combined.h 26.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
//===-- combined.h ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_COMBINED_H_
#define SCUDO_COMBINED_H_

#include "chunk.h"
#include "common.h"
#include "flags.h"
#include "flags_parser.h"
#include "interface.h"
#include "local_cache.h"
#include "quarantine.h"
#include "report.h"
#include "secondary.h"
#include "string_utils.h"
#include "tsd.h"

#ifdef GWP_ASAN_HOOKS
#include "gwp_asan/guarded_pool_allocator.h"
// GWP-ASan is declared here in order to avoid indirect call overhead. It's also
// instantiated outside of the Allocator class, as the allocator is only
// zero-initialised. GWP-ASan requires constant initialisation, and the Scudo
// allocator doesn't have a constexpr constructor (see discussion here:
// https://reviews.llvm.org/D69265#inline-624315).
static gwp_asan::GuardedPoolAllocator GuardedAlloc;
#endif // GWP_ASAN_HOOKS

extern "C" inline void EmptyCallback() {}

namespace scudo {

template <class Params, void (*PostInitCallback)(void) = EmptyCallback>
class Allocator {
public:
  using PrimaryT = typename Params::Primary;
  using CacheT = typename PrimaryT::CacheT;
  typedef Allocator<Params, PostInitCallback> ThisT;
  typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;

  void callPostInitCallback() {
    static pthread_once_t OnceControl = PTHREAD_ONCE_INIT;
    pthread_once(&OnceControl, PostInitCallback);
  }

  struct QuarantineCallback {
    explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
        : Allocator(Instance), Cache(LocalCache) {}

    // Chunk recycling function, returns a quarantined chunk to the backend,
    // first making sure it hasn't been tampered with.
    void recycle(void *Ptr) {
      Chunk::UnpackedHeader Header;
      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
      if (UNLIKELY(Header.State != Chunk::State::Quarantined))
        reportInvalidChunkState(AllocatorAction::Recycling, Ptr);

      Chunk::UnpackedHeader NewHeader = Header;
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);

      void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader);
      const uptr ClassId = NewHeader.ClassId;
      if (LIKELY(ClassId))
        Cache.deallocate(ClassId, BlockBegin);
      else
        Allocator.Secondary.deallocate(BlockBegin);
    }

    // We take a shortcut when allocating a quarantine batch by working with the
    // appropriate class ID instead of using Size. The compiler should optimize
    // the class ID computation and work with the associated cache directly.
    void *allocate(UNUSED uptr Size) {
      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
      void *Ptr = Cache.allocate(QuarantineClassId);
      // Quarantine batch allocation failure is fatal.
      if (UNLIKELY(!Ptr))
        reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));

      Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
                                     Chunk::getHeaderSize());
      Chunk::UnpackedHeader Header = {};
      Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
      Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
      Header.State = Chunk::State::Allocated;
      Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);

      return Ptr;
    }

    void deallocate(void *Ptr) {
      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
      Chunk::UnpackedHeader Header;
      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);

      if (UNLIKELY(Header.State != Chunk::State::Allocated))
        reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
      DCHECK_EQ(Header.ClassId, QuarantineClassId);
      DCHECK_EQ(Header.Offset, 0);
      DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));

      Chunk::UnpackedHeader NewHeader = Header;
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
      Cache.deallocate(QuarantineClassId,
                       reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
                                                Chunk::getHeaderSize()));
    }

  private:
    ThisT &Allocator;
    CacheT &Cache;
  };

  typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
  typedef typename QuarantineT::CacheT QuarantineCacheT;

  void initLinkerInitialized() {
    performSanityChecks();

    // Check if hardware CRC32 is supported in the binary and by the platform,
    // if so, opt for the CRC32 hardware version of the checksum.
    if (&computeHardwareCRC32 && hasHardwareCRC32())
      HashAlgorithm = Checksum::HardwareCRC32;

    if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
      Cookie = static_cast<u32>(getMonotonicTime() ^
                                (reinterpret_cast<uptr>(this) >> 4));

    initFlags();
    reportUnrecognizedFlags();

    // Store some flags locally.
    Options.MayReturnNull = getFlags()->may_return_null;
    Options.ZeroContents = getFlags()->zero_contents;
    Options.DeallocTypeMismatch = getFlags()->dealloc_type_mismatch;
    Options.DeleteSizeMismatch = getFlags()->delete_size_mismatch;
    Options.QuarantineMaxChunkSize =
        static_cast<u32>(getFlags()->quarantine_max_chunk_size);

