DataExtractor.cpp
37.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/DataExtractor.h"
#include "lldb/lldb-defines.h"
#include "lldb/lldb-enumerations.h"
#include "lldb/lldb-forward.h"
#include "lldb/lldb-types.h"
#include "lldb/Utility/DataBuffer.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/UUID.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <string>
#include <ctype.h>
#include <inttypes.h>
#include <string.h>
using namespace lldb;
using namespace lldb_private;
static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
uint16_t value;
memcpy(&value, ptr + offset, 2);
return value;
}
static inline uint32_t ReadInt32(const unsigned char *ptr,
offset_t offset = 0) {
uint32_t value;
memcpy(&value, ptr + offset, 4);
return value;
}
static inline uint64_t ReadInt64(const unsigned char *ptr,
offset_t offset = 0) {
uint64_t value;
memcpy(&value, ptr + offset, 8);
return value;
}
static inline uint16_t ReadInt16(const void *ptr) {
uint16_t value;
memcpy(&value, ptr, 2);
return value;
}
static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
offset_t offset) {
uint16_t value;
memcpy(&value, ptr + offset, 2);
return llvm::ByteSwap_16(value);
}
static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
offset_t offset) {
uint32_t value;
memcpy(&value, ptr + offset, 4);
return llvm::ByteSwap_32(value);
}
static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
offset_t offset) {
uint64_t value;
memcpy(&value, ptr + offset, 8);
return llvm::ByteSwap_64(value);
}
static inline uint16_t ReadSwapInt16(const void *ptr) {
uint16_t value;
memcpy(&value, ptr, 2);
return llvm::ByteSwap_16(value);
}
static inline uint32_t ReadSwapInt32(const void *ptr) {
uint32_t value;
memcpy(&value, ptr, 4);
return llvm::ByteSwap_32(value);
}
static inline uint64_t ReadSwapInt64(const void *ptr) {
uint64_t value;
memcpy(&value, ptr, 8);
return llvm::ByteSwap_64(value);
}
static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
ByteOrder byte_order) {
uint64_t res = 0;
if (byte_order == eByteOrderBig)
for (size_t i = 0; i < byte_size; ++i)
res = (res << 8) | data[i];
else {
assert(byte_order == eByteOrderLittle);
for (size_t i = 0; i < byte_size; ++i)
res = (res << 8) | data[byte_size - 1 - i];
}
return res;
}
DataExtractor::DataExtractor()
: m_start(nullptr), m_end(nullptr),
m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
m_data_sp(), m_target_byte_size(1) {}
// This constructor allows us to use data that is owned by someone else. The
// data must stay around as long as this object is valid.
DataExtractor::DataExtractor(const void *data, offset_t length,
ByteOrder endian, uint32_t addr_size,
uint32_t target_byte_size /*=1*/)
: m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
assert(addr_size == 4 || addr_size == 8);
}
// Make a shared pointer reference to the shared data in "data_sp" and set the
// endian swapping setting to "swap", and the address size to "addr_size". The
// shared data reference will ensure the data lives as long as any
// DataExtractor objects exist that have a reference to this data.
DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
uint32_t addr_size,
uint32_t target_byte_size /*=1*/)
: m_start(nullptr), m_end(nullptr), m_byte_order(endian),
m_addr_size(addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
assert(addr_size == 4 || addr_size == 8);
SetData(data_sp);
}
// Initialize this object with a subset of the data bytes in "data". If "data"
// contains shared data, then a reference to this shared data will added and
// the shared data will stay around as long as any object contains a reference
// to that data. The endian swap and address size settings are copied from
// "data".
DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
offset_t length, uint32_t target_byte_size /*=1*/)
: m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
m_addr_size(data.m_addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
assert(m_addr_size == 4 || m_addr_size == 8);
if (data.ValidOffset(offset)) {
offset_t bytes_available = data.GetByteSize() - offset;
if (length > bytes_available)
length = bytes_available;
SetData(data, offset, length);
}
}
DataExtractor::DataExtractor(const DataExtractor &rhs)
: m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
m_target_byte_size(rhs.m_target_byte_size) {
assert(m_addr_size == 4 || m_addr_size == 8);
}
// Assignment operator
const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
if (this != &rhs) {
m_start = rhs.m_start;
m_end = rhs.m_end;
m_byte_order = rhs.m_byte_order;
m_addr_size = rhs.m_addr_size;
m_data_sp = rhs.m_data_sp;
}
return *this;
}
DataExtractor::~DataExtractor() = default;
// Clears the object contents back to a default invalid state, and release any
// references to shared data that this object may contain.
