DataExtractor.cpp 37.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Utility/DataExtractor.h"

#include "lldb/lldb-defines.h"
#include "lldb/lldb-enumerations.h"
#include "lldb/lldb-forward.h"
#include "lldb/lldb-types.h"

#include "lldb/Utility/DataBuffer.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/UUID.h"

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"

#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <string>

#include <ctype.h>
#include <inttypes.h>
#include <string.h>

using namespace lldb;
using namespace lldb_private;

static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
  uint16_t value;
  memcpy(&value, ptr + offset, 2);
  return value;
}

static inline uint32_t ReadInt32(const unsigned char *ptr,
                                 offset_t offset = 0) {
  uint32_t value;
  memcpy(&value, ptr + offset, 4);
  return value;
}

static inline uint64_t ReadInt64(const unsigned char *ptr,
                                 offset_t offset = 0) {
  uint64_t value;
  memcpy(&value, ptr + offset, 8);
  return value;
}

static inline uint16_t ReadInt16(const void *ptr) {
  uint16_t value;
  memcpy(&value, ptr, 2);
  return value;
}

static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
                                     offset_t offset) {
  uint16_t value;
  memcpy(&value, ptr + offset, 2);
  return llvm::ByteSwap_16(value);
}

static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
                                     offset_t offset) {
  uint32_t value;
  memcpy(&value, ptr + offset, 4);
  return llvm::ByteSwap_32(value);
}

static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
                                     offset_t offset) {
  uint64_t value;
  memcpy(&value, ptr + offset, 8);
  return llvm::ByteSwap_64(value);
}

static inline uint16_t ReadSwapInt16(const void *ptr) {
  uint16_t value;
  memcpy(&value, ptr, 2);
  return llvm::ByteSwap_16(value);
}

static inline uint32_t ReadSwapInt32(const void *ptr) {
  uint32_t value;
  memcpy(&value, ptr, 4);
  return llvm::ByteSwap_32(value);
}

static inline uint64_t ReadSwapInt64(const void *ptr) {
  uint64_t value;
  memcpy(&value, ptr, 8);
  return llvm::ByteSwap_64(value);
}

static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
                                    ByteOrder byte_order) {
  uint64_t res = 0;
  if (byte_order == eByteOrderBig)
    for (size_t i = 0; i < byte_size; ++i)
      res = (res << 8) | data[i];
  else {
    assert(byte_order == eByteOrderLittle);
    for (size_t i = 0; i < byte_size; ++i)
      res = (res << 8) | data[byte_size - 1 - i];
  }
  return res;
}

DataExtractor::DataExtractor()
    : m_start(nullptr), m_end(nullptr),
      m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
      m_data_sp(), m_target_byte_size(1) {}

// This constructor allows us to use data that is owned by someone else. The
// data must stay around as long as this object is valid.
DataExtractor::DataExtractor(const void *data, offset_t length,
                             ByteOrder endian, uint32_t addr_size,
                             uint32_t target_byte_size /*=1*/)
    : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
      m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
      m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
      m_target_byte_size(target_byte_size) {
  assert(addr_size == 4 || addr_size == 8);
}

// Make a shared pointer reference to the shared data in "data_sp" and set the
// endian swapping setting to "swap", and the address size to "addr_size". The
// shared data reference will ensure the data lives as long as any
// DataExtractor objects exist that have a reference to this data.
DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
                             uint32_t addr_size,
                             uint32_t target_byte_size /*=1*/)
    : m_start(nullptr), m_end(nullptr), m_byte_order(endian),
      m_addr_size(addr_size), m_data_sp(),
      m_target_byte_size(target_byte_size) {
  assert(addr_size == 4 || addr_size == 8);
  SetData(data_sp);
}

