DNBArchImpl.cpp
81.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
#include "MacOSX/arm/DNBArchImpl.h"
#include "ARM_DWARF_Registers.h"
#include "ARM_ehframe_Registers.h"
#include "DNB.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "MacOSX/MachProcess.h"
#include "MacOSX/MachThread.h"
#include <inttypes.h>
#include <sys/sysctl.h>
// BCR address match type
#define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21))
#define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21))
#define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21))
#define BCR_M_RESERVED ((uint32_t)(3u << 21))
// Link a BVR/BCR or WVR/WCR pair to another
#define E_ENABLE_LINKING ((uint32_t)(1u << 20))
// Byte Address Select
#define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5))
#define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6))
#define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7))
#define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8))
#define BAS_IMVA_0_1 ((uint32_t)(3u << 5))
#define BAS_IMVA_2_3 ((uint32_t)(3u << 7))
#define BAS_IMVA_ALL ((uint32_t)(0xfu << 5))
// Break only in privileged or user mode
#define S_RSVD ((uint32_t)(0u << 1))
#define S_PRIV ((uint32_t)(1u << 1))
#define S_USER ((uint32_t)(2u << 1))
#define S_PRIV_USER ((S_PRIV) | (S_USER))
#define BCR_ENABLE ((uint32_t)(1u))
#define WCR_ENABLE ((uint32_t)(1u))
// Watchpoint load/store
#define WCR_LOAD ((uint32_t)(1u << 3))
#define WCR_STORE ((uint32_t)(1u << 4))
// Definitions for the Debug Status and Control Register fields:
// [5:2] => Method of debug entry
//#define WATCHPOINT_OCCURRED ((uint32_t)(2u))
// I'm seeing this, instead.
#define WATCHPOINT_OCCURRED ((uint32_t)(10u))
// 0xE120BE70
static const uint8_t g_arm_breakpoint_opcode[] = {0x70, 0xBE, 0x20, 0xE1};
static const uint8_t g_thumb_breakpoint_opcode[] = {0x70, 0xBE};
// A watchpoint may need to be implemented using two watchpoint registers.
// e.g. watching an 8-byte region when the device can only watch 4-bytes.
//
// This stores the lo->hi mappings. It's safe to initialize to all 0's
// since hi > lo and therefore LoHi[i] cannot be 0.
static uint32_t LoHi[16] = {0};
// ARM constants used during decoding
#define REG_RD 0
#define LDM_REGLIST 1
#define PC_REG 15
#define PC_REGLIST_BIT 0x8000
// ARM conditions
#define COND_EQ 0x0
#define COND_NE 0x1
#define COND_CS 0x2
#define COND_HS 0x2
#define COND_CC 0x3
#define COND_LO 0x3
#define COND_MI 0x4
#define COND_PL 0x5
#define COND_VS 0x6
#define COND_VC 0x7
#define COND_HI 0x8
#define COND_LS 0x9
#define COND_GE 0xA
#define COND_LT 0xB
#define COND_GT 0xC
#define COND_LE 0xD
#define COND_AL 0xE
#define COND_UNCOND 0xF
#define MASK_CPSR_T (1u << 5)
#define MASK_CPSR_J (1u << 24)
#define MNEMONIC_STRING_SIZE 32
#define OPERAND_STRING_SIZE 128
// Returns true if the first 16 bit opcode of a thumb instruction indicates
// the instruction will be a 32 bit thumb opcode
static bool IsThumb32Opcode(uint16_t opcode) {
if (((opcode & 0xE000) == 0xE000) && (opcode & 0x1800))
return true;
return false;
}
void DNBArchMachARM::Initialize() {
DNBArchPluginInfo arch_plugin_info = {
CPU_TYPE_ARM, DNBArchMachARM::Create, DNBArchMachARM::GetRegisterSetInfo,
DNBArchMachARM::SoftwareBreakpointOpcode};
// Register this arch plug-in with the main protocol class
DNBArchProtocol::RegisterArchPlugin(arch_plugin_info);
}
DNBArchProtocol *DNBArchMachARM::Create(MachThread *thread) {
DNBArchMachARM *obj = new DNBArchMachARM(thread);
return obj;
}
const uint8_t *DNBArchMachARM::SoftwareBreakpointOpcode(nub_size_t byte_size) {
switch (byte_size) {
case 2:
return g_thumb_breakpoint_opcode;
case 4:
return g_arm_breakpoint_opcode;
}
return NULL;
}
uint32_t DNBArchMachARM::GetCPUType() { return CPU_TYPE_ARM; }
uint64_t DNBArchMachARM::GetPC(uint64_t failValue) {
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__pc;
return failValue;
}
kern_return_t DNBArchMachARM::SetPC(uint64_t value) {
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS) {
m_state.context.gpr.__pc = (uint32_t)value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t DNBArchMachARM::GetSP(uint64_t failValue) {
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.context.gpr.__sp;
return failValue;
}
kern_return_t DNBArchMachARM::GetGPRState(bool force) {
int set = e_regSetGPR;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE,
(thread_state_t)&m_state.context.gpr, &count);
uint32_t *r = &m_state.context.gpr.__r[0];
DNBLogThreadedIf(
LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = "
"%u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x "
"r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x "
"r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
kret, count, r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7], r[8], r[9],
r[10], r[11], r[12], r[13], r[14], r[15], r[16]);
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t DNBArchMachARM::GetVFPState(bool force) {
int set = e_regSetVFP;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
kern_return_t kret;
#if defined(__arm64__) || defined(__aarch64__)
// Read the registers from our thread
mach_msg_type_number_t count = ARM_NEON_STATE_COUNT;
kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE,
(thread_state_t)&m_state.context.vfp, &count);
if (DNBLogEnabledForAny(LOG_THREAD)) {
DNBLogThreaded(
"thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
"\n q0 = 0x%16.16llx%16.16llx"
"\n q1 = 0x%16.16llx%16.16llx"
"\n q2 = 0x%16.16llx%16.16llx"
"\n q3 = 0x%16.16llx%16.16llx"
"\n q4 = 0x%16.16llx%16.16llx"
"\n q5 = 0x%16.16llx%16.16llx"
"\n q6 = 0x%16.16llx%16.16llx"
"\n q7 = 0x%16.16llx%16.16llx"
"\n q8 = 0x%16.16llx%16.16llx"
"\n q9 = 0x%16.16llx%16.16llx"
"\n q10 = 0x%16.16llx%16.16llx"
"\n q11 = 0x%16.16llx%16.16llx"
"\n q12 = 0x%16.16llx%16.16llx"
"\n q13 = 0x%16.16llx%16.16llx"
"\n q14 = 0x%16.16llx%16.16llx"
"\n q15 = 0x%16.16llx%16.16llx"
"\n fpsr = 0x%8.8x"
"\n fpcr = 0x%8.8x\n\n",
m_thread->MachPortNumber(), ARM_NEON_STATE, ARM_NEON_STATE_COUNT, kret,
count, ((uint64_t *)&m_state.context.vfp.__v[0])[0],
((uint64_t *)&m_state.context.vfp.__v[0])[1],
((uint64_t *)&m_state.context.vfp.__v[1])[0],
((uint64_t *)&m_state.context.vfp.__v[1])[1],
((uint64_t *)&m_state.context.vfp.__v[2])[0],
((uint64_t *)&m_state.context.vfp.__v[2])[1],
((uint64_t *)&m_state.context.vfp.__v[3])[0],
((uint64_t *)&m_state.context.vfp.__v[3])[1],
((uint64_t *)&m_state.context.vfp.__v[4])[0],
((uint64_t *)&m_state.context.vfp.__v[4])[1],
((uint64_t *)&m_state.context.vfp.__v[5])[0],
((uint64_t *)&m_state.context.vfp.__v[5])[1],
((uint64_t *)&m_state.context.vfp.__v[6])[0],
((uint64_t *)&m_state.context.vfp.__v[6])[1],
((uint64_t *)&m_state.context.vfp.__v[7])[0],
((uint64_t *)&m_state.context.vfp.__v[7])[1],
((uint64_t *)&m_state.context.vfp.__v[8])[0],
((uint64_t *)&m_state.context.vfp.__v[8])[1],
((uint64_t *)&m_state.context.vfp.__v[9])[0],
((uint64_t *)&m_state.context.vfp.__v[9])[1],
((uint64_t *)&m_state.context.vfp.__v[10])[0],
((uint64_t *)&m_state.context.vfp.__v[10])[1],
((uint64_t *)&m_state.context.vfp.__v[11])[0],
((uint64_t *)&m_state.context.vfp.__v[11])[1],
((uint64_t *)&m_state.context.vfp.__v[12])[0],
((uint64_t *)&m_state.context.vfp.__v[12])[1],
((uint64_t *)&m_state.context.vfp.__v[13])[0],
((uint64_t *)&m_state.context.vfp.__v[13])[1],
((uint64_t *)&m_state.context.vfp.__v[14])[0],
((uint64_t *)&m_state.context.vfp.__v[14])[1],
((uint64_t *)&m_state.context.vfp.__v[15])[0],
((uint64_t *)&m_state.context.vfp.__v[15])[1],
m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
}
#else
// Read the registers from our thread
mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE,
(thread_state_t)&m_state.context.vfp, &count);
if (DNBLogEnabledForAny(LOG_THREAD)) {
uint32_t *r = &m_state.context.vfp.__r[0];
DNBLogThreaded(
"thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
kret, count);
DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x "
"s5=%8.8x s6=%8.8x s7=%8.8x",
r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x "
"s13=%8.8x s14=%8.8x s15=%8.8x",
r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x "
"s21=%8.8x s22=%8.8x s23=%8.8x",
r[16], r[17], r[18], r[19], r[20], r[21], r[22], r[23]);
DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x "