void DataExtractor::Clear() {
m_start = nullptr;
m_end = nullptr;
m_byte_order = endian::InlHostByteOrder();
m_addr_size = sizeof(void *);
m_data_sp.reset();
}
// If this object contains shared data, this function returns the offset into
// that shared data. Else zero is returned.
size_t DataExtractor::GetSharedDataOffset() const {
if (m_start != nullptr) {
const DataBuffer *data = m_data_sp.get();
if (data != nullptr) {
const uint8_t *data_bytes = data->GetBytes();
if (data_bytes != nullptr) {
assert(m_start >= data_bytes);
return m_start - data_bytes;
}
}
}
return 0;
}
// Set the data with which this object will extract from to data starting at
// BYTES and set the length of the data to LENGTH bytes long. The data is
// externally owned must be around at least as long as this object points to
// the data. No copy of the data is made, this object just refers to this data
// and can extract from it. If this object refers to any shared data upon
// entry, the reference to that data will be released. Is SWAP is set to true,
// any data extracted will be endian swapped.
lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
ByteOrder endian) {
m_byte_order = endian;
m_data_sp.reset();
if (bytes == nullptr || length == 0) {
m_start = nullptr;
m_end = nullptr;
} else {
m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
m_end = m_start + length;
}
return GetByteSize();
}
// Assign the data for this object to be a subrange in "data" starting
// "data_offset" bytes into "data" and ending "data_length" bytes later. If
// "data_offset" is not a valid offset into "data", then this object will
// contain no bytes. If "data_offset" is within "data" yet "data_length" is too
// large, the length will be capped at the number of bytes remaining in "data".
// If "data" contains a shared pointer to other data, then a ref counted
// pointer to that data will be made in this object. If "data" doesn't contain
// a shared pointer to data, then the bytes referred to in "data" will need to
// exist at least as long as this object refers to those bytes. The address
// size and endian swap settings are copied from the current values in "data".
lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
offset_t data_offset,
offset_t data_length) {
m_addr_size = data.m_addr_size;
assert(m_addr_size == 4 || m_addr_size == 8);
// If "data" contains shared pointer to data, then we can use that
if (data.m_data_sp) {
m_byte_order = data.m_byte_order;
return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
data_length);
}
// We have a DataExtractor object that just has a pointer to bytes
if (data.ValidOffset(data_offset)) {
if (data_length > data.GetByteSize() - data_offset)
data_length = data.GetByteSize() - data_offset;
return SetData(data.GetDataStart() + data_offset, data_length,
data.GetByteOrder());
}
return 0;
}
// Assign the data for this object to be a subrange of the shared data in
// "data_sp" starting "data_offset" bytes into "data_sp" and ending
// "data_length" bytes later. If "data_offset" is not a valid offset into
// "data_sp", then this object will contain no bytes. If "data_offset" is
// within "data_sp" yet "data_length" is too large, the length will be capped
// at the number of bytes remaining in "data_sp". A ref counted pointer to the
// data in "data_sp" will be made in this object IF the number of bytes this
// object refers to in greater than zero (if at least one byte was available
// starting at "data_offset") to ensure the data stays around as long as it is
// needed. The address size and endian swap settings will remain unchanged from
// their current settings.
lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
offset_t data_offset,
offset_t data_length) {
m_start = m_end = nullptr;
if (data_length > 0) {
m_data_sp = data_sp;
if (data_sp) {
const size_t data_size = data_sp->GetByteSize();
if (data_offset < data_size) {
m_start = data_sp->GetBytes() + data_offset;
const size_t bytes_left = data_size - data_offset;
// Cap the length of we asked for too many
if (data_length <= bytes_left)
m_end = m_start + data_length; // We got all the bytes we wanted
else
m_end = m_start + bytes_left; // Not all the bytes requested were
// available in the shared data
}
}
}
size_t new_size = GetByteSize();
// Don't hold a shared pointer to the data buffer if we don't share any valid
// bytes in the shared buffer.
if (new_size == 0)
m_data_sp.reset();
return new_size;
}
// Extract a single unsigned char from the binary data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the byte that was extracted, or zero on failure.
uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
if (data)
return *data;
return 0;
}
// Extract "count" unsigned chars from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
uint32_t count) const {
const uint8_t *data =
static_cast<const uint8_t *>(GetData(offset_ptr, count));
if (data) {
// Copy the data into the buffer
memcpy(dst, data, count);
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return dst;
}
return nullptr;
}
// Extract a single uint16_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint16_t that was extracted, or zero on failure.
uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
uint16_t val = 0;
const uint8_t *data =
static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
if (data) {
if (m_byte_order != endian::InlHostByteOrder())
val = ReadSwapInt16(data);
else
val = ReadInt16(data);
}
return val;
}
uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
uint16_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt16(m_start, *offset_ptr);
else
val = ReadSwapInt16(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
uint32_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt32(m_start, *offset_ptr);
else
val = ReadSwapInt32(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
uint64_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt64(m_start, *offset_ptr);
else
val = ReadSwapInt64(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
// Extract "count" uint16_t values from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint16_t) * count;
const uint16_t *src =
static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
uint16_t *dst_end = dst_pos + count;
const uint16_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt16(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
// Extract a single uint32_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint32_t that was extracted, or zero on failure.
uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
uint32_t val = 0;
const uint8_t *data =
static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
if (data) {
if (m_byte_order != endian::InlHostByteOrder()) {
val = ReadSwapInt32(data);
} else {
memcpy(&val, data, 4);
}
}
return val;
}
// Extract "count" uint32_t values from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint32_t) * count;
const uint32_t *src =
static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
uint32_t *dst_end = dst_pos + count;
const uint32_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt32(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
// Extract a single uint64_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint64_t that was extracted, or zero on failure.
uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
uint64_t val = 0;
const uint8_t *data =
static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
if (data) {
if (m_byte_order != endian::InlHostByteOrder()) {
val = ReadSwapInt64(data);
} else {
memcpy(&val, data, 8);
}
}
return val;
}
// GetU64
//
// Get multiple consecutive 64 bit values. Return true if the entire read
// succeeds and increment the offset pointed to by offset_ptr, else return
// false and leave the offset pointed to by offset_ptr unchanged.
void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint64_t) * count;
const uint64_t *src =
static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
uint64_t *dst_end = dst_pos + count;
const uint64_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt64(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
size_t byte_size) const {
lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
return GetMaxU64(offset_ptr, byte_size);
}
uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
size_t byte_size) const {
lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
switch (byte_size) {
case 1:
return GetU8(offset_ptr);
case 2:
return GetU16(offset_ptr);
case 4:
return GetU32(offset_ptr);
case 8:
return GetU64(offset_ptr);
default: {
// General case.
const uint8_t *data =
static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
if (data == nullptr)
return 0;
return ReadMaxInt64(data, byte_size, m_byte_order);
}
}
return 0;
}
uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
size_t byte_size) const {
switch (byte_size) {
case 1:
return GetU8_unchecked(offset_ptr);
case 2:
return GetU16_unchecked(offset_ptr);
case 4:
return GetU32_unchecked(offset_ptr);
case 8:
return GetU64_unchecked(offset_ptr);
default: {
uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
*offset_ptr += byte_size;
return res;
}
}
return 0;
}
int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
return llvm::SignExtend64(u64, 8 * byte_size);
}
uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset) const {
assert(bitfield_bit_size <= 64);
uint64_t uval64 = GetMaxU64(offset_ptr, size);
if (bitfield_bit_size == 0)
return uval64;
int32_t lsbcount = bitfield_bit_offset;
if (m_byte_order == eByteOrderBig)
lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
if (lsbcount > 0)
uval64 >>= lsbcount;
uint64_t bitfield_mask =
(bitfield_bit_size == 64
? std::numeric_limits<uint64_t>::max()
: ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