// Initialize this object with a subset of the data bytes in "data". If "data"
// contains shared data, then a reference to this shared data will added and
// the shared data will stay around as long as any object contains a reference
// to that data. The endian swap and address size settings are copied from
// "data".
DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
                             offset_t length, uint32_t target_byte_size /*=1*/)
    : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
      m_addr_size(data.m_addr_size), m_data_sp(),
      m_target_byte_size(target_byte_size) {
  assert(m_addr_size == 4 || m_addr_size == 8);
  if (data.ValidOffset(offset)) {
    offset_t bytes_available = data.GetByteSize() - offset;
    if (length > bytes_available)
      length = bytes_available;
    SetData(data, offset, length);
  }
}

DataExtractor::DataExtractor(const DataExtractor &rhs)
    : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
      m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
      m_target_byte_size(rhs.m_target_byte_size) {
  assert(m_addr_size == 4 || m_addr_size == 8);
}

// Assignment operator
const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
  if (this != &rhs) {
    m_start = rhs.m_start;
    m_end = rhs.m_end;
    m_byte_order = rhs.m_byte_order;
    m_addr_size = rhs.m_addr_size;
    m_data_sp = rhs.m_data_sp;
  }
  return *this;
}

DataExtractor::~DataExtractor() = default;

// Clears the object contents back to a default invalid state, and release any
// references to shared data that this object may contain.
void DataExtractor::Clear() {
  m_start = nullptr;
  m_end = nullptr;
  m_byte_order = endian::InlHostByteOrder();
  m_addr_size = sizeof(void *);
  m_data_sp.reset();
}

// If this object contains shared data, this function returns the offset into
// that shared data. Else zero is returned.
size_t DataExtractor::GetSharedDataOffset() const {
  if (m_start != nullptr) {
    const DataBuffer *data = m_data_sp.get();
    if (data != nullptr) {
      const uint8_t *data_bytes = data->GetBytes();
      if (data_bytes != nullptr) {
        assert(m_start >= data_bytes);
        return m_start - data_bytes;
      }
    }
  }
  return 0;
}

// Set the data with which this object will extract from to data starting at
// BYTES and set the length of the data to LENGTH bytes long. The data is
// externally owned must be around at least as long as this object points to
// the data. No copy of the data is made, this object just refers to this data
// and can extract from it. If this object refers to any shared data upon
// entry, the reference to that data will be released. Is SWAP is set to true,
// any data extracted will be endian swapped.
lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
                                      ByteOrder endian) {
  m_byte_order = endian;
  m_data_sp.reset();
  if (bytes == nullptr || length == 0) {
    m_start = nullptr;
    m_end = nullptr;
  } else {
    m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
    m_end = m_start + length;
  }
  return GetByteSize();
}

// Assign the data for this object to be a subrange in "data" starting
// "data_offset" bytes into "data" and ending "data_length" bytes later. If
// "data_offset" is not a valid offset into "data", then this object will
// contain no bytes. If "data_offset" is within "data" yet "data_length" is too
// large, the length will be capped at the number of bytes remaining in "data".
// If "data" contains a shared pointer to other data, then a ref counted
// pointer to that data will be made in this object. If "data" doesn't contain
// a shared pointer to data, then the bytes referred to in "data" will need to
// exist at least as long as this object refers to those bytes. The address
// size and endian swap settings are copied from the current values in "data".
lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
                                      offset_t data_offset,
                                      offset_t data_length) {
  m_addr_size = data.m_addr_size;
  assert(m_addr_size == 4 || m_addr_size == 8);
  // If "data" contains shared pointer to data, then we can use that
  if (data.m_data_sp) {
    m_byte_order = data.m_byte_order;
    return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
                   data_length);
  }

  // We have a DataExtractor object that just has a pointer to bytes
  if (data.ValidOffset(data_offset)) {
    if (data_length > data.GetByteSize() - data_offset)
      data_length = data.GetByteSize() - data_offset;
    return SetData(data.GetDataStart() + data_offset, data_length,
                   data.GetByteOrder());
  }
  return 0;
}