    Stats.initLinkerInitialized();
    Primary.initLinkerInitialized(getFlags()->release_to_os_interval_ms);
    Secondary.initLinkerInitialized(&Stats);

    Quarantine.init(
        static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
        static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));

#ifdef GWP_ASAN_HOOKS
    gwp_asan::options::Options Opt;
    Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
    // Bear in mind - Scudo has its own alignment guarantees that are strictly
    // enforced. Scudo exposes the same allocation function for everything from
    // malloc() to posix_memalign, so in general this flag goes unused, as Scudo
    // will always ask GWP-ASan for an aligned amount of bytes.
    Opt.PerfectlyRightAlign = getFlags()->GWP_ASAN_PerfectlyRightAlign;
    Opt.MaxSimultaneousAllocations =
        getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
    Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
    Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
    Opt.Printf = Printf;
    GuardedAlloc.init(Opt);
#endif // GWP_ASAN_HOOKS
  }

  void reset() { memset(this, 0, sizeof(*this)); }

  void unmapTestOnly() {
    TSDRegistry.unmapTestOnly();
    Primary.unmapTestOnly();
  }

  TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }

  // The Cache must be provided zero-initialized.
  void initCache(CacheT *Cache) {
    Cache->initLinkerInitialized(&Stats, &Primary);
  }

  // Release the resources used by a TSD, which involves:
  // - draining the local quarantine cache to the global quarantine;
  // - releasing the cached pointers back to the Primary;
  // - unlinking the local stats from the global ones (destroying the cache does
  //   the last two items).
  void commitBack(TSD<ThisT> *TSD) {
    Quarantine.drain(&TSD->QuarantineCache,
                     QuarantineCallback(*this, TSD->Cache));
    TSD->Cache.destroy(&Stats);
  }

  NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
                          uptr Alignment = MinAlignment,
                          bool ZeroContents = false) {
    initThreadMaybe();

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.shouldSample())) {
      if (void *Ptr = GuardedAlloc.allocate(roundUpTo(Size, Alignment)))
        return Ptr;
    }
#endif // GWP_ASAN_HOOKS

    ZeroContents |= static_cast<bool>(Options.ZeroContents);

    if (UNLIKELY(Alignment > MaxAlignment)) {
      if (Options.MayReturnNull)
        return nullptr;
      reportAlignmentTooBig(Alignment, MaxAlignment);
    }
    if (Alignment < MinAlignment)
      Alignment = MinAlignment;

    // If the requested size happens to be 0 (more common than you might think),
    // allocate MinAlignment bytes on top of the header. Then add the extra
    // bytes required to fulfill the alignment requirements: we allocate enough
    // to be sure that there will be an address in the block that will satisfy
    // the alignment.
    const uptr NeededSize =
        roundUpTo(Size, MinAlignment) +
        ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());

    // Takes care of extravagantly large sizes as well as integer overflows.
    static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
    if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
      if (Options.MayReturnNull)
        return nullptr;
      reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
    }
    DCHECK_LE(Size, NeededSize);

    void *Block;
    uptr ClassId;
    uptr BlockEnd;
    if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
      ClassId = SizeClassMap::getClassIdBySize(NeededSize);
      DCHECK_NE(ClassId, 0U);
      bool UnlockRequired;
      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
      Block = TSD->Cache.allocate(ClassId);
      if (UnlockRequired)
        TSD->unlock();
    } else {
      ClassId = 0;
      Block =
          Secondary.allocate(NeededSize, Alignment, &BlockEnd, ZeroContents);
    }

    if (UNLIKELY(!Block)) {
      if (Options.MayReturnNull)
        return nullptr;
      reportOutOfMemory(NeededSize);
    }

    // We only need to zero the contents for Primary backed allocations. This
    // condition is not necessarily unlikely, but since memset is costly, we
    // might as well mark it as such.
    if (UNLIKELY(ZeroContents && ClassId))
      memset(Block, 0, PrimaryT::getSizeByClassId(ClassId));

    const uptr UnalignedUserPtr =
        reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize();
    const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment);

