DNBArchImpl.cpp 81.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//

#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)

#include "MacOSX/arm/DNBArchImpl.h"
#include "ARM_DWARF_Registers.h"
#include "ARM_ehframe_Registers.h"
#include "DNB.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "MacOSX/MachProcess.h"
#include "MacOSX/MachThread.h"

#include <inttypes.h>
#include <sys/sysctl.h>

// BCR address match type
#define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21))
#define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21))
#define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21))
#define BCR_M_RESERVED ((uint32_t)(3u << 21))

// Link a BVR/BCR or WVR/WCR pair to another
#define E_ENABLE_LINKING ((uint32_t)(1u << 20))

// Byte Address Select
#define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5))
#define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6))
#define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7))
#define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8))
#define BAS_IMVA_0_1 ((uint32_t)(3u << 5))
#define BAS_IMVA_2_3 ((uint32_t)(3u << 7))
#define BAS_IMVA_ALL ((uint32_t)(0xfu << 5))

// Break only in privileged or user mode
#define S_RSVD ((uint32_t)(0u << 1))
#define S_PRIV ((uint32_t)(1u << 1))
#define S_USER ((uint32_t)(2u << 1))
#define S_PRIV_USER ((S_PRIV) | (S_USER))

#define BCR_ENABLE ((uint32_t)(1u))
#define WCR_ENABLE ((uint32_t)(1u))

// Watchpoint load/store
#define WCR_LOAD ((uint32_t)(1u << 3))
#define WCR_STORE ((uint32_t)(1u << 4))

// Definitions for the Debug Status and Control Register fields:
// [5:2] => Method of debug entry
//#define WATCHPOINT_OCCURRED     ((uint32_t)(2u))
// I'm seeing this, instead.
#define WATCHPOINT_OCCURRED ((uint32_t)(10u))

// 0xE120BE70
static const uint8_t g_arm_breakpoint_opcode[] = {0x70, 0xBE, 0x20, 0xE1};
static const uint8_t g_thumb_breakpoint_opcode[] = {0x70, 0xBE};

// A watchpoint may need to be implemented using two watchpoint registers.
// e.g. watching an 8-byte region when the device can only watch 4-bytes.
//
// This stores the lo->hi mappings.  It's safe to initialize to all 0's
// since hi > lo and therefore LoHi[i] cannot be 0.
static uint32_t LoHi[16] = {0};

// ARM constants used during decoding
#define REG_RD 0
#define LDM_REGLIST 1
#define PC_REG 15
#define PC_REGLIST_BIT 0x8000

// ARM conditions
#define COND_EQ 0x0
#define COND_NE 0x1
#define COND_CS 0x2
#define COND_HS 0x2
#define COND_CC 0x3
#define COND_LO 0x3
#define COND_MI 0x4
#define COND_PL 0x5
#define COND_VS 0x6
#define COND_VC 0x7
#define COND_HI 0x8
#define COND_LS 0x9
#define COND_GE 0xA
#define COND_LT 0xB
#define COND_GT 0xC
#define COND_LE 0xD
#define COND_AL 0xE
#define COND_UNCOND 0xF

#define MASK_CPSR_T (1u << 5)
#define MASK_CPSR_J (1u << 24)

#define MNEMONIC_STRING_SIZE 32
#define OPERAND_STRING_SIZE 128

// Returns true if the first 16 bit opcode of a thumb instruction indicates
// the instruction will be a 32 bit thumb opcode
static bool IsThumb32Opcode(uint16_t opcode) {
  if (((opcode & 0xE000) == 0xE000) && (opcode & 0x1800))
    return true;
  return false;
}

void DNBArchMachARM::Initialize() {
  DNBArchPluginInfo arch_plugin_info = {
      CPU_TYPE_ARM, DNBArchMachARM::Create, DNBArchMachARM::GetRegisterSetInfo,
      DNBArchMachARM::SoftwareBreakpointOpcode};

  // Register this arch plug-in with the main protocol class
  DNBArchProtocol::RegisterArchPlugin(arch_plugin_info);
}