// Assign the data for this object to be a subrange of the shared data in
// "data_sp" starting "data_offset" bytes into "data_sp" and ending
// "data_length" bytes later. If "data_offset" is not a valid offset into
// "data_sp", then this object will contain no bytes. If "data_offset" is
// within "data_sp" yet "data_length" is too large, the length will be capped
// at the number of bytes remaining in "data_sp". A ref counted pointer to the
// data in "data_sp" will be made in this object IF the number of bytes this
// object refers to in greater than zero (if at least one byte was available
// starting at "data_offset") to ensure the data stays around as long as it is
// needed. The address size and endian swap settings will remain unchanged from
// their current settings.
lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
                                      offset_t data_offset,
                                      offset_t data_length) {
  m_start = m_end = nullptr;

  if (data_length > 0) {
    m_data_sp = data_sp;
    if (data_sp) {
      const size_t data_size = data_sp->GetByteSize();
      if (data_offset < data_size) {
        m_start = data_sp->GetBytes() + data_offset;
        const size_t bytes_left = data_size - data_offset;
        // Cap the length of we asked for too many
        if (data_length <= bytes_left)
          m_end = m_start + data_length; // We got all the bytes we wanted
        else
          m_end = m_start + bytes_left; // Not all the bytes requested were
                                        // available in the shared data
      }
    }
  }

  size_t new_size = GetByteSize();

  // Don't hold a shared pointer to the data buffer if we don't share any valid
  // bytes in the shared buffer.
  if (new_size == 0)
    m_data_sp.reset();

  return new_size;
}

// Extract a single unsigned char from the binary data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the byte that was extracted, or zero on failure.
uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
  const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
  if (data)
    return *data;
  return 0;
}

// Extract "count" unsigned chars from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
                           uint32_t count) const {
  const uint8_t *data =
      static_cast<const uint8_t *>(GetData(offset_ptr, count));
  if (data) {
    // Copy the data into the buffer
    memcpy(dst, data, count);
    // Return a non-nullptr pointer to the converted data as an indicator of
    // success
    return dst;
  }
  return nullptr;
}

// Extract a single uint16_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint16_t that was extracted, or zero on failure.
uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
  uint16_t val = 0;
  const uint8_t *data =
      static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
  if (data) {
    if (m_byte_order != endian::InlHostByteOrder())
      val = ReadSwapInt16(data);
    else
      val = ReadInt16(data);
  }
  return val;
}

uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
  uint16_t val;
  if (m_byte_order == endian::InlHostByteOrder())
    val = ReadInt16(m_start, *offset_ptr);
  else
    val = ReadSwapInt16(m_start, *offset_ptr);
  *offset_ptr += sizeof(val);
  return val;
}

uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
  uint32_t val;
  if (m_byte_order == endian::InlHostByteOrder())
    val = ReadInt32(m_start, *offset_ptr);
  else
    val = ReadSwapInt32(m_start, *offset_ptr);
  *offset_ptr += sizeof(val);
  return val;
}

uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
  uint64_t val;
  if (m_byte_order == endian::InlHostByteOrder())
    val = ReadInt64(m_start, *offset_ptr);
  else
    val = ReadSwapInt64(m_start, *offset_ptr);
  *offset_ptr += sizeof(val);
  return val;
}

// Extract "count" uint16_t values from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
                            uint32_t count) const {
  const size_t src_size = sizeof(uint16_t) * count;
  const uint16_t *src =
      static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
  if (src) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
      uint16_t *dst_end = dst_pos + count;
      const uint16_t *src_pos = src;
      while (dst_pos < dst_end) {
        *dst_pos = ReadSwapInt16(src_pos);
        ++dst_pos;
        ++src_pos;
      }
    } else {
      memcpy(void_dst, src, src_size);
    }
    // Return a non-nullptr pointer to the converted data as an indicator of
    // success
    return void_dst;
  }
  return nullptr;
}