"s29=%8.8x s30=%8.8x s31=%8.8x",
r[24], r[25], r[26], r[27], r[28], r[29], r[30], r[31]);
DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x "
"s37=%8.8x s38=%8.8x s39=%8.8x",
r[32], r[33], r[34], r[35], r[36], r[37], r[38], r[39]);
DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x "
"s45=%8.8x s46=%8.8x s47=%8.8x",
r[40], r[41], r[42], r[43], r[44], r[45], r[46], r[47]);
DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x "
"s53=%8.8x s54=%8.8x s55=%8.8x",
r[48], r[49], r[50], r[51], r[52], r[53], r[54], r[55]);
DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x "
"s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",
r[56], r[57], r[58], r[59], r[60], r[61], r[62], r[63],
r[64]);
}
#endif
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t DNBArchMachARM::GetEXCState(bool force) {
int set = e_regSetEXC;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE,
(thread_state_t)&m_state.context.exc, &count);
m_state.SetError(set, Read, kret);
return kret;
}
static void DumpDBGState(const DNBArchMachARM::DBG &dbg) {
uint32_t i = 0;
for (i = 0; i < 16; i++) {
DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } "
"WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i],
dbg.__wcr[i]);
}
}
kern_return_t DNBArchMachARM::GetDBGState(bool force) {
int set = e_regSetDBG;
// Check if we have valid cached registers
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
return KERN_SUCCESS;
// Read the registers from our thread
#if defined(ARM_DEBUG_STATE32) && (defined(__arm64__) || defined(__aarch64__))
mach_msg_type_number_t count = ARM_DEBUG_STATE32_COUNT;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32,
(thread_state_t)&m_state.dbg, &count);
#else
mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
kern_return_t kret =
::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE,
(thread_state_t)&m_state.dbg, &count);
#endif
m_state.SetError(set, Read, kret);
return kret;
}
kern_return_t DNBArchMachARM::SetGPRState() {
int set = e_regSetGPR;
kern_return_t kret = ::thread_set_state(
m_thread->MachPortNumber(), ARM_THREAD_STATE,
(thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
kern_return_t DNBArchMachARM::SetVFPState() {
int set = e_regSetVFP;
kern_return_t kret;
mach_msg_type_number_t count;
#if defined(__arm64__) || defined(__aarch64__)
count = ARM_NEON_STATE_COUNT;
kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_NEON_STATE,
(thread_state_t)&m_state.context.vfp, count);
#else
count = ARM_VFP_STATE_COUNT;
kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_VFP_STATE,
(thread_state_t)&m_state.context.vfp, count);
#endif
#if defined(__arm64__) || defined(__aarch64__)
if (DNBLogEnabledForAny(LOG_THREAD)) {
DNBLogThreaded(
"thread_set_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
"\n q0 = 0x%16.16llx%16.16llx"
"\n q1 = 0x%16.16llx%16.16llx"
"\n q2 = 0x%16.16llx%16.16llx"
"\n q3 = 0x%16.16llx%16.16llx"
"\n q4 = 0x%16.16llx%16.16llx"
"\n q5 = 0x%16.16llx%16.16llx"
"\n q6 = 0x%16.16llx%16.16llx"
"\n q7 = 0x%16.16llx%16.16llx"
"\n q8 = 0x%16.16llx%16.16llx"
"\n q9 = 0x%16.16llx%16.16llx"
"\n q10 = 0x%16.16llx%16.16llx"
"\n q11 = 0x%16.16llx%16.16llx"
"\n q12 = 0x%16.16llx%16.16llx"
"\n q13 = 0x%16.16llx%16.16llx"
"\n q14 = 0x%16.16llx%16.16llx"
"\n q15 = 0x%16.16llx%16.16llx"
"\n fpsr = 0x%8.8x"
"\n fpcr = 0x%8.8x\n\n",
m_thread->MachPortNumber(), ARM_NEON_STATE, ARM_NEON_STATE_COUNT, kret,
count, ((uint64_t *)&m_state.context.vfp.__v[0])[0],
((uint64_t *)&m_state.context.vfp.__v[0])[1],
((uint64_t *)&m_state.context.vfp.__v[1])[0],
((uint64_t *)&m_state.context.vfp.__v[1])[1],
((uint64_t *)&m_state.context.vfp.__v[2])[0],
((uint64_t *)&m_state.context.vfp.__v[2])[1],
((uint64_t *)&m_state.context.vfp.__v[3])[0],
((uint64_t *)&m_state.context.vfp.__v[3])[1],
((uint64_t *)&m_state.context.vfp.__v[4])[0],
((uint64_t *)&m_state.context.vfp.__v[4])[1],
((uint64_t *)&m_state.context.vfp.__v[5])[0],
((uint64_t *)&m_state.context.vfp.__v[5])[1],
((uint64_t *)&m_state.context.vfp.__v[6])[0],
((uint64_t *)&m_state.context.vfp.__v[6])[1],
((uint64_t *)&m_state.context.vfp.__v[7])[0],
((uint64_t *)&m_state.context.vfp.__v[7])[1],
((uint64_t *)&m_state.context.vfp.__v[8])[0],
((uint64_t *)&m_state.context.vfp.__v[8])[1],
((uint64_t *)&m_state.context.vfp.__v[9])[0],
((uint64_t *)&m_state.context.vfp.__v[9])[1],
((uint64_t *)&m_state.context.vfp.__v[10])[0],
((uint64_t *)&m_state.context.vfp.__v[10])[1],
((uint64_t *)&m_state.context.vfp.__v[11])[0],
((uint64_t *)&m_state.context.vfp.__v[11])[1],
((uint64_t *)&m_state.context.vfp.__v[12])[0],
((uint64_t *)&m_state.context.vfp.__v[12])[1],
((uint64_t *)&m_state.context.vfp.__v[13])[0],
((uint64_t *)&m_state.context.vfp.__v[13])[1],
((uint64_t *)&m_state.context.vfp.__v[14])[0],
((uint64_t *)&m_state.context.vfp.__v[14])[1],
((uint64_t *)&m_state.context.vfp.__v[15])[0],
((uint64_t *)&m_state.context.vfp.__v[15])[1],
m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
}
#else
if (DNBLogEnabledForAny(LOG_THREAD)) {
uint32_t *r = &m_state.context.vfp.__r[0];
DNBLogThreaded(
"thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
kret, count);
DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x "
"s5=%8.8x s6=%8.8x s7=%8.8x",
r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x "
"s13=%8.8x s14=%8.8x s15=%8.8x",
r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x "
"s21=%8.8x s22=%8.8x s23=%8.8x",
r[16], r[17], r[18], r[19], r[20], r[21], r[22], r[23]);
DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x "
"s29=%8.8x s30=%8.8x s31=%8.8x",
r[24], r[25], r[26], r[27], r[28], r[29], r[30], r[31]);
DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x "
"s37=%8.8x s38=%8.8x s39=%8.8x",
r[32], r[33], r[34], r[35], r[36], r[37], r[38], r[39]);
DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x "
"s45=%8.8x s46=%8.8x s47=%8.8x",
r[40], r[41], r[42], r[43], r[44], r[45], r[46], r[47]);
DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x "
"s53=%8.8x s54=%8.8x s55=%8.8x",
r[48], r[49], r[50], r[51], r[52], r[53], r[54], r[55]);
DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x "
"s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",
r[56], r[57], r[58], r[59], r[60], r[61], r[62], r[63],
r[64]);
}
#endif
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
kern_return_t DNBArchMachARM::SetEXCState() {
int set = e_regSetEXC;
kern_return_t kret = ::thread_set_state(
m_thread->MachPortNumber(), ARM_EXCEPTION_STATE,
(thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
kern_return_t DNBArchMachARM::SetDBGState(bool also_set_on_task) {
int set = e_regSetDBG;
#if defined(ARM_DEBUG_STATE32) && (defined(__arm64__) || defined(__aarch64__))
kern_return_t kret =
::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32,
(thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
if (also_set_on_task) {
kern_return_t task_kret = ::task_set_state(
m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE32,
(thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
if (task_kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to "
"set debug control register state: "
"0x%8.8x.",
kret);
}
#else
kern_return_t kret =
::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE,
(thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
if (also_set_on_task) {
kern_return_t task_kret = ::task_set_state(
m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE,
(thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
if (task_kret != KERN_SUCCESS)
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to "
"set debug control register state: "
"0x%8.8x.",
kret);
}
#endif
m_state.SetError(set, Write,
kret); // Set the current write error for this register set
m_state.InvalidateRegisterSetState(set); // Invalidate the current register
// state in case registers are read
// back differently
return kret; // Return the error code
}
void DNBArchMachARM::ThreadWillResume() {
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping()) {
// This is the primary thread, let the arch do anything it needs
if (NumSupportedHardwareBreakpoints() > 0) {
if (EnableHardwareSingleStep(true) != KERN_SUCCESS) {
DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable "
"hardware single step");
}
}
}
// Disable the triggered watchpoint temporarily before we resume.