    Chunk::UnpackedHeader Header = {};
    if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
      const uptr Offset = UserPtr - UnalignedUserPtr;
      DCHECK_GE(Offset, 2 * sizeof(u32));
      // The BlockMarker has no security purpose, but is specifically meant for
      // the chunk iteration function that can be used in debugging situations.
      // It is the only situation where we have to locate the start of a chunk
      // based on its block address.
      reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
      reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
      Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
    }
    Header.ClassId = ClassId & Chunk::ClassIdMask;
    Header.State = Chunk::State::Allocated;
    Header.Origin = Origin & Chunk::OriginMask;
    Header.SizeOrUnusedBytes = (ClassId ? Size : BlockEnd - (UserPtr + Size)) &
                               Chunk::SizeOrUnusedBytesMask;
    void *Ptr = reinterpret_cast<void *>(UserPtr);
    Chunk::storeHeader(Cookie, Ptr, &Header);

    if (&__scudo_allocate_hook)
      __scudo_allocate_hook(Ptr, Size);

    return Ptr;
  }

  NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
                           UNUSED uptr Alignment = MinAlignment) {
    // For a deallocation, we only ensure minimal initialization, meaning thread
    // local data will be left uninitialized for now (when using ELF TLS). The
    // fallback cache will be used instead. This is a workaround for a situation
    // where the only heap operation performed in a thread would be a free past
    // the TLS destructors, ending up in initialized thread specific data never
    // being destroyed properly. Any other heap operation will do a full init.
    initThreadMaybe(/*MinimalInit=*/true);

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
      GuardedAlloc.deallocate(Ptr);
      return;
    }
#endif // GWP_ASAN_HOOKS

    if (&__scudo_deallocate_hook)
      __scudo_deallocate_hook(Ptr);

    if (UNLIKELY(!Ptr))
      return;
    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
      reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);

    Chunk::UnpackedHeader Header;
    Chunk::loadHeader(Cookie, Ptr, &Header);

    if (UNLIKELY(Header.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
    if (Options.DeallocTypeMismatch) {
      if (Header.Origin != Origin) {
        // With the exception of memalign'd chunks, that can be still be free'd.
        if (UNLIKELY(Header.Origin != Chunk::Origin::Memalign ||
                     Origin != Chunk::Origin::Malloc))
          reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
                                    Header.Origin, Origin);
      }
    }

    const uptr Size = getSize(Ptr, &Header);
    if (DeleteSize && Options.DeleteSizeMismatch) {
      if (UNLIKELY(DeleteSize != Size))
        reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
    }

    quarantineOrDeallocateChunk(Ptr, &Header, Size);
  }

  void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
    initThreadMaybe();

    // The following cases are handled by the C wrappers.
    DCHECK_NE(OldPtr, nullptr);
    DCHECK_NE(NewSize, 0);

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
      uptr OldSize = GuardedAlloc.getSize(OldPtr);
      void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
      if (NewPtr)
        memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
      GuardedAlloc.deallocate(OldPtr);
      return NewPtr;
    }
#endif // GWP_ASAN_HOOKS

    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
      reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);

    Chunk::UnpackedHeader OldHeader;
    Chunk::loadHeader(Cookie, OldPtr, &OldHeader);

    if (UNLIKELY(OldHeader.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);

    // Pointer has to be allocated with a malloc-type function. Some
    // applications think that it is OK to realloc a memalign'ed pointer, which
    // will trigger this check. It really isn't.
    if (Options.DeallocTypeMismatch) {
      if (UNLIKELY(OldHeader.Origin != Chunk::Origin::Malloc))
        reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
                                  OldHeader.Origin, Chunk::Origin::Malloc);
    }

    void *BlockBegin = getBlockBegin(OldPtr, &OldHeader);
    uptr BlockEnd;
    uptr OldSize;
    const uptr ClassId = OldHeader.ClassId;
    if (LIKELY(ClassId)) {
      BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
                 SizeClassMap::getSizeByClassId(ClassId);
      OldSize = OldHeader.SizeOrUnusedBytes;
    } else {
      BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
      OldSize = BlockEnd -
                (reinterpret_cast<uptr>(OldPtr) + OldHeader.SizeOrUnusedBytes);
    }
    // If the new chunk still fits in the previously allocated block (with a
    // reasonable delta), we just keep the old block, and update the chunk
    // header to reflect the size change.
    if (reinterpret_cast<uptr>(OldPtr) + NewSize <= BlockEnd) {
      const uptr Delta =
          OldSize < NewSize ? NewSize - OldSize : OldSize - NewSize;
      if (Delta <= SizeClassMap::MaxSize / 2) {
        Chunk::UnpackedHeader NewHeader = OldHeader;
        NewHeader.SizeOrUnusedBytes =
            (ClassId ? NewSize
                     : BlockEnd - (reinterpret_cast<uptr>(OldPtr) + NewSize)) &
            Chunk::SizeOrUnusedBytesMask;
        Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
        return OldPtr;
      }
    }

    // Otherwise we allocate a new one, and deallocate the old one. Some
    // allocators will allocate an even larger chunk (by a fixed factor) to
    // allow for potential further in-place realloc. The gains of such a trick
    // are currently unclear.
    void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
    if (NewPtr) {
      const uptr OldSize = getSize(OldPtr, &OldHeader);
      memcpy(NewPtr, OldPtr, Min(NewSize, OldSize));
      quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
    }
    return NewPtr;
  }