// Extract a single uint32_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint32_t that was extracted, or zero on failure.
uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
  uint32_t val = 0;
  const uint8_t *data =
      static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
  if (data) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      val = ReadSwapInt32(data);
    } else {
      memcpy(&val, data, 4);
    }
  }
  return val;
}

// Extract "count" uint32_t values from the binary data and update the offset
// pointed to by "offset_ptr". The extracted data is copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in the
// buffer due to being out of bounds, or insufficient data.
void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
                            uint32_t count) const {
  const size_t src_size = sizeof(uint32_t) * count;
  const uint32_t *src =
      static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
  if (src) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
      uint32_t *dst_end = dst_pos + count;
      const uint32_t *src_pos = src;
      while (dst_pos < dst_end) {
        *dst_pos = ReadSwapInt32(src_pos);
        ++dst_pos;
        ++src_pos;
      }
    } else {
      memcpy(void_dst, src, src_size);
    }
    // Return a non-nullptr pointer to the converted data as an indicator of
    // success
    return void_dst;
  }
  return nullptr;
}

// Extract a single uint64_t from the data and update the offset pointed to by
// "offset_ptr".
//
// RETURNS the uint64_t that was extracted, or zero on failure.
uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
  uint64_t val = 0;
  const uint8_t *data =
      static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
  if (data) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      val = ReadSwapInt64(data);
    } else {
      memcpy(&val, data, 8);
    }
  }
  return val;
}

// GetU64
//
// Get multiple consecutive 64 bit values. Return true if the entire read
// succeeds and increment the offset pointed to by offset_ptr, else return
// false and leave the offset pointed to by offset_ptr unchanged.
void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
                            uint32_t count) const {
  const size_t src_size = sizeof(uint64_t) * count;
  const uint64_t *src =
      static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
  if (src) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
      uint64_t *dst_end = dst_pos + count;
      const uint64_t *src_pos = src;
      while (dst_pos < dst_end) {
        *dst_pos = ReadSwapInt64(src_pos);
        ++dst_pos;
        ++src_pos;
      }
    } else {
      memcpy(void_dst, src, src_size);
    }
    // Return a non-nullptr pointer to the converted data as an indicator of
    // success
    return void_dst;
  }
  return nullptr;
}

uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
                                  size_t byte_size) const {
  lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
  return GetMaxU64(offset_ptr, byte_size);
}

uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
                                  size_t byte_size) const {
  lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
  switch (byte_size) {
  case 1:
    return GetU8(offset_ptr);
  case 2:
    return GetU16(offset_ptr);
  case 4:
    return GetU32(offset_ptr);
  case 8:
    return GetU64(offset_ptr);
  default: {
    // General case.
    const uint8_t *data =
        static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
    if (data == nullptr)
      return 0;
    return ReadMaxInt64(data, byte_size, m_byte_order);
  }
  }
  return 0;
}

uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
                                            size_t byte_size) const {
  switch (byte_size) {
  case 1:
    return GetU8_unchecked(offset_ptr);
  case 2:
    return GetU16_unchecked(offset_ptr);
  case 4:
    return GetU32_unchecked(offset_ptr);
  case 8:
    return GetU64_unchecked(offset_ptr);
  default: {
    uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
    *offset_ptr += byte_size;
    return res;
  }
  }
  return 0;
}

int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
  uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
  return llvm::SignExtend64(u64, 8 * byte_size);
}

uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
                                          uint32_t bitfield_bit_size,
                                          uint32_t bitfield_bit_offset) const {
  assert(bitfield_bit_size <= 64);
  uint64_t uval64 = GetMaxU64(offset_ptr, size);

  if (bitfield_bit_size == 0)
    return uval64;

  int32_t lsbcount = bitfield_bit_offset;
  if (m_byte_order == eByteOrderBig)
    lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;

  if (lsbcount > 0)
    uval64 >>= lsbcount;

