0 <= r < ulp(q)*b
//
// If r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
// already have the correct result. The exact halfway case cannot occur.
// We also take this time to right shift quotient if it falls in the [1,2)
// range and adjust the exponent accordingly.
rep_t residual;
if (quotient < (implicitBit << 1)) {
residual = (aSignificand << 24) - quotient * bSignificand;
quotientExponent--;
} else {
quotient >>= 1;
residual = (aSignificand << 23) - quotient * bSignificand;
}
const int writtenExponent = quotientExponent + exponentBias;
if (writtenExponent >= maxExponent) {
// If we have overflowed the exponent, return infinity.
return fromRep(infRep | quotientSign);
}
else if (writtenExponent < 1) {
if (writtenExponent == 0) {
// Check whether the rounded result is normal.
const bool round = (residual << 1) > bSignificand;
// Clear the implicit bit.
rep_t absResult = quotient & significandMask;
// Round.
absResult += round;
if (absResult & ~significandMask) {
// The rounded result is normal; return it.
return fromRep(absResult | quotientSign);
}
}
// Flush denormals to zero. In the future, it would be nice to add
// code to round them correctly.
return fromRep(quotientSign);
}
else {
const bool round = (residual << 1) > bSignificand;
// Clear the implicit bit.
rep_t absResult = quotient & significandMask;
// Insert the exponent.
absResult |= (rep_t)writtenExponent << significandBits;
// Round.
absResult += round;
// Insert the sign and return.
return fromRep(absResult | quotientSign);
}
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) { return __divsf3(a, b); }
#else
COMPILER_RT_ALIAS(__divsf3, __aeabi_fdiv)
#endif
#endif