return uval64;
uval64 &= bitfield_mask;
return uval64;
}
int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset) const {
int64_t sval64 = GetMaxS64(offset_ptr, size);
if (bitfield_bit_size > 0) {
int32_t lsbcount = bitfield_bit_offset;
if (m_byte_order == eByteOrderBig)
lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
if (lsbcount > 0)
sval64 >>= lsbcount;
uint64_t bitfield_mask =
((static_cast<uint64_t>(1)) << bitfield_bit_size) - 1;
sval64 &= bitfield_mask;
// sign extend if needed
if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
sval64 |= ~bitfield_mask;
}
return sval64;
}
float DataExtractor::GetFloat(offset_t *offset_ptr) const {
typedef float float_type;
float_type val = 0.0;
const size_t src_size = sizeof(float_type);
const float_type *src =
static_cast<const float_type *>(GetData(offset_ptr, src_size));
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
for (size_t i = 0; i < sizeof(float_type); ++i)
dst_data[sizeof(float_type) - 1 - i] = src_data[i];
} else {
val = *src;
}
}
return val;
}
double DataExtractor::GetDouble(offset_t *offset_ptr) const {
typedef double float_type;
float_type val = 0.0;
const size_t src_size = sizeof(float_type);
const float_type *src =
static_cast<const float_type *>(GetData(offset_ptr, src_size));
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
for (size_t i = 0; i < sizeof(float_type); ++i)
dst_data[sizeof(float_type) - 1 - i] = src_data[i];
} else {
val = *src;
}
}
return val;
}
long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
long double val = 0.0;
#if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \
defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
*offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
endian::InlHostByteOrder());
#else
*offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
sizeof(val), endian::InlHostByteOrder());
#endif
return val;
}
// Extract a single address from the data and update the offset pointed to by
// "offset_ptr". The size of the extracted address comes from the
// "this->m_addr_size" member variable and should be set correctly prior to
// extracting any address values.
//
// RETURNS the address that was extracted, or zero on failure.
uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
assert(m_addr_size == 4 || m_addr_size == 8);
return GetMaxU64(offset_ptr, m_addr_size);
}
uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
assert(m_addr_size == 4 || m_addr_size == 8);
return GetMaxU64_unchecked(offset_ptr, m_addr_size);
}
// Extract a single pointer from the data and update the offset pointed to by
// "offset_ptr". The size of the extracted pointer comes from the
// "this->m_addr_size" member variable and should be set correctly prior to
// extracting any pointer values.
//
// RETURNS the pointer that was extracted, or zero on failure.
uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const {
assert(m_addr_size == 4 || m_addr_size == 8);
return GetMaxU64(offset_ptr, m_addr_size);
}
size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
ByteOrder dst_byte_order, void *dst) const {
const uint8_t *src = PeekData(offset, length);
if (src) {
if (dst_byte_order != GetByteOrder()) {
// Validate that only a word- or register-sized dst is byte swapped
assert(length == 1 || length == 2 || length == 4 || length == 8 ||
length == 10 || length == 16 || length == 32);
for (uint32_t i = 0; i < length; ++i)
(static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
} else
::memcpy(dst, src, length);
return length;
}
return 0;
}
// Extract data as it exists in target memory
lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
void *dst) const {
const uint8_t *src = PeekData(offset, length);
if (src) {
::memcpy(dst, src, length);
return length;
}
return 0;
}
// Extract data and swap if needed when doing the copy
lldb::offset_t
DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
void *dst_void_ptr, offset_t dst_len,
ByteOrder dst_byte_order) const {
// Validate the source info
if (!ValidOffsetForDataOfSize(src_offset, src_len))
assert(ValidOffsetForDataOfSize(src_offset, src_len));
assert(src_len > 0);
assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
// Validate the destination info
assert(dst_void_ptr != nullptr);
assert(dst_len > 0);
assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
// Validate that only a word- or register-sized dst is byte swapped
assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
dst_len == 32);
// Must have valid byte orders set in this object and for destination
if (!(dst_byte_order == eByteOrderBig ||
dst_byte_order == eByteOrderLittle) ||
!(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
return 0;
uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
const uint8_t *src = PeekData(src_offset, src_len);
if (src) {
if (dst_len >= src_len) {
// We are copying the entire value from src into dst. Calculate how many,
// if any, zeroes we need for the most significant bytes if "dst_len" is
// greater than "src_len"...
const size_t num_zeroes = dst_len - src_len;
if (dst_byte_order == eByteOrderBig) {
// Big endian, so we lead with zeroes...