  uint64_t bitfield_mask =
      (bitfield_bit_size == 64
           ? std::numeric_limits<uint64_t>::max()
           : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
  if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
    return uval64;

  uval64 &= bitfield_mask;

  return uval64;
}

int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
                                         uint32_t bitfield_bit_size,
                                         uint32_t bitfield_bit_offset) const {
  int64_t sval64 = GetMaxS64(offset_ptr, size);
  if (bitfield_bit_size > 0) {
    int32_t lsbcount = bitfield_bit_offset;
    if (m_byte_order == eByteOrderBig)
      lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
    if (lsbcount > 0)
      sval64 >>= lsbcount;
    uint64_t bitfield_mask =
        ((static_cast<uint64_t>(1)) << bitfield_bit_size) - 1;
    sval64 &= bitfield_mask;
    // sign extend if needed
    if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
      sval64 |= ~bitfield_mask;
  }
  return sval64;
}

float DataExtractor::GetFloat(offset_t *offset_ptr) const {
  typedef float float_type;
  float_type val = 0.0;
  const size_t src_size = sizeof(float_type);
  const float_type *src =
      static_cast<const float_type *>(GetData(offset_ptr, src_size));
  if (src) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
      uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
      for (size_t i = 0; i < sizeof(float_type); ++i)
        dst_data[sizeof(float_type) - 1 - i] = src_data[i];
    } else {
      val = *src;
    }
  }
  return val;
}

double DataExtractor::GetDouble(offset_t *offset_ptr) const {
  typedef double float_type;
  float_type val = 0.0;
  const size_t src_size = sizeof(float_type);
  const float_type *src =
      static_cast<const float_type *>(GetData(offset_ptr, src_size));
  if (src) {
    if (m_byte_order != endian::InlHostByteOrder()) {
      const uint8_t *src_data = reinterpret_cast<const uint8_t *>(src);
      uint8_t *dst_data = reinterpret_cast<uint8_t *>(&val);
      for (size_t i = 0; i < sizeof(float_type); ++i)
        dst_data[sizeof(float_type) - 1 - i] = src_data[i];
    } else {
      val = *src;
    }
  }
  return val;
}

long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
  long double val = 0.0;
#if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) ||          \
    defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
  *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
                                     endian::InlHostByteOrder());
#else
  *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
                                     sizeof(val), endian::InlHostByteOrder());
#endif
  return val;
}

// Extract a single address from the data and update the offset pointed to by
// "offset_ptr". The size of the extracted address comes from the
// "this->m_addr_size" member variable and should be set correctly prior to
// extracting any address values.
//
// RETURNS the address that was extracted, or zero on failure.
uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
  assert(m_addr_size == 4 || m_addr_size == 8);
  return GetMaxU64(offset_ptr, m_addr_size);
}

uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
  assert(m_addr_size == 4 || m_addr_size == 8);
  return GetMaxU64_unchecked(offset_ptr, m_addr_size);
}

// Extract a single pointer from the data and update the offset pointed to by
// "offset_ptr". The size of the extracted pointer comes from the
// "this->m_addr_size" member variable and should be set correctly prior to
// extracting any pointer values.
//
// RETURNS the pointer that was extracted, or zero on failure.
uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const {
  assert(m_addr_size == 4 || m_addr_size == 8);
  return GetMaxU64(offset_ptr, m_addr_size);
}

size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
                                   ByteOrder dst_byte_order, void *dst) const {
  const uint8_t *src = PeekData(offset, length);
  if (src) {
    if (dst_byte_order != GetByteOrder()) {
      // Validate that only a word- or register-sized dst is byte swapped
      assert(length == 1 || length == 2 || length == 4 || length == 8 ||
             length == 10 || length == 16 || length == 32);

      for (uint32_t i = 0; i < length; ++i)
        (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
    } else
      ::memcpy(dst, src, length);
    return length;
  }
  return 0;
}