// Plus, we try to enable hardware single step to execute past the instruction
// which triggered our watchpoint.
if (m_watchpoint_did_occur) {
if (m_watchpoint_hw_index >= 0) {
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS &&
!IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
// The watchpoint might have been disabled by the user. We don't need
// to do anything at all
// to enable hardware single stepping.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
return;
}
DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
"DisableHardwareWatchpoint(%d) called",
m_watchpoint_hw_index);
// Enable hardware single step to move past the watchpoint-triggering
// instruction.
m_watchpoint_resume_single_step_enabled =
(EnableHardwareSingleStep(true) == KERN_SUCCESS);
// If we are not able to enable single step to move past the
// watchpoint-triggering instruction,
// at least we should reset the two watchpoint member variables so that
// the next time around
// this callback function is invoked, the enclosing logical branch is
// skipped.
if (!m_watchpoint_resume_single_step_enabled) {
// Reset the two watchpoint member variables.
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
DNBLogThreadedIf(
LOG_WATCHPOINTS,
"DNBArchMachARM::ThreadWillResume() failed to enable single step");
} else
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
"succeeded to enable single step");
}
}
}
bool DNBArchMachARM::ThreadDidStop() {
bool success = true;
m_state.InvalidateRegisterSetState(e_regSetALL);
if (m_watchpoint_resume_single_step_enabled) {
// Great! We now disable the hardware single step as well as re-enable the
// hardware watchpoint.
// See also ThreadWillResume().
if (EnableHardwareSingleStep(false) == KERN_SUCCESS) {
if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) {
ReenableHardwareWatchpoint(m_watchpoint_hw_index);
m_watchpoint_resume_single_step_enabled = false;
m_watchpoint_did_occur = false;
m_watchpoint_hw_index = -1;
} else {
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
"is true but (m_watchpoint_did_occur && "
"m_watchpoint_hw_index >= 0) does not hold!");
}
} else {
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
"is true but unable to disable single step!");
}
}
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS) {
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping()) {
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
} else {
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
bool DNBArchMachARM::NotifyException(MachException::Data &exc) {
switch (exc.exc_type) {
default:
break;
case EXC_BREAKPOINT:
if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) {
// The data break address is passed as exc_data[1].
nub_addr_t addr = exc.exc_data[1];
// Find the hardware index with the side effect of possibly massaging the
// addr to return the starting address as seen from the debugger side.
uint32_t hw_index = GetHardwareWatchpointHit(addr);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
"watchpoint %d was hit on address "
"0x%llx",
hw_index, (uint64_t)addr);
const int num_watchpoints = NumSupportedHardwareWatchpoints();
for (int i = 0; i < num_watchpoints; i++) {
if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i &&
GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) {
addr = GetWatchpointAddressByIndex(i);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
"It is a linked watchpoint; "
"rewritten to index %d addr 0x%llx",
LoHi[i], (uint64_t)addr);
}
}
if (hw_index != INVALID_NUB_HW_INDEX) {
m_watchpoint_did_occur = true;
m_watchpoint_hw_index = hw_index;
exc.exc_data[1] = addr;
// Piggyback the hw_index in the exc.data.
exc.exc_data.push_back(hw_index);
}
return true;
}
break;
}
return false;
}
bool DNBArchMachARM::StepNotComplete() {
if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS) {
kern_return_t kret = KERN_INVALID_ARGUMENT;
kret = GetGPRState(false);
if (kret == KERN_SUCCESS) {
if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr) {
DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8llx",
(uint64_t)m_hw_single_chained_step_addr);
return true;
}
}
}
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
return false;
}
// Set the single step bit in the processor status register.
kern_return_t DNBArchMachARM::EnableHardwareSingleStep(bool enable) {
DNBError err;
DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
err = GetGPRState(false);
if (err.Fail()) {
err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
return err.Status();
}
err = GetDBGState(false);
if (err.Fail()) {
err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
return err.Status();
}
// The use of __arm64__ here is not ideal. If debugserver is running on
// an armv8 device, regardless of whether it was built for arch arm or arch
// arm64,
// it needs to use the MDSCR_EL1 SS bit to single instruction step.
#if defined(__arm64__) || defined(__aarch64__)
if (enable) {
DNBLogThreadedIf(LOG_STEP,
"%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx",
__FUNCTION__, (uint64_t)m_state.context.gpr.__pc);
m_state.dbg.__mdscr_el1 |=
1; // Set bit 0 (single step, SS) in the MDSCR_EL1.
} else {
DNBLogThreadedIf(LOG_STEP,
"%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx",
__FUNCTION__, (uint64_t)m_state.context.gpr.__pc);
m_state.dbg.__mdscr_el1 &=
~(1ULL); // Clear bit 0 (single step, SS) in the MDSCR_EL1.
}
#else
const uint32_t i = 0;
if (enable) {
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
// Save our previous state
m_dbg_save = m_state.dbg;
// Set a breakpoint that will stop when the PC doesn't match the current
// one!
m_state.dbg.__bvr[i] =
m_state.context.gpr.__pc &
0xFFFFFFFCu; // Set the current PC as the breakpoint address
m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch
S_USER | // Stop only in user mode
BCR_ENABLE; // Enable this breakpoint
if (m_state.context.gpr.__cpsr & 0x20) {
// Thumb breakpoint
if (m_state.context.gpr.__pc & 2)
m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
else
m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
uint16_t opcode;
if (sizeof(opcode) ==
m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc,
sizeof(opcode), &opcode)) {
if (IsThumb32Opcode(opcode)) {
// 32 bit thumb opcode...
if (m_state.context.gpr.__pc & 2) {
// We can't take care of a 32 bit thumb instruction single step
// with just IVA mismatching. We will need to chain an extra
// hardware single step in order to complete this single step...
m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
} else {
// Extend the number of bits to ignore for the mismatch
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
}
}
}
} else {
// ARM breakpoint
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
}
DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x BCR%u=0x%8.8x", __FUNCTION__,
i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
for (uint32_t j = i + 1; j < 16; ++j) {
// Disable all others
m_state.dbg.__bvr[j] = 0;
m_state.dbg.__bcr[j] = 0;
}
} else {
// Just restore the state we had before we did single stepping
m_state.dbg = m_dbg_save;
}
#endif
return SetDBGState(false);
}
// return 1 if bit "BIT" is set in "value"
static inline uint32_t bit(uint32_t value, uint32_t bit) {
return (value >> bit) & 1u;
}
// return the bitfield "value[msbit:lsbit]".
