ABISysV_ppc.cpp
33.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
//===-- ABISysV_ppc.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABISysV_ppc.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
using namespace lldb;
using namespace lldb_private;
enum dwarf_regnums {
dwarf_r0 = 0,
dwarf_r1,
dwarf_r2,
dwarf_r3,
dwarf_r4,
dwarf_r5,
dwarf_r6,
dwarf_r7,
dwarf_r8,
dwarf_r9,
dwarf_r10,
dwarf_r11,
dwarf_r12,
dwarf_r13,
dwarf_r14,
dwarf_r15,
dwarf_r16,
dwarf_r17,
dwarf_r18,
dwarf_r19,
dwarf_r20,
dwarf_r21,
dwarf_r22,
dwarf_r23,
dwarf_r24,
dwarf_r25,
dwarf_r26,
dwarf_r27,
dwarf_r28,
dwarf_r29,
dwarf_r30,
dwarf_r31,
dwarf_f0,
dwarf_f1,
dwarf_f2,
dwarf_f3,
dwarf_f4,
dwarf_f5,
dwarf_f6,
dwarf_f7,
dwarf_f8,
dwarf_f9,
dwarf_f10,
dwarf_f11,
dwarf_f12,
dwarf_f13,
dwarf_f14,
dwarf_f15,
dwarf_f16,
dwarf_f17,
dwarf_f18,
dwarf_f19,
dwarf_f20,
dwarf_f21,
dwarf_f22,
dwarf_f23,
dwarf_f24,
dwarf_f25,
dwarf_f26,
dwarf_f27,
dwarf_f28,
dwarf_f29,
dwarf_f30,
dwarf_f31,
dwarf_cr,
dwarf_fpscr,
dwarf_xer = 101,
dwarf_lr = 108,
dwarf_ctr,
dwarf_pc,
dwarf_cfa,
};
// Note that the size and offset will be updated by platform-specific classes.
#define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4) \
{ \
#reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \
nullptr, nullptr, nullptr, 0 \
}
static const RegisterInfo g_register_infos[] = {
// General purpose registers. eh_frame, DWARF,
// Generic, Process Plugin
DEFINE_GPR(r0, nullptr, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r1, "sp", dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r2, nullptr, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r3, "arg1", dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r4, "arg2", dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r5, "arg3", dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r6, "arg4", dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r7, "arg5", dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r8, "arg6", dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r9, "arg7", dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r10, "arg8", dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r11, nullptr, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r12, nullptr, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r13, nullptr, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r14, nullptr, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r15, nullptr, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r16, nullptr, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r17, nullptr, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r18, nullptr, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r19, nullptr, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r20, nullptr, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r21, nullptr, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r22, nullptr, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r23, nullptr, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r24, nullptr, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r25, nullptr, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r26, nullptr, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r27, nullptr, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r28, nullptr, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r29, nullptr, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r30, nullptr, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(r31, nullptr, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(lr, "lr", dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA,
LLDB_INVALID_REGNUM),
DEFINE_GPR(cr, "cr", dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS,
LLDB_INVALID_REGNUM),
DEFINE_GPR(xer, "xer", dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(ctr, "ctr", dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM),
DEFINE_GPR(pc, "pc", dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC,
LLDB_INVALID_REGNUM),
{nullptr,
nullptr,
8,
0,
eEncodingUint,
eFormatHex,
{dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0}};
static const uint32_t k_num_register_infos =
llvm::array_lengthof(g_register_infos);
const lldb_private::RegisterInfo *
ABISysV_ppc::GetRegisterInfoArray(uint32_t &count) {
count = k_num_register_infos;
return g_register_infos;
}
size_t ABISysV_ppc::GetRedZoneSize() const { return 224; }
// Static Functions
ABISP
ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
if (arch.GetTriple().getArch() == llvm::Triple::ppc) {
return ABISP(
new ABISysV_ppc(std::move(process_sp), MakeMCRegisterInfo(arch)));
}
return ABISP();
}
bool ABISysV_ppc::PrepareTrivialCall(Thread &thread, addr_t sp,
addr_t func_addr, addr_t return_addr,
llvm::ArrayRef<addr_t> args) const {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
if (log) {
StreamString s;
s.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64
", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
", return_addr = 0x%" PRIx64,
thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
(uint64_t)return_addr);
for (size_t i = 0; i < args.size(); ++i)
s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
args[i]);
s.PutCString(")");
log->PutString(s.GetString());
}
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
const RegisterInfo *reg_info = nullptr;
if (args.size() > 8) // TODO handle more than 8 arguments
return false;
for (size_t i = 0; i < args.size(); ++i) {
reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_ARG1 + i);
LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
static_cast<uint64_t>(i + 1), args[i], reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
return false;
}
// First, align the SP
LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
(uint64_t)sp, (uint64_t)(sp & ~0xfull));
sp &= ~(0xfull); // 16-byte alignment
sp -= 8;
Status error;
const RegisterInfo *pc_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const RegisterInfo *sp_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
ProcessSP process_sp(thread.GetProcess());
RegisterValue reg_value;
LLDB_LOGF(log,
"Pushing the return address onto the stack: 0x%" PRIx64
": 0x%" PRIx64,
(uint64_t)sp, (uint64_t)return_addr);
// Save return address onto the stack
if (!process_sp->WritePointerToMemory(sp, return_addr, error))
return false;
// %r1 is set to the actual stack value.
LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
return false;
// %pc is set to the address of the called function.
LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
return false;
return true;
}
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
bool is_signed, Thread &thread,
uint32_t *argument_register_ids,
unsigned int ¤t_argument_register,
addr_t ¤t_stack_argument) {
if (bit_width > 64)
return false; // Scalar can't hold large integer arguments
if (current_argument_register < 6) {
scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
argument_register_ids[current_argument_register], 0);
current_argument_register++;
if (is_signed)
scalar.SignExtend(bit_width);
} else {
uint32_t byte_size = (bit_width + (8 - 1)) / 8;
Status error;
if (thread.GetProcess()->ReadScalarIntegerFromMemory(
current_stack_argument, byte_size, is_signed, scalar, error)) {
current_stack_argument += byte_size;
return true;
}
return false;
}
return true;
}
bool ABISysV_ppc::GetArgumentValues(Thread &thread, ValueList &values) const {
unsigned int num_values = values.GetSize();
unsigned int value_index;
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
// Get the pointer to the first stack argument so we have a place to start
// when reading data
addr_t sp = reg_ctx->GetSP(0);
if (!sp)
return false;
addr_t current_stack_argument = sp + 48; // jump over return address
uint32_t argument_register_ids[8];
argument_register_ids[0] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
->kinds[eRegisterKindLLDB];
argument_register_ids[1] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
->kinds[eRegisterKindLLDB];
argument_register_ids[2] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
->kinds[eRegisterKindLLDB];
argument_register_ids[3] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
->kinds[eRegisterKindLLDB];
argument_register_ids[4] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)
->kinds[eRegisterKindLLDB];
argument_register_ids[5] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)
->kinds[eRegisterKindLLDB];
argument_register_ids[6] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7)
->kinds[eRegisterKindLLDB];
argument_register_ids[7] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8)
->kinds[eRegisterKindLLDB];
unsigned int current_argument_register = 0;
for (value_index = 0; value_index < num_values; ++value_index) {
Value *value = values.GetValueAtIndex(value_index);
if (!value)
return false;
// We currently only support extracting values with Clang QualTypes. Do we
// care about others?
CompilerType compiler_type = value->GetCompilerType();
llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
if (!bit_size)
return false;
bool is_signed;
if (compiler_type.IsIntegerOrEnumerationType(is_signed))
ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
argument_register_ids, current_argument_register,
current_stack_argument);
else if (compiler_type.IsPointerType())
ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
argument_register_ids, current_argument_register,
current_stack_argument);
}
return true;
}
Status ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
lldb::ValueObjectSP &new_value_sp) {
Status error;
if (!new_value_sp) {
error.SetErrorString("Empty value object for return value.");
return error;
}
CompilerType compiler_type = new_value_sp->GetCompilerType();
if (!compiler_type) {
error.SetErrorString("Null clang type for return value.");
return error;
}
Thread *thread = frame_sp->GetThread().get();
bool is_signed;
uint32_t count;
bool is_complex;
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
bool set_it_simple = false;
if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
compiler_type.IsPointerType()) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
lldb::offset_t offset = 0;
if (num_bytes <= 8) {
uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
set_it_simple = true;
} else {
error.SetErrorString("We don't support returning longer than 64 bit "
"integer values at present.");
}
} else if (compiler_type.IsFloatingPointType(count, is_complex)) {
if (is_complex)
error.SetErrorString(
"We don't support returning complex values at present");
else {
llvm::Optional<uint64_t> bit_width =
compiler_type.GetBitSize(frame_sp.get());
if (!bit_width) {
error.SetErrorString("can't get type size");
return error;
}
if (*bit_width <= 64) {
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
unsigned char buffer[16];
ByteOrder byte_order = data.GetByteOrder();
data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
set_it_simple = true;
} else {
// FIXME - don't know how to do 80 bit long doubles yet.