// Extract data as it exists in target memory
lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
                                       void *dst) const {
  const uint8_t *src = PeekData(offset, length);
  if (src) {
    ::memcpy(dst, src, length);
    return length;
  }
  return 0;
}

// Extract data and swap if needed when doing the copy
lldb::offset_t
DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
                                   void *dst_void_ptr, offset_t dst_len,
                                   ByteOrder dst_byte_order) const {
  // Validate the source info
  if (!ValidOffsetForDataOfSize(src_offset, src_len))
    assert(ValidOffsetForDataOfSize(src_offset, src_len));
  assert(src_len > 0);
  assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);

  // Validate the destination info
  assert(dst_void_ptr != nullptr);
  assert(dst_len > 0);
  assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);

  // Validate that only a word- or register-sized dst is byte swapped
  assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
         dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
         dst_len == 32);

  // Must have valid byte orders set in this object and for destination
  if (!(dst_byte_order == eByteOrderBig ||
        dst_byte_order == eByteOrderLittle) ||
      !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
    return 0;

  uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
  const uint8_t *src = PeekData(src_offset, src_len);
  if (src) {
    if (dst_len >= src_len) {
      // We are copying the entire value from src into dst. Calculate how many,
      // if any, zeroes we need for the most significant bytes if "dst_len" is
      // greater than "src_len"...
      const size_t num_zeroes = dst_len - src_len;
      if (dst_byte_order == eByteOrderBig) {
        // Big endian, so we lead with zeroes...
        if (num_zeroes > 0)
          ::memset(dst, 0, num_zeroes);
        // Then either copy or swap the rest
        if (m_byte_order == eByteOrderBig) {
          ::memcpy(dst + num_zeroes, src, src_len);
        } else {
          for (uint32_t i = 0; i < src_len; ++i)
            dst[i + num_zeroes] = src[src_len - 1 - i];
        }
      } else {
        // Little endian destination, so we lead the value bytes
        if (m_byte_order == eByteOrderBig) {
          for (uint32_t i = 0; i < src_len; ++i)
            dst[i] = src[src_len - 1 - i];
        } else {
          ::memcpy(dst, src, src_len);
        }
        // And zero the rest...
        if (num_zeroes > 0)
          ::memset(dst + src_len, 0, num_zeroes);
      }
      return src_len;
    } else {
      // We are only copying some of the value from src into dst..

      if (dst_byte_order == eByteOrderBig) {
        // Big endian dst
        if (m_byte_order == eByteOrderBig) {
          // Big endian dst, with big endian src
          ::memcpy(dst, src + (src_len - dst_len), dst_len);
        } else {
          // Big endian dst, with little endian src
          for (uint32_t i = 0; i < dst_len; ++i)
            dst[i] = src[dst_len - 1 - i];
        }
      } else {
        // Little endian dst
        if (m_byte_order == eByteOrderBig) {
          // Little endian dst, with big endian src
          for (uint32_t i = 0; i < dst_len; ++i)
            dst[i] = src[src_len - 1 - i];
        } else {
          // Little endian dst, with big endian src
          ::memcpy(dst, src, dst_len);
        }
      }
      return dst_len;
    }
  }
  return 0;
}

// Extracts a variable length NULL terminated C string from the data at the
// offset pointed to by "offset_ptr".  The "offset_ptr" will be updated with
// the offset of the byte that follows the NULL terminator byte.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
// non-zero and there aren't enough available bytes, nullptr will be returned
// and "offset_ptr" will not be updated.
const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
  const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
  // Already at the end of the data.
  if (!start)
    return nullptr;

  const char *end = reinterpret_cast<const char *>(m_end);

  // Check all bytes for a null terminator that terminates a C string.
  const char *terminator_or_end = std::find(start, end, '\0');

  // We didn't find a null terminator, so return nullptr to indicate that there
  // is no valid C string at that offset.
  if (terminator_or_end == end)
    return nullptr;