static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit) {
assert(msbit >= lsbit);
uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
value <<=
shift_left; // shift anything above the msbit off of the unsigned edge
value >>= (shift_left + lsbit); // shift it back again down to the lsbit
// (including undoing any shift from above)
return value; // return our result
}
bool DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr) {
uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
switch (condition) {
case COND_EQ: // (0x0)
if (cpsr_z == 1)
return true;
break;
case COND_NE: // (0x1)
if (cpsr_z == 0)
return true;
break;
case COND_CS: // (0x2)
if (cpsr_c == 1)
return true;
break;
case COND_CC: // (0x3)
if (cpsr_c == 0)
return true;
break;
case COND_MI: // (0x4)
if (cpsr_n == 1)
return true;
break;
case COND_PL: // (0x5)
if (cpsr_n == 0)
return true;
break;
case COND_VS: // (0x6)
if (cpsr_v == 1)
return true;
break;
case COND_VC: // (0x7)
if (cpsr_v == 0)
return true;
break;
case COND_HI: // (0x8)
if ((cpsr_c == 1) && (cpsr_z == 0))
return true;
break;
case COND_LS: // (0x9)
if ((cpsr_c == 0) || (cpsr_z == 1))
return true;
break;
case COND_GE: // (0xA)
if (cpsr_n == cpsr_v)
return true;
break;
case COND_LT: // (0xB)
if (cpsr_n != cpsr_v)
return true;
break;
case COND_GT: // (0xC)
if ((cpsr_z == 0) && (cpsr_n == cpsr_v))
return true;
break;
case COND_LE: // (0xD)
if ((cpsr_z == 1) || (cpsr_n != cpsr_v))
return true;
break;
default:
return true;
break;
}
return false;
}
uint32_t DNBArchMachARM::NumSupportedHardwareBreakpoints() {
// Set the init value to something that will let us know that we need to
// autodetect how many breakpoints are supported dynamically...
static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
if (g_num_supported_hw_breakpoints == UINT_MAX) {
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_breakpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof(n);
if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0) {
g_num_supported_hw_breakpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
} else {
#if !defined(__arm64__) && !defined(__aarch64__)
// Read the DBGDIDR to get the number of available hardware breakpoints
// However, in some of our current armv7 processors, hardware
// breakpoints/watchpoints were not properly connected. So detect those
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
// field to distinguish CPU architectures. This is a hack until we can
// get <rdar://problem/6372672> fixed, at which point we will switch to
// using a different sysctl string that will tell us how many BRPs
// are available to us directly without having to read DBGDIDR.
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
// Zero is reserved for the BRP count, so don't increment it if it is zero
if (numBRPs > 0)
numBRPs++;
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)",
register_DBGDIDR, numBRPs);
if (numBRPs > 0) {
uint32_t cpusubtype;
len = sizeof(cpusubtype);
// TODO: remove this hack and change to using hw.optional.xx when
// implmented
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) {
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for "
"armv7 (rdar://problem/6372672)");
else
g_num_supported_hw_breakpoints = numBRPs;
}
}
#endif
}
}
return g_num_supported_hw_breakpoints;
}
uint32_t DNBArchMachARM::NumSupportedHardwareWatchpoints() {
// Set the init value to something that will let us know that we need to
// autodetect how many watchpoints are supported dynamically...
static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
if (g_num_supported_hw_watchpoints == UINT_MAX) {
// Set this to zero in case we can't tell if there are any HW breakpoints
g_num_supported_hw_watchpoints = 0;
size_t len;
uint32_t n = 0;
len = sizeof(n);
if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0) {
g_num_supported_hw_watchpoints = n;
DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
} else {
#if !defined(__arm64__) && !defined(__aarch64__)
// Read the DBGDIDR to get the number of available hardware breakpoints
// However, in some of our current armv7 processors, hardware
// breakpoints/watchpoints were not properly connected. So detect those
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
// field to distinguish CPU architectures. This is a hack until we can
// get <rdar://problem/6372672> fixed, at which point we will switch to
// using a different sysctl string that will tell us how many WRPs
// are available to us directly without having to read DBGDIDR.
uint32_t register_DBGDIDR;
asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)",
register_DBGDIDR, numWRPs);
if (numWRPs > 0) {
uint32_t cpusubtype;
size_t len;
len = sizeof(cpusubtype);
// TODO: remove this hack and change to using hw.optional.xx when
// implmented
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) {
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for "
"armv7 (rdar://problem/6372672)");
else
g_num_supported_hw_watchpoints = numWRPs;
}
}
#endif
}
}
return g_num_supported_hw_watchpoints;
}
uint32_t DNBArchMachARM::EnableHardwareBreakpoint(nub_addr_t addr,
nub_size_t size) {
// Make sure our address isn't bogus
if (addr & 1)
return INVALID_NUB_HW_INDEX;
kern_return_t kret = GetDBGState(false);
if (kret == KERN_SUCCESS) {
const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
uint32_t i;
for (i = 0; i < num_hw_breakpoints; ++i) {
if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
break; // We found an available hw breakpoint slot (in i)
}
// See if we found an available hw breakpoint slot above
if (i < num_hw_breakpoints) {
// Make sure bits 1:0 are clear in our address
m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
if (size == 2 || addr & 2) {
uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
// We have a thumb breakpoint
// We have an ARM breakpoint
m_state.dbg.__bcr[i] =
BCR_M_IMVA_MATCH | // Stop on address mismatch
byte_addr_select | // Set the correct byte address select so we only
// trigger on the correct opcode
S_USER | // Which modes should this breakpoint stop in?
BCR_ENABLE; // Enable this hardware breakpoint
DNBLogThreadedIf(LOG_BREAKPOINTS,
"DNBArchMachARM::EnableHardwareBreakpoint( addr = "
"0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / "
"0x%8.8x (Thumb)",
(uint64_t)addr, (uint64_t)size, i, i,
m_state.dbg.__bvr[i], m_state.dbg.__bcr[i]);
} else if (size == 4) {
// We have an ARM breakpoint
m_state.dbg.__bcr[i] =
BCR_M_IMVA_MATCH | // Stop on address mismatch
BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA
S_USER | // Which modes should this breakpoint stop in?
BCR_ENABLE; // Enable this hardware breakpoint
DNBLogThreadedIf(LOG_BREAKPOINTS,
"DNBArchMachARM::EnableHardwareBreakpoint( addr = "
"0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / "
"0x%8.8x (ARM)",
(uint64_t)addr, (uint64_t)size, i, i,
m_state.dbg.__bvr[i], m_state.dbg.__bcr[i]);
}
kret = SetDBGState(false);
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::"
"EnableHardwareBreakpoint() "
"SetDBGState() => 0x%8.8x.",
kret);
if (kret == KERN_SUCCESS)
return i;
} else {
DNBLogThreadedIf(LOG_BREAKPOINTS,
"DNBArchMachARM::EnableHardwareBreakpoint(addr = "
"0x%8.8llx, size = %llu) => all hardware breakpoint "
"resources are being used.",
(uint64_t)addr, (uint64_t)size);
}
}
return INVALID_NUB_HW_INDEX;
}
bool DNBArchMachARM::DisableHardwareBreakpoint(uint32_t hw_index) {
kern_return_t kret = GetDBGState(false);
const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
if (kret == KERN_SUCCESS) {
if (hw_index < num_hw_points) {
m_state.dbg.__bcr[hw_index] = 0;
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint("
" %u ) - BVR%u = 0x%8.8x BCR%u = "
"0x%8.8x",
hw_index, hw_index, m_state.dbg.__bvr[hw_index],
hw_index, m_state.dbg.__bcr[hw_index]);
kret = SetDBGState(false);
if (kret == KERN_SUCCESS)
return true;
}
}
return false;
}
// ARM v7 watchpoints may be either word-size or double-word-size.
// It's implementation defined which they can handle. It looks like on an
// armv8 device, armv7 processes can watch dwords. But on a genuine armv7
// device I tried, only word watchpoints are supported.