DNBArchProtocol *DNBArchMachARM::Create(MachThread *thread) {
  DNBArchMachARM *obj = new DNBArchMachARM(thread);
  return obj;
}

const uint8_t *DNBArchMachARM::SoftwareBreakpointOpcode(nub_size_t byte_size) {
  switch (byte_size) {
  case 2:
    return g_thumb_breakpoint_opcode;
  case 4:
    return g_arm_breakpoint_opcode;
  }
  return NULL;
}

uint32_t DNBArchMachARM::GetCPUType() { return CPU_TYPE_ARM; }

uint64_t DNBArchMachARM::GetPC(uint64_t failValue) {
  // Get program counter
  if (GetGPRState(false) == KERN_SUCCESS)
    return m_state.context.gpr.__pc;
  return failValue;
}

kern_return_t DNBArchMachARM::SetPC(uint64_t value) {
  // Get program counter
  kern_return_t err = GetGPRState(false);
  if (err == KERN_SUCCESS) {
    m_state.context.gpr.__pc = (uint32_t)value;
    err = SetGPRState();
  }
  return err == KERN_SUCCESS;
}

uint64_t DNBArchMachARM::GetSP(uint64_t failValue) {
  // Get stack pointer
  if (GetGPRState(false) == KERN_SUCCESS)
    return m_state.context.gpr.__sp;
  return failValue;
}

kern_return_t DNBArchMachARM::GetGPRState(bool force) {
  int set = e_regSetGPR;
  // Check if we have valid cached registers
  if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
    return KERN_SUCCESS;

  // Read the registers from our thread
  mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
  kern_return_t kret =
      ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE,
                         (thread_state_t)&m_state.context.gpr, &count);
  uint32_t *r = &m_state.context.gpr.__r[0];
  DNBLogThreadedIf(
      LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = "
                  "%u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x "
                  "r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x "
                  "r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
      m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
      kret, count, r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7], r[8], r[9],
      r[10], r[11], r[12], r[13], r[14], r[15], r[16]);
  m_state.SetError(set, Read, kret);
  return kret;
}

kern_return_t DNBArchMachARM::GetVFPState(bool force) {
  int set = e_regSetVFP;
  // Check if we have valid cached registers
  if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
    return KERN_SUCCESS;

  kern_return_t kret;