error.SetErrorString(
"We don't support returning float values > 64 bits at present");
}
}
}
if (!set_it_simple) {
// Okay we've got a structure or something that doesn't fit in a simple
// register. We should figure out where it really goes, but we don't
// support this yet.
error.SetErrorString("We only support setting simple integer and float "
"return types at present.");
}
return error;
}
ValueObjectSP ABISysV_ppc::GetReturnValueObjectSimple(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
Value value;
if (!return_compiler_type)
return return_valobj_sp;
// value.SetContext (Value::eContextTypeClangType, return_value_type);
value.SetCompilerType(return_compiler_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
const uint32_t type_flags = return_compiler_type.GetTypeInfo();
if (type_flags & eTypeIsScalar) {
value.SetValueType(Value::eValueTypeScalar);
bool success = false;
if (type_flags & eTypeIsInteger) {
// Extract the register context so we can read arguments from registers
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(nullptr);
if (!byte_size)
return return_valobj_sp;
uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
reg_ctx->GetRegisterInfoByName("r3", 0), 0);
const bool is_signed = (type_flags & eTypeIsSigned) != 0;
switch (*byte_size) {
default:
break;
case sizeof(uint64_t):
if (is_signed)
value.GetScalar() = (int64_t)(raw_value);
else
value.GetScalar() = (uint64_t)(raw_value);
success = true;
break;
case sizeof(uint32_t):
if (is_signed)
value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
success = true;
break;
case sizeof(uint16_t):
if (is_signed)
value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
success = true;
break;
case sizeof(uint8_t):
if (is_signed)
value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
success = true;
break;
}
} else if (type_flags & eTypeIsFloat) {
if (type_flags & eTypeIsComplex) {
// Don't handle complex yet.
} else {
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(nullptr);
if (byte_size && *byte_size <= sizeof(long double)) {
const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
RegisterValue f1_value;
if (reg_ctx->ReadRegister(f1_info, f1_value)) {
DataExtractor data;
if (f1_value.GetData(data)) {
lldb::offset_t offset = 0;
if (*byte_size == sizeof(float)) {
value.GetScalar() = (float)data.GetFloat(&offset);
success = true;
} else if (*byte_size == sizeof(double)) {
value.GetScalar() = (double)data.GetDouble(&offset);
success = true;
}
}
}
}
}
}
if (success)
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if (type_flags & eTypeIsPointer) {
unsigned r3_id =
reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
value.GetScalar() =
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0);
value.SetValueType(Value::eValueTypeScalar);
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if (type_flags & eTypeIsVector) {
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(nullptr);
if (byte_size && *byte_size > 0) {
const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0);
if (altivec_reg) {
if (*byte_size <= altivec_reg->byte_size) {
ProcessSP process_sp(thread.GetProcess());
if (process_sp) {
std::unique_ptr<DataBufferHeap> heap_data_up(
new DataBufferHeap(*byte_size, 0));
const ByteOrder byte_order = process_sp->GetByteOrder();
RegisterValue reg_value;
if (reg_ctx->ReadRegister(altivec_reg, reg_value)) {
Status error;
if (reg_value.GetAsMemoryData(
altivec_reg, heap_data_up->GetBytes(),
heap_data_up->GetByteSize(), byte_order, error)) {
DataExtractor data(DataBufferSP(heap_data_up.release()),
byte_order,
process_sp->GetTarget()
.GetArchitecture()
.GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), data);
}
}
}
}
}
}
}
return return_valobj_sp;
}
ValueObjectSP ABISysV_ppc::GetReturnValueObjectImpl(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
if (!return_compiler_type)
return return_valobj_sp;
ExecutionContext exe_ctx(thread.shared_from_this());
return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
if (return_valobj_sp)
return return_valobj_sp;
RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
if (!reg_ctx_sp)
return return_valobj_sp;
llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
if (!bit_width)
return return_valobj_sp;
if (return_compiler_type.IsAggregateType()) {
Target *target = exe_ctx.GetTargetPtr();
bool is_memory = true;
if (*bit_width <= 128) {
ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
DataBufferSP data_sp(new DataBufferHeap(16, 0));
DataExtractor return_ext(data_sp, target_byte_order,
target->GetArchitecture().GetAddressByteSize());
const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
const RegisterInfo *rdx_info =
reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
RegisterValue r3_value, rdx_value;
reg_ctx_sp->ReadRegister(r3_info, r3_value);
reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
DataExtractor r3_data, rdx_data;
r3_value.GetData(r3_data);
rdx_value.GetData(rdx_data);
uint32_t fp_bytes =
0; // Tracks how much of the xmm registers we've consumed so far
uint32_t integer_bytes =
0; // Tracks how much of the r3/rds registers we've consumed so far
const uint32_t num_children = return_compiler_type.GetNumFields();
// Since we are in the small struct regime, assume we are not in memory.
is_memory = false;
for (uint32_t idx = 0; idx < num_children; idx++) {
std::string name;
uint64_t field_bit_offset = 0;
bool is_signed;
bool is_complex;
uint32_t count;
CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
idx, name, &field_bit_offset, nullptr, nullptr);
llvm::Optional<uint64_t> field_bit_width =
field_compiler_type.GetBitSize(&thread);
if (!field_bit_width)
return return_valobj_sp;
// If there are any unaligned fields, this is stored in memory.
if (field_bit_offset % *field_bit_width != 0) {
is_memory = true;
break;
}
uint32_t field_byte_width = *field_bit_width / 8;
uint32_t field_byte_offset = field_bit_offset / 8;
DataExtractor *copy_from_extractor = nullptr;
uint32_t copy_from_offset = 0;
if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
field_compiler_type.IsPointerType()) {
if (integer_bytes < 8) {
if (integer_bytes + field_byte_width <= 8) {
// This is in RAX, copy from register to our result structure:
copy_from_extractor = &r3_data;
copy_from_offset = integer_bytes;
integer_bytes += field_byte_width;
} else {
// The next field wouldn't fit in the remaining space, so we
// pushed it to rdx.
copy_from_extractor = &rdx_data;
copy_from_offset = 0;
integer_bytes = 8 + field_byte_width;
}
} else if (integer_bytes + field_byte_width <= 16) {
copy_from_extractor = &rdx_data;
copy_from_offset = integer_bytes - 8;
integer_bytes += field_byte_width;
} else {
// The last field didn't fit. I can't see how that would happen
// w/o the overall size being greater than 16 bytes. For now,
// return a nullptr return value object.
return return_valobj_sp;
}
} else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
// Structs with long doubles are always passed in memory.
if (*field_bit_width == 128) {
is_memory = true;
break;
} else if (*field_bit_width == 64) {
copy_from_offset = 0;
fp_bytes += field_byte_width;
} else if (*field_bit_width == 32) {
// This one is kind of complicated. If we are in an "eightbyte"
// with another float, we'll be stuffed into an xmm register with
// it. If we are in an "eightbyte" with one or more ints, then we
// will be stuffed into the appropriate GPR with them.
bool in_gpr;
if (field_byte_offset % 8 == 0) {
// We are at the beginning of one of the eightbytes, so check the
// next element (if any)
if (idx == num_children - 1)
in_gpr = false;
else {
uint64_t next_field_bit_offset = 0;
CompilerType next_field_compiler_type =
return_compiler_type.GetFieldAtIndex(idx + 1, name,
&next_field_bit_offset,
nullptr, nullptr);
if (next_field_compiler_type.IsIntegerOrEnumerationType(
is_signed))
in_gpr = true;
else {
copy_from_offset = 0;
in_gpr = false;
}
}
} else if (field_byte_offset % 4 == 0) {
// We are inside of an eightbyte, so see if the field before us
// is floating point: This could happen if somebody put padding
// in the structure.