#if defined(__arm64__) || defined(__aarch64__)
#define WATCHPOINTS_ARE_DWORD 1
#else
#undef WATCHPOINTS_ARE_DWORD
#endif
uint32_t DNBArchMachARM::EnableHardwareWatchpoint(nub_addr_t addr,
nub_size_t size, bool read,
bool write,
bool also_set_on_task) {
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint("
"addr = 0x%8.8llx, size = %zu, read = %u, "
"write = %u)",
(uint64_t)addr, size, read, write);
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
// Can't watch zero bytes
if (size == 0)
return INVALID_NUB_HW_INDEX;
// We must watch for either read or write
if (read == false && write == false)
return INVALID_NUB_HW_INDEX;
// Otherwise, can't watch more than 8 bytes per WVR/WCR pair
if (size > 8)
return INVALID_NUB_HW_INDEX;
// Treat arm watchpoints as having an 8-byte alignment requirement. You can put
// a watchpoint on a 4-byte
// offset address but you can only watch 4 bytes with that watchpoint.
// arm watchpoints on an 8-byte (double word) aligned addr can watch any bytes
// in that
// 8-byte long region of memory. They can watch the 1st byte, the 2nd byte, 3rd
// byte, etc, or any
// combination therein by setting the bits in the BAS [12:5] (Byte Address
// Select) field of
// the DBGWCRn_EL1 reg for the watchpoint.
// If the MASK [28:24] bits in the DBGWCRn_EL1 allow a single watchpoint to
// monitor a larger region
// of memory (16 bytes, 32 bytes, or 2GB) but the Byte Address Select bitfield
// then selects a larger
// range of bytes, instead of individual bytes. See the ARMv8 Debug
// Architecture manual for details.
// This implementation does not currently use the MASK bits; the largest single
// region watched by a single
// watchpoint right now is 8-bytes.
#if defined(WATCHPOINTS_ARE_DWORD)
nub_addr_t aligned_wp_address = addr & ~0x7;
uint32_t addr_dword_offset = addr & 0x7;
const int max_watchpoint_size = 8;
#else
nub_addr_t aligned_wp_address = addr & ~0x3;
uint32_t addr_dword_offset = addr & 0x3;
const int max_watchpoint_size = 4;
#endif
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint "
"aligned_wp_address is 0x%llx and "
"addr_dword_offset is 0x%x",
(uint64_t)aligned_wp_address, addr_dword_offset);
// Do we need to split up this logical watchpoint into two hardware watchpoint
// registers?
// e.g. a watchpoint of length 4 on address 6. We need do this with
// one watchpoint on address 0 with bytes 6 & 7 being monitored
// one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored
if (addr_dword_offset + size > max_watchpoint_size) {
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
"EnableHardwareWatchpoint(addr = "
"0x%8.8llx, size = %zu) needs two "
"hardware watchpoints slots to monitor",
(uint64_t)addr, size);
int low_watchpoint_size = max_watchpoint_size - addr_dword_offset;
int high_watchpoint_size = addr_dword_offset + size - max_watchpoint_size;
uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read,
write, also_set_on_task);
if (lo == INVALID_NUB_HW_INDEX)
return INVALID_NUB_HW_INDEX;
uint32_t hi = EnableHardwareWatchpoint(
aligned_wp_address + max_watchpoint_size, high_watchpoint_size, read,
write, also_set_on_task);
if (hi == INVALID_NUB_HW_INDEX) {
DisableHardwareWatchpoint(lo, also_set_on_task);
return INVALID_NUB_HW_INDEX;
}
// Tag this lo->hi mapping in our database.
LoHi[lo] = hi;
return lo;
}
// At this point
// 1 aligned_wp_address is the requested address rounded down to 8-byte
// alignment
// 2 addr_dword_offset is the offset into that double word (8-byte) region
// that we are watching
// 3 size is the number of bytes within that 8-byte region that we are
// watching
// Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the
// above.
// The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4,
// etc, up to 0b11111111 for 8.
// then we shift those bits left by the offset into this dword that we are
// interested in.
// e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of
// 0b11110000.
uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset;
// Read the debug state
kern_return_t kret = GetDBGState(true);
if (kret == KERN_SUCCESS) {
// Check to make sure we have the needed hardware support
uint32_t i = 0;
for (i = 0; i < num_hw_watchpoints; ++i) {
if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
break; // We found an available hw watchpoint slot (in i)
}
// See if we found an available hw watchpoint slot above
if (i < num_hw_watchpoints) {
// DumpDBGState(m_state.dbg);
// Clear any previous LoHi joined-watchpoint that may have been in use
LoHi[i] = 0;
// shift our Byte Address Select bits up to the correct bit range for the
// DBGWCRn_EL1
byte_address_select = byte_address_select << 5;
// Make sure bits 1:0 are clear in our address
m_state.dbg.__wvr[i] = aligned_wp_address; // DVA (Data Virtual Address)
m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow
// the DVA that we will watch
S_USER | // Stop only in user mode
(read ? WCR_LOAD : 0) | // Stop on read access?
(write ? WCR_STORE : 0) | // Stop on write access?
WCR_ENABLE; // Enable this watchpoint;
DNBLogThreadedIf(
LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding "
"watchpoint on address 0x%llx with control register "
"value 0x%x",
(uint64_t)m_state.dbg.__wvr[i], (uint32_t)m_state.dbg.__wcr[i]);
// The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
// automatically, don't need to do it here.
kret = SetDBGState(also_set_on_task);
// DumpDBGState(m_state.dbg);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
"EnableHardwareWatchpoint() "
"SetDBGState() => 0x%8.8x.",
kret);
if (kret == KERN_SUCCESS)
return i;
} else {
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
"EnableHardwareWatchpoint(): All "
"hardware resources (%u) are in use.",
num_hw_watchpoints);
}
}
return INVALID_NUB_HW_INDEX;
}
bool DNBArchMachARM::ReenableHardwareWatchpoint(uint32_t hw_index) {
// If this logical watchpoint # is actually implemented using
// two hardware watchpoint registers, re-enable both of them.
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
return ReenableHardwareWatchpoint_helper(hw_index) &&
ReenableHardwareWatchpoint_helper(LoHi[hw_index]);
} else {
return ReenableHardwareWatchpoint_helper(hw_index);
}
}
bool DNBArchMachARM::ReenableHardwareWatchpoint_helper(uint32_t hw_index) {
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( "
"%u ) - WVR%u = 0x%8.8llx WCR%u = "
"0x%8.8llx",
hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
// The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
// automatically, don't need to do it here.
kret = SetDBGState(false);
return (kret == KERN_SUCCESS);
}
bool DNBArchMachARM::DisableHardwareWatchpoint(uint32_t hw_index,
bool also_set_on_task) {
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) &&
DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task);
} else {
return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task);
}
}
bool DNBArchMachARM::DisableHardwareWatchpoint_helper(uint32_t hw_index,
bool also_set_on_task) {
kern_return_t kret = GetDBGState(false);
if (kret != KERN_SUCCESS)
return false;
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
if (hw_index >= num_hw_points)
return false;
m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];
m_state.dbg.__wvr[hw_index] = 0;
m_state.dbg.__wcr[hw_index] = 0;
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint("
" %u ) - WVR%u = 0x%8.8llx WCR%u = "
"0x%8.8llx",
hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
kret = SetDBGState(also_set_on_task);
return (kret == KERN_SUCCESS);
}
// Returns -1 if the trailing bit patterns are not one of:
// { 0b???1, 0b??10, 0b?100, 0b1000 }.
static inline int32_t LowestBitSet(uint32_t val) {
for (unsigned i = 0; i < 4; ++i) {
if (bit(val, i))
return i;
}
return -1;
}
// Iterate through the debug registers; return the index of the first watchpoint
// whose address matches.
// As a side effect, the starting address as understood by the debugger is
// returned which could be
// different from 'addr' passed as an in/out argument.
uint32_t DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr) {
// Read the debug state
kern_return_t kret = GetDBGState(true);
// DumpDBGState(m_state.dbg);
DNBLogThreadedIf(
LOG_WATCHPOINTS,
"DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.",
kret);
DNBLogThreadedIf(LOG_WATCHPOINTS,
"DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx",
(uint64_t)addr);
// This is the watchpoint value to match against, i.e., word address.