if (num_zeroes > 0)
::memset(dst, 0, num_zeroes);
// Then either copy or swap the rest
if (m_byte_order == eByteOrderBig) {
::memcpy(dst + num_zeroes, src, src_len);
} else {
for (uint32_t i = 0; i < src_len; ++i)
dst[i + num_zeroes] = src[src_len - 1 - i];
}
} else {
// Little endian destination, so we lead the value bytes
if (m_byte_order == eByteOrderBig) {
for (uint32_t i = 0; i < src_len; ++i)
dst[i] = src[src_len - 1 - i];
} else {
::memcpy(dst, src, src_len);
}
// And zero the rest...
if (num_zeroes > 0)
::memset(dst + src_len, 0, num_zeroes);
}
return src_len;
} else {
// We are only copying some of the value from src into dst..
if (dst_byte_order == eByteOrderBig) {
// Big endian dst
if (m_byte_order == eByteOrderBig) {
// Big endian dst, with big endian src
::memcpy(dst, src + (src_len - dst_len), dst_len);
} else {
// Big endian dst, with little endian src
for (uint32_t i = 0; i < dst_len; ++i)
dst[i] = src[dst_len - 1 - i];
}
} else {
// Little endian dst
if (m_byte_order == eByteOrderBig) {
// Little endian dst, with big endian src
for (uint32_t i = 0; i < dst_len; ++i)
dst[i] = src[src_len - 1 - i];
} else {
// Little endian dst, with big endian src
::memcpy(dst, src, dst_len);
}
}
return dst_len;
}
}
return 0;
}
// Extracts a variable length NULL terminated C string from the data at the
// offset pointed to by "offset_ptr". The "offset_ptr" will be updated with
// the offset of the byte that follows the NULL terminator byte.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
// non-zero and there aren't enough available bytes, nullptr will be returned
// and "offset_ptr" will not be updated.
const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
// Already at the end of the data.
if (!start)
return nullptr;
const char *end = reinterpret_cast<const char *>(m_end);
// Check all bytes for a null terminator that terminates a C string.
const char *terminator_or_end = std::find(start, end, '\0');
// We didn't find a null terminator, so return nullptr to indicate that there
// is no valid C string at that offset.
if (terminator_or_end == end)
return nullptr;
// Update offset_ptr for the caller to point to the data behind the
// terminator (which is 1 byte long).
*offset_ptr += (terminator_or_end - start + 1UL);
return start;
}
// Extracts a NULL terminated C string from the fixed length field of length
// "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
// updated with the offset of the byte that follows the fixed length field.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
// plus the length of the field is out of bounds, or if the field does not
// contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
// will not be updated.
const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
if (cstr != nullptr) {
if (memchr(cstr, '\0', len) == nullptr) {
return nullptr;
}
*offset_ptr += len;
return cstr;
}
return nullptr;
}
// Peeks at a string in the contained data. No verification is done to make
// sure the entire string lies within the bounds of this object's data, only
// "offset" is verified to be a valid offset.
//
// Returns a valid C string pointer if "offset" is a valid offset in this
// object's data, else nullptr is returned.
const char *DataExtractor::PeekCStr(offset_t offset) const {
return reinterpret_cast<const char *>(PeekData(offset, 1));
}
// Extracts an unsigned LEB128 number from this object's data starting at the
// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
// will be updated with the offset of the byte following the last extracted
// byte.
//
// Returned the extracted integer value.
uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
const uint8_t *src = PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
uint64_t result = *src++;
if (result >= 0x80) {
result &= 0x7f;
int shift = 7;
while (src < end) {
uint8_t byte = *src++;
result |= static_cast<uint64_t>(byte & 0x7f) << shift;
if ((byte & 0x80) == 0)
break;
shift += 7;
}
}
*offset_ptr = src - m_start;
return result;
}
return 0;
}
// Extracts an signed LEB128 number from this object's data starting at the
// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
// will be updated with the offset of the byte following the last extracted
// byte.
//
// Returned the extracted integer value.
int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
const uint8_t *src = PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
int64_t result = 0;
int shift = 0;
int size = sizeof(int64_t) * 8;
uint8_t byte = 0;
int bytecount = 0;
while (src < end) {
bytecount++;
byte = *src++;
result |= static_cast<int64_t>(byte & 0x7f) << shift;
shift += 7;
if ((byte & 0x80) == 0)
break;
}
// Sign bit of byte is 2nd high order bit (0x40)
if (shift < size && (byte & 0x40))
result |= -(1 << shift);
*offset_ptr += bytecount;
return result;
}
return 0;
}
// Skips a ULEB128 number (signed or unsigned) from this object's data starting
// at the offset pointed to by "offset_ptr". The offset pointed to by
// "offset_ptr" will be updated with the offset of the byte following the last
// extracted byte.