  // TODO(kostyak): disable() is currently best-effort. There are some small
  //                windows of time when an allocation could still succeed after
  //                this function finishes. We will revisit that later.
  void disable() {
    initThreadMaybe();
    TSDRegistry.disable();
    Stats.disable();
    Quarantine.disable();
    Primary.disable();
    Secondary.disable();
  }

  void enable() {
    initThreadMaybe();
    Secondary.enable();
    Primary.enable();
    Quarantine.enable();
    Stats.enable();
    TSDRegistry.enable();
  }

  // The function returns the amount of bytes required to store the statistics,
  // which might be larger than the amount of bytes provided. Note that the
  // statistics buffer is not necessarily constant between calls to this
  // function. This can be called with a null buffer or zero size for buffer
  // sizing purposes.
  uptr getStats(char *Buffer, uptr Size) {
    ScopedString Str(1024);
    disable();
    const uptr Length = getStats(&Str) + 1;
    enable();
    if (Length < Size)
      Size = Length;
    if (Buffer && Size) {
      memcpy(Buffer, Str.data(), Size);
      Buffer[Size - 1] = '\0';
    }
    return Length;
  }

  void printStats() {
    ScopedString Str(1024);
    disable();
    getStats(&Str);
    enable();
    Str.output();
  }

  void releaseToOS() {
    initThreadMaybe();
    Primary.releaseToOS();
  }

  // Iterate over all chunks and call a callback for all busy chunks located
  // within the provided memory range. Said callback must not use this allocator
  // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
  void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
                         void *Arg) {
    initThreadMaybe();
    const uptr From = Base;
    const uptr To = Base + Size;
    auto Lambda = [this, From, To, Callback, Arg](uptr Block) {
      if (Block < From || Block >= To)
        return;
      uptr Chunk;
      Chunk::UnpackedHeader Header;
      if (getChunkFromBlock(Block, &Chunk, &Header) &&
          Header.State == Chunk::State::Allocated)
        Callback(Chunk, getSize(reinterpret_cast<void *>(Chunk), &Header), Arg);
    };
    Primary.iterateOverBlocks(Lambda);
    Secondary.iterateOverBlocks(Lambda);
  }

  bool canReturnNull() {
    initThreadMaybe();
    return Options.MayReturnNull;
  }

  // TODO(kostyak): implement this as a "backend" to mallopt.
  bool setOption(UNUSED uptr Option, UNUSED uptr Value) { return false; }

  // Return the usable size for a given chunk. Technically we lie, as we just
  // report the actual size of a chunk. This is done to counteract code actively
  // writing past the end of a chunk (like sqlite3) when the usable size allows
  // for it, which then forces realloc to copy the usable size of a chunk as
  // opposed to its actual size.
  uptr getUsableSize(const void *Ptr) {
    initThreadMaybe();
    if (UNLIKELY(!Ptr))
      return 0;

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
      return GuardedAlloc.getSize(Ptr);
#endif // GWP_ASAN_HOOKS

    Chunk::UnpackedHeader Header;
    Chunk::loadHeader(Cookie, Ptr, &Header);
    // Getting the usable size of a chunk only makes sense if it's allocated.
    if (UNLIKELY(Header.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
    return getSize(Ptr, &Header);
  }

  void getStats(StatCounters S) {
    initThreadMaybe();
    Stats.get(S);
  }

  // Returns true if the pointer provided was allocated by the current
  // allocator instance, which is compliant with tcmalloc's ownership concept.
  // A corrupted chunk will not be reported as owned, which is WAI.
  bool isOwned(const void *Ptr) {
    initThreadMaybe();
#ifdef GWP_ASAN_HOOKS
    if (GuardedAlloc.pointerIsMine(Ptr))
      return true;
#endif // GWP_ASAN_HOOKS
    if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
      return false;
    Chunk::UnpackedHeader Header;
    return Chunk::isValid(Cookie, Ptr, &Header) &&
           Header.State == Chunk::State::Allocated;
  }

private:
  using SecondaryT = typename Params::Secondary;
  typedef typename PrimaryT::SizeClassMap SizeClassMap;

  static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
  static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
  static const uptr MinAlignment = 1UL << MinAlignmentLog;
  static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
  static const uptr MaxAllowedMallocSize =
      FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);

  static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
                "Minimal alignment must at least cover a chunk header.");

  static const u32 BlockMarker = 0x44554353U;