#if defined(WATCHPOINTS_ARE_DWORD)
nub_addr_t wp_val = addr & ~((nub_addr_t)7);
#else
nub_addr_t wp_val = addr & ~((nub_addr_t)3);
#endif
if (kret == KERN_SUCCESS) {
DBG &debug_state = m_state.dbg;
uint32_t i, num = NumSupportedHardwareWatchpoints();
for (i = 0; i < num; ++i) {
nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
"GetHardwareWatchpointHit() slot: %u "
"(addr = 0x%llx).",
i, (uint64_t)wp_addr);
if (wp_val == wp_addr) {
#if defined(WATCHPOINTS_ARE_DWORD)
uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5);
#else
uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
#endif
// Sanity check the byte_mask, first.
if (LowestBitSet(byte_mask) < 0)
continue;
// Compute the starting address (from the point of view of the
// debugger).
addr = wp_addr + LowestBitSet(byte_mask);
return i;
}
}
}
return INVALID_NUB_HW_INDEX;
}
nub_addr_t DNBArchMachARM::GetWatchpointAddressByIndex(uint32_t hw_index) {
kern_return_t kret = GetDBGState(true);
if (kret != KERN_SUCCESS)
return INVALID_NUB_ADDRESS;
const uint32_t num = NumSupportedHardwareWatchpoints();
if (hw_index >= num)
return INVALID_NUB_ADDRESS;
if (IsWatchpointEnabled(m_state.dbg, hw_index))
return GetWatchAddress(m_state.dbg, hw_index);
return INVALID_NUB_ADDRESS;
}
bool DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state,
uint32_t hw_index) {
// Watchpoint Control Registers, bitfield definitions
// ...
// Bits Value Description
// [0] 0 Watchpoint disabled
// 1 Watchpoint enabled.
return (debug_state.__wcr[hw_index] & 1u);
}
nub_addr_t DNBArchMachARM::GetWatchAddress(const DBG &debug_state,
uint32_t hw_index) {
// Watchpoint Value Registers, bitfield definitions
// Bits Description
// [31:2] Watchpoint value (word address, i.e., 4-byte aligned)
// [1:0] RAZ/SBZP
return bits(debug_state.__wvr[hw_index], 31, 0);
}
// Register information definitions for 32 bit ARMV7.
enum gpr_regnums {
gpr_r0 = 0,
gpr_r1,
gpr_r2,
gpr_r3,
gpr_r4,
gpr_r5,
gpr_r6,
gpr_r7,
gpr_r8,
gpr_r9,
gpr_r10,
gpr_r11,
gpr_r12,
gpr_sp,
gpr_lr,
gpr_pc,
gpr_cpsr
};
enum {
vfp_s0 = 0,
vfp_s1,
vfp_s2,
vfp_s3,
vfp_s4,
vfp_s5,
vfp_s6,
vfp_s7,
vfp_s8,
vfp_s9,
vfp_s10,
vfp_s11,
vfp_s12,
vfp_s13,
vfp_s14,
vfp_s15,
vfp_s16,
vfp_s17,
vfp_s18,
vfp_s19,
vfp_s20,
vfp_s21,
vfp_s22,
vfp_s23,
vfp_s24,
vfp_s25,
vfp_s26,
vfp_s27,
vfp_s28,
vfp_s29,
vfp_s30,
vfp_s31,
vfp_d0,
vfp_d1,
vfp_d2,
vfp_d3,
vfp_d4,
vfp_d5,
vfp_d6,
vfp_d7,
vfp_d8,
vfp_d9,
vfp_d10,
vfp_d11,
vfp_d12,
vfp_d13,
vfp_d14,
vfp_d15,
vfp_d16,
vfp_d17,
vfp_d18,
vfp_d19,
vfp_d20,
vfp_d21,
vfp_d22,
vfp_d23,
vfp_d24,
vfp_d25,
vfp_d26,
vfp_d27,
vfp_d28,
vfp_d29,
vfp_d30,
vfp_d31,
vfp_q0,
vfp_q1,
vfp_q2,
vfp_q3,
vfp_q4,
vfp_q5,
vfp_q6,
vfp_q7,
vfp_q8,
vfp_q9,
vfp_q10,
vfp_q11,
vfp_q12,
vfp_q13,
vfp_q14,
vfp_q15,
#if defined(__arm64__) || defined(__aarch64__)
vfp_fpsr,
vfp_fpcr,
#else
vfp_fpscr
#endif
};
enum {
exc_exception,
exc_fsr,
exc_far,
};
#define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM::GPR, __r[idx]))
#define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM::GPR, __##reg))
#define EXC_OFFSET(reg) \
(offsetof(DNBArchMachARM::EXC, __##reg) + \
offsetof(DNBArchMachARM::Context, exc))
// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
#define DEFINE_GPR_IDX(idx, reg, alt, gen) \
{ \
e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), \
ehframe_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL \
}
#define DEFINE_GPR_NAME(reg, alt, gen, inval) \
{ \
e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), \
ehframe_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval \
}
// In case we are debugging to a debug target that the ability to
// change into the protected modes with folded registers (ABT, IRQ,
// FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR
// gets modified.
const char *g_invalidate_cpsr[] = {"r8", "r9", "r10", "r11",
"r12", "sp", "lr", NULL};
// General purpose registers
const DNBRegisterInfo DNBArchMachARM::g_gpr_registers[] = {
DEFINE_GPR_IDX(0, r0, "arg1", GENERIC_REGNUM_ARG1),
DEFINE_GPR_IDX(1, r1, "arg2", GENERIC_REGNUM_ARG2),
DEFINE_GPR_IDX(2, r2, "arg3", GENERIC_REGNUM_ARG3),
DEFINE_GPR_IDX(3, r3, "arg4", GENERIC_REGNUM_ARG4),
DEFINE_GPR_IDX(4, r4, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(5, r5, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(6, r6, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(7, r7, "fp", GENERIC_REGNUM_FP),
DEFINE_GPR_IDX(8, r8, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(9, r9, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(10, r10, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(11, r11, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_IDX(12, r12, NULL, INVALID_NUB_REGNUM),
DEFINE_GPR_NAME(sp, "r13", GENERIC_REGNUM_SP, NULL),
DEFINE_GPR_NAME(lr, "r14", GENERIC_REGNUM_RA, NULL),
DEFINE_GPR_NAME(pc, "r15", GENERIC_REGNUM_PC, NULL),
DEFINE_GPR_NAME(cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr)};
const char *g_contained_q0[]{"q0", NULL};
const char *g_contained_q1[]{"q1", NULL};
const char *g_contained_q2[]{"q2", NULL};
const char *g_contained_q3[]{"q3", NULL};
const char *g_contained_q4[]{"q4", NULL};
const char *g_contained_q5[]{"q5", NULL};
const char *g_contained_q6[]{"q6", NULL};
const char *g_contained_q7[]{"q7", NULL};
const char *g_contained_q8[]{"q8", NULL};
const char *g_contained_q9[]{"q9", NULL};
const char *g_contained_q10[]{"q10", NULL};
const char *g_contained_q11[]{"q11", NULL};
const char *g_contained_q12[]{"q12", NULL};
const char *g_contained_q13[]{"q13", NULL};
const char *g_contained_q14[]{"q14", NULL};
const char *g_contained_q15[]{"q15", NULL};
const char *g_invalidate_q0[]{"q0", "d0", "d1", "s0", "s1", "s2", "s3", NULL};
const char *g_invalidate_q1[]{"q1", "d2", "d3", "s4", "s5", "s6", "s7", NULL};
const char *g_invalidate_q2[]{"q2", "d4", "d5", "s8", "s9", "s10", "s11", NULL};
const char *g_invalidate_q3[]{"q3", "d6", "d7", "s12",
"s13", "s14", "s15", NULL};
const char *g_invalidate_q4[]{"q4", "d8", "d9", "s16",
"s17", "s18", "s19", NULL};
const char *g_invalidate_q5[]{"q5", "d10", "d11", "s20",
"s21", "s22", "s23", NULL};
const char *g_invalidate_q6[]{"q6", "d12", "d13", "s24",
"s25", "s26", "s27", NULL};
const char *g_invalidate_q7[]{"q7", "d14", "d15", "s28",
"s29", "s30", "s31", NULL};
const char *g_invalidate_q8[]{"q8", "d16", "d17", NULL};
const char *g_invalidate_q9[]{"q9", "d18", "d19", NULL};
const char *g_invalidate_q10[]{"q10", "d20", "d21", NULL};
const char *g_invalidate_q11[]{"q11", "d22", "d23", NULL};
const char *g_invalidate_q12[]{"q12", "d24", "d25", NULL};
const char *g_invalidate_q13[]{"q13", "d26", "d27", NULL};
const char *g_invalidate_q14[]{"q14", "d28", "d29", NULL};
const char *g_invalidate_q15[]{"q15", "d30", "d31", NULL};
#define VFP_S_OFFSET_IDX(idx) \
(((idx) % 4) * 4) // offset into q reg: 0, 4, 8, 12
#define VFP_D_OFFSET_IDX(idx) (((idx) % 2) * 8) // offset into q reg: 0, 8
#define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX((idx)*4))
#define VFP_OFFSET_NAME(reg) \
(offsetof(DNBArchMachARM::FPU, __##reg) + \
offsetof(DNBArchMachARM::Context, vfp))
#define FLOAT_FORMAT Float
#define DEFINE_VFP_S_IDX(idx) \
e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, \
VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
#define DEFINE_VFP_D_IDX(idx) \
e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, \
VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
#define DEFINE_VFP_Q_IDX(idx) \
e_regSetVFP, vfp_q##idx, "q" #idx, NULL, Vector, VectorOfUInt8, 16, \
VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx, \
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
// Floating point registers
const DNBRegisterInfo DNBArchMachARM::g_vfp_registers[] = {
{DEFINE_VFP_S_IDX(0), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_S_IDX(1), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_S_IDX(2), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_S_IDX(3), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_S_IDX(4), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_S_IDX(5), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_S_IDX(6), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_S_IDX(7), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_S_IDX(8), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_S_IDX(9), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_S_IDX(10), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_S_IDX(11), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_S_IDX(12), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_S_IDX(13), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_S_IDX(14), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_S_IDX(15), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_S_IDX(16), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_S_IDX(17), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_S_IDX(18), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_S_IDX(19), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_S_IDX(20), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_S_IDX(21), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_S_IDX(22), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_S_IDX(23), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_S_IDX(24), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_S_IDX(25), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_S_IDX(26), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_S_IDX(27), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_S_IDX(28), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_S_IDX(29), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_S_IDX(30), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_S_IDX(31), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_D_IDX(0), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_D_IDX(1), g_contained_q0, g_invalidate_q0},
{DEFINE_VFP_D_IDX(2), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_D_IDX(3), g_contained_q1, g_invalidate_q1},
{DEFINE_VFP_D_IDX(4), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_D_IDX(5), g_contained_q2, g_invalidate_q2},
{DEFINE_VFP_D_IDX(6), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_D_IDX(7), g_contained_q3, g_invalidate_q3},
{DEFINE_VFP_D_IDX(8), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_D_IDX(9), g_contained_q4, g_invalidate_q4},
{DEFINE_VFP_D_IDX(10), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_D_IDX(11), g_contained_q5, g_invalidate_q5},
{DEFINE_VFP_D_IDX(12), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_D_IDX(13), g_contained_q6, g_invalidate_q6},
{DEFINE_VFP_D_IDX(14), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_D_IDX(15), g_contained_q7, g_invalidate_q7},
{DEFINE_VFP_D_IDX(16), g_contained_q8, g_invalidate_q8},
{DEFINE_VFP_D_IDX(17), g_contained_q8, g_invalidate_q8},
{DEFINE_VFP_D_IDX(18), g_contained_q9, g_invalidate_q9},
{DEFINE_VFP_D_IDX(19), g_contained_q9, g_invalidate_q9},
{DEFINE_VFP_D_IDX(20), g_contained_q10, g_invalidate_q10},
{DEFINE_VFP_D_IDX(21), g_contained_q10, g_invalidate_q10},
{DEFINE_VFP_D_IDX(22), g_contained_q11, g_invalidate_q11},
{DEFINE_VFP_D_IDX(23), g_contained_q11, g_invalidate_q11},
{DEFINE_VFP_D_IDX(24), g_contained_q12, g_invalidate_q12},
{DEFINE_VFP_D_IDX(25), g_contained_q12, g_invalidate_q12},
{DEFINE_VFP_D_IDX(26), g_contained_q13, g_invalidate_q13},
{DEFINE_VFP_D_IDX(27), g_contained_q13, g_invalidate_q13},
{DEFINE_VFP_D_IDX(28), g_contained_q14, g_invalidate_q14},
{DEFINE_VFP_D_IDX(29), g_contained_q14, g_invalidate_q14},
{DEFINE_VFP_D_IDX(30), g_contained_q15, g_invalidate_q15},
{DEFINE_VFP_D_IDX(31), g_contained_q15, g_invalidate_q15},
{DEFINE_VFP_Q_IDX(0), NULL, g_invalidate_q0},
{DEFINE_VFP_Q_IDX(1), NULL, g_invalidate_q1},
{DEFINE_VFP_Q_IDX(2), NULL, g_invalidate_q2},
{DEFINE_VFP_Q_IDX(3), NULL, g_invalidate_q3},
{DEFINE_VFP_Q_IDX(4), NULL, g_invalidate_q4},
{DEFINE_VFP_Q_IDX(5), NULL, g_invalidate_q5},
{DEFINE_VFP_Q_IDX(6), NULL, g_invalidate_q6},
{DEFINE_VFP_Q_IDX(7), NULL, g_invalidate_q7},
{DEFINE_VFP_Q_IDX(8), NULL, g_invalidate_q8},
{DEFINE_VFP_Q_IDX(9), NULL, g_invalidate_q9},
{DEFINE_VFP_Q_IDX(10), NULL, g_invalidate_q10},
{DEFINE_VFP_Q_IDX(11), NULL, g_invalidate_q11},
{DEFINE_VFP_Q_IDX(12), NULL, g_invalidate_q12},
{DEFINE_VFP_Q_IDX(13), NULL, g_invalidate_q13},
{DEFINE_VFP_Q_IDX(14), NULL, g_invalidate_q14},
{DEFINE_VFP_Q_IDX(15), NULL, g_invalidate_q15},
#if defined(__arm64__) || defined(__aarch64__)
{e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpsr),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL},
{e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpcr),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, NULL, NULL}
#else
{e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4,
VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}
#endif
};
// Exception registers
const DNBRegisterInfo DNBArchMachARM::g_exc_registers[] = {
{e_regSetVFP, exc_exception, "exception", NULL, Uint, Hex, 4,
EXC_OFFSET(exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM},
{e_regSetVFP, exc_fsr, "fsr", NULL, Uint, Hex, 4, EXC_OFFSET(fsr),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM},
{e_regSetVFP, exc_far, "far", NULL, Uint, Hex, 4, EXC_OFFSET(far),
INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
INVALID_NUB_REGNUM}};
// Number of registers in each register set
const size_t DNBArchMachARM::k_num_gpr_registers =
sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_vfp_registers =
sizeof(g_vfp_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_exc_registers =
sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_all_registers =
k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
const DNBRegisterSetInfo DNBArchMachARM::g_reg_sets[] = {
{"ARM Registers", NULL, k_num_all_registers},
{"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
{"Floating Point Registers", g_vfp_registers, k_num_vfp_registers},
{"Exception State Registers", g_exc_registers, k_num_exc_registers}};
// Total number of register sets for this architecture
const size_t DNBArchMachARM::k_num_register_sets =
sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets) {
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool DNBArchMachARM::GetRegisterValue(uint32_t set, uint32_t reg,
DNBRegisterValue *value) {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_r7; // is this the right reg?
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
value->info = *regInfo;
switch (set) {
case e_regSetGPR:
if (reg < k_num_gpr_registers) {
value->value.uint32 = m_state.context.gpr.__r[reg];
return true;
}
break;
case e_regSetVFP:
// "reg" is an index into the floating point register set at this point.