if (idx == 0)
in_gpr = false;
else {
uint64_t prev_field_bit_offset = 0;
CompilerType prev_field_compiler_type =
return_compiler_type.GetFieldAtIndex(idx - 1, name,
&prev_field_bit_offset,
nullptr, nullptr);
if (prev_field_compiler_type.IsIntegerOrEnumerationType(
is_signed))
in_gpr = true;
else {
copy_from_offset = 4;
in_gpr = false;
}
}
} else {
is_memory = true;
continue;
}
// Okay, we've figured out whether we are in GPR or XMM, now figure
// out which one.
if (in_gpr) {
if (integer_bytes < 8) {
// This is in RAX, copy from register to our result structure:
copy_from_extractor = &r3_data;
copy_from_offset = integer_bytes;
integer_bytes += field_byte_width;
} else {
copy_from_extractor = &rdx_data;
copy_from_offset = integer_bytes - 8;
integer_bytes += field_byte_width;
}
} else {
fp_bytes += field_byte_width;
}
}
}
// These two tests are just sanity checks. If I somehow get the type
// calculation wrong above it is better to just return nothing than to
// assert or crash.
if (!copy_from_extractor)
return return_valobj_sp;
if (copy_from_offset + field_byte_width >
copy_from_extractor->GetByteSize())
return return_valobj_sp;
copy_from_extractor->CopyByteOrderedData(
copy_from_offset, field_byte_width,
data_sp->GetBytes() + field_byte_offset, field_byte_width,
target_byte_order);
}
if (!is_memory) {
// The result is in our data buffer. Let's make a variable object out
// of it:
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), return_ext);
}
}
// FIXME: This is just taking a guess, r3 may very well no longer hold the
// return storage location.
// If we are going to do this right, when we make a new frame we should
// check to see if it uses a memory return, and if we are at the first
// instruction and if so stash away the return location. Then we would
// only return the memory return value if we know it is valid.
if (is_memory) {
unsigned r3_id =
reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
lldb::addr_t storage_addr =
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id,
0);
return_valobj_sp = ValueObjectMemory::Create(
&thread, "", Address(storage_addr, nullptr), return_compiler_type);
}
}
return return_valobj_sp;
}
bool ABISysV_ppc::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t lr_reg_num = dwarf_lr;
uint32_t sp_reg_num = dwarf_r1;
uint32_t pc_reg_num = dwarf_pc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
// Our Call Frame Address is the stack pointer value
row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
// The previous PC is in the LR
row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
unwind_plan.AppendRow(row);
// All other registers are the same.
unwind_plan.SetSourceName("ppc at-func-entry default");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
return true;
}
bool ABISysV_ppc::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t sp_reg_num = dwarf_r1;
uint32_t pc_reg_num = dwarf_lr;
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 4;
row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 1, true);
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("ppc default unwind plan");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
unwind_plan.SetReturnAddressRegister(dwarf_lr);
return true;
}
bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo *reg_info) {
return !RegisterIsCalleeSaved(reg_info);
}
// See "Register Usage" in the
// "System V Application Binary Interface"
// "64-bit PowerPC ELF Application Binary Interface Supplement" current version
// is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC-
// elf64abi-1.9.pdf
bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
if (reg_info) {
// Preserved registers are :
// r1,r2,r13-r31
// f14-f31 (not yet)
// v20-v31 (not yet)
// vrsave (not yet)
const char *name = reg_info->name;
if (name[0] == 'r') {
if ((name[1] == '1' || name[1] == '2') && name[2] == '\0')
return true;
if (name[1] == '1' && name[2] > '2')
return true;
if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
return true;
}
if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9') {
if (name[3] == '1' && name[4] >= '4')
return true;
if ((name[3] == '2' || name[3] == '3') && name[4] != '\0')
return true;
}
if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
return true;
if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
return true;
if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
return true;
}
return false;
}
void ABISysV_ppc::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
"System V ABI for ppc targets", CreateInstance);
}
void ABISysV_ppc::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString ABISysV_ppc::GetPluginNameStatic() {
static ConstString g_name("sysv-ppc");
return g_name;
}
// PluginInterface protocol
lldb_private::ConstString ABISysV_ppc::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t ABISysV_ppc::GetPluginVersion() { return 1; }