//
// Returns the number of bytes consumed during the extraction.
uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
uint32_t bytes_consumed = 0;
const uint8_t *src = PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
const uint8_t *src_pos = src;
while ((src_pos < end) && (*src_pos++ & 0x80))
++bytes_consumed;
*offset_ptr += src_pos - src;
}
return bytes_consumed;
}
// Dumps bytes from this object's data to the stream "s" starting
// "start_offset" bytes into this data, and ending with the byte before
// "end_offset". "base_addr" will be added to the offset into the dumped data
// when showing the offset into the data in the output information.
// "num_per_line" objects of type "type" will be dumped with the option to
// override the format for each object with "type_format". "type_format" is a
// printf style formatting string. If "type_format" is nullptr, then an
// appropriate format string will be used for the supplied "type". If the
// stream "s" is nullptr, then the output will be send to Log().
lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
offset_t length, uint64_t base_addr,
uint32_t num_per_line,
DataExtractor::Type type) const {
if (log == nullptr)
return start_offset;
offset_t offset;
offset_t end_offset;
uint32_t count;
StreamString sstr;
for (offset = start_offset, end_offset = offset + length, count = 0;
ValidOffset(offset) && offset < end_offset; ++count) {
if ((count % num_per_line) == 0) {
// Print out any previous string
if (sstr.GetSize() > 0) {
log->PutString(sstr.GetString());
sstr.Clear();
}
// Reset string offset and fill the current line string with address:
if (base_addr != LLDB_INVALID_ADDRESS)
sstr.Printf("0x%8.8" PRIx64 ":",
static_cast<uint64_t>(base_addr + (offset - start_offset)));
}
switch (type) {
case TypeUInt8:
sstr.Printf(" %2.2x", GetU8(&offset));
break;
case TypeChar: {
char ch = GetU8(&offset);
sstr.Printf(" %c", isprint(ch) ? ch : ' ');
} break;
case TypeUInt16:
sstr.Printf(" %4.4x", GetU16(&offset));
break;
case TypeUInt32:
sstr.Printf(" %8.8x", GetU32(&offset));
break;
case TypeUInt64:
sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
break;
case TypePointer:
sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
break;
case TypeULEB128:
sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
break;
case TypeSLEB128:
sstr.Printf(" %" PRId64, GetSLEB128(&offset));
break;
}
}
if (!sstr.Empty())
log->PutString(sstr.GetString());
return offset; // Return the offset at which we ended up
}
size_t DataExtractor::Copy(DataExtractor &dest_data) const {
if (m_data_sp) {
// we can pass along the SP to the data
dest_data.SetData(m_data_sp);
} else {
const uint8_t *base_ptr = m_start;
size_t data_size = GetByteSize();
dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
}
return GetByteSize();
}
bool DataExtractor::Append(DataExtractor &rhs) {
if (rhs.GetByteOrder() != GetByteOrder())
return false;
if (rhs.GetByteSize() == 0)
return true;
if (GetByteSize() == 0)
return (rhs.Copy(*this) > 0);
size_t bytes = GetByteSize() + rhs.GetByteSize();
DataBufferHeap *buffer_heap_ptr = nullptr;
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
if (!buffer_sp || buffer_heap_ptr == nullptr)
return false;
uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
SetData(buffer_sp);
return true;
}
bool DataExtractor::Append(void *buf, offset_t length) {
if (buf == nullptr)
return false;
if (length == 0)
return true;
size_t bytes = GetByteSize() + length;
DataBufferHeap *buffer_heap_ptr = nullptr;
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
if (!buffer_sp || buffer_heap_ptr == nullptr)
return false;
uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
if (GetByteSize() > 0)
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
memcpy(bytes_ptr + GetByteSize(), buf, length);
SetData(buffer_sp);
return true;
}
void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
uint64_t max_data) {
if (max_data == 0)
max_data = GetByteSize();
else
max_data = std::min(max_data, GetByteSize());
llvm::MD5 md5;
const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
md5.update(data);
llvm::MD5::MD5Result result;
md5.final(result);
dest.clear();
dest.append(result.Bytes.begin(), result.Bytes.end());
}