// We need to translate it up so entry 0 in the fp reg set is the same as
// vfp_s0
// in the enumerated values for case statement below.
if (reg >= vfp_s0 && reg <= vfp_s31) {
#if defined(__arm64__) || defined(__aarch64__)
uint32_t *s_reg =
((uint32_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_s0);
memcpy(&value->value.v_uint8, s_reg, 4);
#else
value->value.uint32 = m_state.context.vfp.__r[reg];
#endif
return true;
} else if (reg >= vfp_d0 && reg <= vfp_d31) {
#if defined(__arm64__) || defined(__aarch64__)
uint64_t *d_reg =
((uint64_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_d0);
memcpy(&value->value.v_uint8, d_reg, 8);
#else
uint32_t d_reg_idx = reg - vfp_d0;
uint32_t s_reg_idx = d_reg_idx * 2;
value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
#endif
return true;
} else if (reg >= vfp_q0 && reg <= vfp_q15) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy(&value->value.v_uint8,
(uint8_t *)&m_state.context.vfp.__v[reg - vfp_q0], 16);
#else
uint32_t s_reg_idx = (reg - vfp_q0) * 4;
memcpy(&value->value.v_uint8,
(uint8_t *)&m_state.context.vfp.__r[s_reg_idx], 16);
#endif
return true;
}
#if defined(__arm64__) || defined(__aarch64__)
else if (reg == vfp_fpsr) {
value->value.uint32 = m_state.context.vfp.__fpsr;
return true;
} else if (reg == vfp_fpcr) {
value->value.uint32 = m_state.context.vfp.__fpcr;
return true;
}
#else
else if (reg == vfp_fpscr) {
value->value.uint32 = m_state.context.vfp.__fpscr;
return true;
}
#endif
break;
case e_regSetEXC:
if (reg < k_num_exc_registers) {
value->value.uint32 = (&m_state.context.exc.__exception)[reg];
return true;
}
break;
}
}
return false;
}
bool DNBArchMachARM::SetRegisterValue(uint32_t set, uint32_t reg,
const DNBRegisterValue *value) {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = gpr_pc;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = gpr_sp;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
set = e_regSetGPR;
reg = gpr_r7;
break;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = gpr_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = gpr_cpsr;
break;
default:
return false;
}
}
if (GetRegisterState(set, false) != KERN_SUCCESS)
return false;
bool success = false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
switch (set) {
case e_regSetGPR:
if (reg < k_num_gpr_registers) {
m_state.context.gpr.__r[reg] = value->value.uint32;
success = true;
}
break;
case e_regSetVFP:
// "reg" is an index into the floating point register set at this point.
// We need to translate it up so entry 0 in the fp reg set is the same as
// vfp_s0
// in the enumerated values for case statement below.
if (reg >= vfp_s0 && reg <= vfp_s31) {
#if defined(__arm64__) || defined(__aarch64__)
uint32_t *s_reg =
((uint32_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_s0);
memcpy(s_reg, &value->value.v_uint8, 4);
#else
m_state.context.vfp.__r[reg] = value->value.uint32;
#endif
success = true;
} else if (reg >= vfp_d0 && reg <= vfp_d31) {
#if defined(__arm64__) || defined(__aarch64__)
uint64_t *d_reg =
((uint64_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_d0);
memcpy(d_reg, &value->value.v_uint8, 8);
#else
uint32_t d_reg_idx = reg - vfp_d0;
uint32_t s_reg_idx = d_reg_idx * 2;
m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
#endif
success = true;
} else if (reg >= vfp_q0 && reg <= vfp_q15) {
#if defined(__arm64__) || defined(__aarch64__)
memcpy((uint8_t *)&m_state.context.vfp.__v[reg - vfp_q0],
&value->value.v_uint8, 16);
#else
uint32_t s_reg_idx = (reg - vfp_q0) * 4;
memcpy((uint8_t *)&m_state.context.vfp.__r[s_reg_idx],
&value->value.v_uint8, 16);
#endif
success = true;
}
#if defined(__arm64__) || defined(__aarch64__)
else if (reg == vfp_fpsr) {
m_state.context.vfp.__fpsr = value->value.uint32;
success = true;
} else if (reg == vfp_fpcr) {
m_state.context.vfp.__fpcr = value->value.uint32;
success = true;
}
#else
else if (reg == vfp_fpscr) {
m_state.context.vfp.__fpscr = value->value.uint32;
success = true;
}
#endif
break;
case e_regSetEXC:
if (reg < k_num_exc_registers) {
(&m_state.context.exc.__exception)[reg] = value->value.uint32;
success = true;
}
break;
}
}
if (success)
return SetRegisterState(set) == KERN_SUCCESS;
return false;
}
kern_return_t DNBArchMachARM::GetRegisterState(int set, bool force) {
switch (set) {
case e_regSetALL:
return GetGPRState(force) | GetVFPState(force) | GetEXCState(force) |
GetDBGState(force);
case e_regSetGPR:
return GetGPRState(force);
case e_regSetVFP:
return GetVFPState(force);
case e_regSetEXC:
return GetEXCState(force);
case e_regSetDBG:
return GetDBGState(force);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t DNBArchMachARM::SetRegisterState(int set) {
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set) {
case e_regSetALL:
return SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false);
case e_regSetGPR:
return SetGPRState();
case e_regSetVFP:
return SetVFPState();
case e_regSetEXC:
return SetEXCState();
case e_regSetDBG:
return SetDBGState(false);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
bool DNBArchMachARM::RegisterSetStateIsValid(int set) const {
return m_state.RegsAreValid(set);
}
nub_size_t DNBArchMachARM::GetRegisterContext(void *buf, nub_size_t buf_len) {
nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
sizeof(m_state.context.exc);
if (buf && buf_len) {
if (size > buf_len)
size = buf_len;
bool force = false;
if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
return 0;
// Copy each struct individually to avoid any padding that might be between
// the structs in m_state.context
uint8_t *p = (uint8_t *)buf;
::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr));
p += sizeof(m_state.context.gpr);
::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp));
p += sizeof(m_state.context.vfp);
::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc));
p += sizeof(m_state.context.exc);
size_t bytes_written = p - (uint8_t *)buf;
UNUSED_IF_ASSERT_DISABLED(bytes_written);
assert(bytes_written == size);
}
DNBLogThreadedIf(
LOG_THREAD,
"DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf,
(uint64_t)buf_len, (uint64_t)size);
// Return the size of the register context even if NULL was passed in
return size;
}
nub_size_t DNBArchMachARM::SetRegisterContext(const void *buf,
nub_size_t buf_len) {
nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
sizeof(m_state.context.exc);
if (buf == NULL || buf_len == 0)
size = 0;
if (size) {
if (size > buf_len)
size = buf_len;
// Copy each struct individually to avoid any padding that might be between
// the structs in m_state.context
uint8_t *p = (uint8_t *)buf;
::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr));
p += sizeof(m_state.context.gpr);
::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp));
p += sizeof(m_state.context.vfp);
::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc));
p += sizeof(m_state.context.exc);
size_t bytes_written = p - (uint8_t *)buf;
UNUSED_IF_ASSERT_DISABLED(bytes_written);
assert(bytes_written == size);
if (SetGPRState() | SetVFPState() | SetEXCState())
return 0;
}
DNBLogThreadedIf(
LOG_THREAD,
"DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf,
(uint64_t)buf_len, (uint64_t)size);
return size;
}
uint32_t DNBArchMachARM::SaveRegisterState() {
kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
DNBLogThreadedIf(
LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
"(SetGPRState() for stop_count = %u)",
m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
// Always re-read the registers because above we call thread_abort_safely();
bool force = true;
if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: "
"GPR regs failed to read: %u ",
kret);
} else if ((kret = GetVFPState(force)) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: "
"%s regs failed to read: %u",
"VFP", kret);
} else {
const uint32_t save_id = GetNextRegisterStateSaveID();
m_saved_register_states[save_id] = m_state.context;
return save_id;
}
return UINT32_MAX;
}
bool DNBArchMachARM::RestoreRegisterState(uint32_t save_id) {
SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
if (pos != m_saved_register_states.end()) {
m_state.context.gpr = pos->second.gpr;
m_state.context.vfp = pos->second.vfp;
kern_return_t kret;
bool success = true;
if ((kret = SetGPRState()) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::RestoreRegisterState "
"(save_id = %u) error: GPR regs failed to "
"write: %u",
save_id, kret);
success = false;
} else if ((kret = SetVFPState()) != KERN_SUCCESS) {
DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::RestoreRegisterState "
"(save_id = %u) error: %s regs failed to "
"write: %u",
save_id, "VFP", kret);
success = false;
}
m_saved_register_states.erase(pos);
return success;
}
return false;
}
#endif // #if defined (__arm__)