  GlobalStats Stats;
  TSDRegistryT TSDRegistry;
  PrimaryT Primary;
  SecondaryT Secondary;
  QuarantineT Quarantine;

  u32 Cookie;

  struct {
    u8 MayReturnNull : 1;       // may_return_null
    u8 ZeroContents : 1;        // zero_contents
    u8 DeallocTypeMismatch : 1; // dealloc_type_mismatch
    u8 DeleteSizeMismatch : 1;  // delete_size_mismatch
    u32 QuarantineMaxChunkSize; // quarantine_max_chunk_size
  } Options;

  // The following might get optimized out by the compiler.
  NOINLINE void performSanityChecks() {
    // Verify that the header offset field can hold the maximum offset. In the
    // case of the Secondary allocator, it takes care of alignment and the
    // offset will always be small. In the case of the Primary, the worst case
    // scenario happens in the last size class, when the backend allocation
    // would already be aligned on the requested alignment, which would happen
    // to be the maximum alignment that would fit in that size class. As a
    // result, the maximum offset will be at most the maximum alignment for the
    // last size class minus the header size, in multiples of MinAlignment.
    Chunk::UnpackedHeader Header = {};
    const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
                                         SizeClassMap::MaxSize - MinAlignment);
    const uptr MaxOffset =
        (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
    Header.Offset = MaxOffset & Chunk::OffsetMask;
    if (UNLIKELY(Header.Offset != MaxOffset))
      reportSanityCheckError("offset");

    // Verify that we can fit the maximum size or amount of unused bytes in the
    // header. Given that the Secondary fits the allocation to a page, the worst
    // case scenario happens in the Primary. It will depend on the second to
    // last and last class sizes, as well as the dynamic base for the Primary.
    // The following is an over-approximation that works for our needs.
    const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
    Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
    if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
      reportSanityCheckError("size (or unused bytes)");

    const uptr LargestClassId = SizeClassMap::LargestClassId;
    Header.ClassId = LargestClassId;
    if (UNLIKELY(Header.ClassId != LargestClassId))
      reportSanityCheckError("class ID");
  }

  static inline void *getBlockBegin(const void *Ptr,
                                    Chunk::UnpackedHeader *Header) {
    return reinterpret_cast<void *>(
        reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
        (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
  }

  // Return the size of a chunk as requested during its allocation.
  inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
    const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
    if (LIKELY(Header->ClassId))
      return SizeOrUnusedBytes;
    return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
           reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
  }

  ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
    TSDRegistry.initThreadMaybe(this, MinimalInit);
  }

  void quarantineOrDeallocateChunk(void *Ptr, Chunk::UnpackedHeader *Header,
                                   uptr Size) {
    Chunk::UnpackedHeader NewHeader = *Header;
    // If the quarantine is disabled, the actual size of a chunk is 0 or larger
    // than the maximum allowed, we return a chunk directly to the backend.
    // Logical Or can be short-circuited, which introduces unnecessary
    // conditional jumps, so use bitwise Or and let the compiler be clever.
    const bool BypassQuarantine = !Quarantine.getCacheSize() | !Size |
                                  (Size > Options.QuarantineMaxChunkSize);
    if (BypassQuarantine) {
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
      void *BlockBegin = getBlockBegin(Ptr, &NewHeader);
      const uptr ClassId = NewHeader.ClassId;
      if (LIKELY(ClassId)) {
        bool UnlockRequired;
        auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
        TSD->Cache.deallocate(ClassId, BlockBegin);
        if (UnlockRequired)
          TSD->unlock();
      } else {
        Secondary.deallocate(BlockBegin);
      }
    } else {
      NewHeader.State = Chunk::State::Quarantined;
      Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
      bool UnlockRequired;
      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
      Quarantine.put(&TSD->QuarantineCache,
                     QuarantineCallback(*this, TSD->Cache), Ptr, Size);
      if (UnlockRequired)
        TSD->unlock();
    }
  }

  bool getChunkFromBlock(uptr Block, uptr *Chunk,
                         Chunk::UnpackedHeader *Header) {
    u32 Offset = 0;
    if (reinterpret_cast<u32 *>(Block)[0] == BlockMarker)
      Offset = reinterpret_cast<u32 *>(Block)[1];
    *Chunk = Block + Offset + Chunk::getHeaderSize();
    return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
  }

  uptr getStats(ScopedString *Str) {
    Primary.getStats(Str);
    Secondary.getStats(Str);
    Quarantine.getStats(Str);
    return Str->length();
  }
};

} // namespace scudo

#endif // SCUDO_COMBINED_H_