  // Update offset_ptr for the caller to point to the data behind the
  // terminator (which is 1 byte long).
  *offset_ptr += (terminator_or_end - start + 1UL);
  return start;
}

// Extracts a NULL terminated C string from the fixed length field of length
// "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
// updated with the offset of the byte that follows the fixed length field.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
// plus the length of the field is out of bounds, or if the field does not
// contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
// will not be updated.
const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
  const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
  if (cstr != nullptr) {
    if (memchr(cstr, '\0', len) == nullptr) {
      return nullptr;
    }
    *offset_ptr += len;
    return cstr;
  }
  return nullptr;
}

// Peeks at a string in the contained data. No verification is done to make
// sure the entire string lies within the bounds of this object's data, only
// "offset" is verified to be a valid offset.
//
// Returns a valid C string pointer if "offset" is a valid offset in this
// object's data, else nullptr is returned.
const char *DataExtractor::PeekCStr(offset_t offset) const {
  return reinterpret_cast<const char *>(PeekData(offset, 1));
}

// Extracts an unsigned LEB128 number from this object's data starting at the
// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
// will be updated with the offset of the byte following the last extracted
// byte.
//
// Returned the extracted integer value.
uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
  const uint8_t *src = PeekData(*offset_ptr, 1);
  if (src == nullptr)
    return 0;

  const uint8_t *end = m_end;

  if (src < end) {
    uint64_t result = *src++;
    if (result >= 0x80) {
      result &= 0x7f;
      int shift = 7;
      while (src < end) {
        uint8_t byte = *src++;
        result |= static_cast<uint64_t>(byte & 0x7f) << shift;
        if ((byte & 0x80) == 0)
          break;
        shift += 7;
      }
    }
    *offset_ptr = src - m_start;
    return result;
  }

  return 0;
}

// Extracts an signed LEB128 number from this object's data starting at the
// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
// will be updated with the offset of the byte following the last extracted
// byte.
//
// Returned the extracted integer value.
int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
  const uint8_t *src = PeekData(*offset_ptr, 1);
  if (src == nullptr)
    return 0;

  const uint8_t *end = m_end;

  if (src < end) {
    int64_t result = 0;
    int shift = 0;
    int size = sizeof(int64_t) * 8;

    uint8_t byte = 0;
    int bytecount = 0;

    while (src < end) {
      bytecount++;
      byte = *src++;
      result |= static_cast<int64_t>(byte & 0x7f) << shift;
      shift += 7;
      if ((byte & 0x80) == 0)
        break;
    }

    // Sign bit of byte is 2nd high order bit (0x40)
    if (shift < size && (byte & 0x40))
      result |= -(1 << shift);

    *offset_ptr += bytecount;
    return result;
  }
  return 0;
}

// Skips a ULEB128 number (signed or unsigned) from this object's data starting
// at the offset pointed to by "offset_ptr". The offset pointed to by
// "offset_ptr" will be updated with the offset of the byte following the last
// extracted byte.
//
// Returns the number of bytes consumed during the extraction.
uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
  uint32_t bytes_consumed = 0;
  const uint8_t *src = PeekData(*offset_ptr, 1);
  if (src == nullptr)
    return 0;

  const uint8_t *end = m_end;

  if (src < end) {
    const uint8_t *src_pos = src;
    while ((src_pos < end) && (*src_pos++ & 0x80))
      ++bytes_consumed;
    *offset_ptr += src_pos - src;
  }
  return bytes_consumed;
}

// Dumps bytes from this object's data to the stream "s" starting
// "start_offset" bytes into this data, and ending with the byte before
// "end_offset". "base_addr" will be added to the offset into the dumped data
// when showing the offset into the data in the output information.
// "num_per_line" objects of type "type" will be dumped with the option to
// override the format for each object with "type_format". "type_format" is a
// printf style formatting string. If "type_format" is nullptr, then an
// appropriate format string will be used for the supplied "type". If the
// stream "s" is nullptr, then the output will be send to Log().
lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
                                       offset_t length, uint64_t base_addr,
                                       uint32_t num_per_line,
                                       DataExtractor::Type type) const {
  if (log == nullptr)
    return start_offset;

  offset_t offset;
  offset_t end_offset;
  uint32_t count;
  StreamString sstr;
  for (offset = start_offset, end_offset = offset + length, count = 0;
       ValidOffset(offset) && offset < end_offset; ++count) {
    if ((count % num_per_line) == 0) {
      // Print out any previous string
      if (sstr.GetSize() > 0) {
        log->PutString(sstr.GetString());
        sstr.Clear();
      }
      // Reset string offset and fill the current line string with address:
      if (base_addr != LLDB_INVALID_ADDRESS)
        sstr.Printf("0x%8.8" PRIx64 ":",
                    static_cast<uint64_t>(base_addr + (offset - start_offset)));
    }

    switch (type) {
    case TypeUInt8:
      sstr.Printf(" %2.2x", GetU8(&offset));
      break;
    case TypeChar: {
      char ch = GetU8(&offset);
      sstr.Printf(" %c", isprint(ch) ? ch : ' ');
    } break;
    case TypeUInt16:
      sstr.Printf(" %4.4x", GetU16(&offset));
      break;
    case TypeUInt32:
      sstr.Printf(" %8.8x", GetU32(&offset));
      break;
    case TypeUInt64:
      sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
      break;
    case TypePointer:
      sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
      break;
    case TypeULEB128:
      sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
      break;
    case TypeSLEB128:
      sstr.Printf(" %" PRId64, GetSLEB128(&offset));
      break;
    }
  }

  if (!sstr.Empty())
    log->PutString(sstr.GetString());

  return offset; // Return the offset at which we ended up
}

size_t DataExtractor::Copy(DataExtractor &dest_data) const {
  if (m_data_sp) {
    // we can pass along the SP to the data
    dest_data.SetData(m_data_sp);
  } else {
    const uint8_t *base_ptr = m_start;
    size_t data_size = GetByteSize();
    dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
  }
  return GetByteSize();
}

bool DataExtractor::Append(DataExtractor &rhs) {
  if (rhs.GetByteOrder() != GetByteOrder())
    return false;

  if (rhs.GetByteSize() == 0)
    return true;

  if (GetByteSize() == 0)
    return (rhs.Copy(*this) > 0);

  size_t bytes = GetByteSize() + rhs.GetByteSize();

  DataBufferHeap *buffer_heap_ptr = nullptr;
  DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));

  if (!buffer_sp || buffer_heap_ptr == nullptr)
    return false;

  uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();

  memcpy(bytes_ptr, GetDataStart(), GetByteSize());
  memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());

  SetData(buffer_sp);

  return true;
}

bool DataExtractor::Append(void *buf, offset_t length) {
  if (buf == nullptr)
    return false;

  if (length == 0)
    return true;

  size_t bytes = GetByteSize() + length;

  DataBufferHeap *buffer_heap_ptr = nullptr;
  DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));

  if (!buffer_sp || buffer_heap_ptr == nullptr)
    return false;

  uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();

  if (GetByteSize() > 0)
    memcpy(bytes_ptr, GetDataStart(), GetByteSize());

  memcpy(bytes_ptr + GetByteSize(), buf, length);

  SetData(buffer_sp);

  return true;
}

void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
                             uint64_t max_data) {
  if (max_data == 0)
    max_data = GetByteSize();
  else
    max_data = std::min(max_data, GetByteSize());

  llvm::MD5 md5;

  const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
  md5.update(data);

  llvm::MD5::MD5Result result;
  md5.final(result);

  dest.clear();
  dest.append(result.Bytes.begin(), result.Bytes.end());
}