#if defined(__arm64__) || defined(__aarch64__)
  // Read the registers from our thread
  mach_msg_type_number_t count = ARM_NEON_STATE_COUNT;
  kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE,
                            (thread_state_t)&m_state.context.vfp, &count);
  if (DNBLogEnabledForAny(LOG_THREAD)) {
    DNBLogThreaded(
        "thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
        "\n   q0  = 0x%16.16llx%16.16llx"
        "\n   q1  = 0x%16.16llx%16.16llx"
        "\n   q2  = 0x%16.16llx%16.16llx"
        "\n   q3  = 0x%16.16llx%16.16llx"
        "\n   q4  = 0x%16.16llx%16.16llx"
        "\n   q5  = 0x%16.16llx%16.16llx"
        "\n   q6  = 0x%16.16llx%16.16llx"
        "\n   q7  = 0x%16.16llx%16.16llx"
        "\n   q8  = 0x%16.16llx%16.16llx"
        "\n   q9  = 0x%16.16llx%16.16llx"
        "\n   q10 = 0x%16.16llx%16.16llx"
        "\n   q11 = 0x%16.16llx%16.16llx"
        "\n   q12 = 0x%16.16llx%16.16llx"
        "\n   q13 = 0x%16.16llx%16.16llx"
        "\n   q14 = 0x%16.16llx%16.16llx"
        "\n   q15 = 0x%16.16llx%16.16llx"
        "\n  fpsr = 0x%8.8x"
        "\n  fpcr = 0x%8.8x\n\n",
        m_thread->MachPortNumber(), ARM_NEON_STATE, ARM_NEON_STATE_COUNT, kret,
        count, ((uint64_t *)&m_state.context.vfp.__v[0])[0],
        ((uint64_t *)&m_state.context.vfp.__v[0])[1],
        ((uint64_t *)&m_state.context.vfp.__v[1])[0],
        ((uint64_t *)&m_state.context.vfp.__v[1])[1],
        ((uint64_t *)&m_state.context.vfp.__v[2])[0],
        ((uint64_t *)&m_state.context.vfp.__v[2])[1],
        ((uint64_t *)&m_state.context.vfp.__v[3])[0],
        ((uint64_t *)&m_state.context.vfp.__v[3])[1],
        ((uint64_t *)&m_state.context.vfp.__v[4])[0],
        ((uint64_t *)&m_state.context.vfp.__v[4])[1],
        ((uint64_t *)&m_state.context.vfp.__v[5])[0],
        ((uint64_t *)&m_state.context.vfp.__v[5])[1],
        ((uint64_t *)&m_state.context.vfp.__v[6])[0],
        ((uint64_t *)&m_state.context.vfp.__v[6])[1],
        ((uint64_t *)&m_state.context.vfp.__v[7])[0],
        ((uint64_t *)&m_state.context.vfp.__v[7])[1],
        ((uint64_t *)&m_state.context.vfp.__v[8])[0],
        ((uint64_t *)&m_state.context.vfp.__v[8])[1],
        ((uint64_t *)&m_state.context.vfp.__v[9])[0],
        ((uint64_t *)&m_state.context.vfp.__v[9])[1],
        ((uint64_t *)&m_state.context.vfp.__v[10])[0],
        ((uint64_t *)&m_state.context.vfp.__v[10])[1],
        ((uint64_t *)&m_state.context.vfp.__v[11])[0],
        ((uint64_t *)&m_state.context.vfp.__v[11])[1],
        ((uint64_t *)&m_state.context.vfp.__v[12])[0],
        ((uint64_t *)&m_state.context.vfp.__v[12])[1],
        ((uint64_t *)&m_state.context.vfp.__v[13])[0],
        ((uint64_t *)&m_state.context.vfp.__v[13])[1],
        ((uint64_t *)&m_state.context.vfp.__v[14])[0],
        ((uint64_t *)&m_state.context.vfp.__v[14])[1],
        ((uint64_t *)&m_state.context.vfp.__v[15])[0],
        ((uint64_t *)&m_state.context.vfp.__v[15])[1],
        m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
  }
#else
  // Read the registers from our thread
  mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
  kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE,
                            (thread_state_t)&m_state.context.vfp, &count);

  if (DNBLogEnabledForAny(LOG_THREAD)) {
    uint32_t *r = &m_state.context.vfp.__r[0];
    DNBLogThreaded(
        "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
        m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
        kret, count);
    DNBLogThreaded("   s0=%8.8x  s1=%8.8x  s2=%8.8x  s3=%8.8x  s4=%8.8x  "
                   "s5=%8.8x  s6=%8.8x  s7=%8.8x",
                   r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
    DNBLogThreaded("   s8=%8.8x  s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x "
                   "s13=%8.8x s14=%8.8x s15=%8.8x",
                   r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
    DNBLogThreaded("  s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x "
                   "s21=%8.8x s22=%8.8x s23=%8.8x",
                   r[16], r[17], r[18], r[19], r[20], r[21], r[22], r[23]);
    DNBLogThreaded("  s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x "
                   "s29=%8.8x s30=%8.8x s31=%8.8x",
                   r[24], r[25], r[26], r[27], r[28], r[29], r[30], r[31]);
    DNBLogThreaded("  s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x "
                   "s37=%8.8x s38=%8.8x s39=%8.8x",
                   r[32], r[33], r[34], r[35], r[36], r[37], r[38], r[39]);
    DNBLogThreaded("  s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x "
                   "s45=%8.8x s46=%8.8x s47=%8.8x",
                   r[40], r[41], r[42], r[43], r[44], r[45], r[46], r[47]);
    DNBLogThreaded("  s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x "
                   "s53=%8.8x s54=%8.8x s55=%8.8x",
                   r[48], r[49], r[50], r[51], r[52], r[53], r[54], r[55]);
    DNBLogThreaded("  s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x "
                   "s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",
                   r[56], r[57], r[58], r[59], r[60], r[61], r[62], r[63],
                   r[64]);
  }

#endif
  m_state.SetError(set, Read, kret);
  return kret;
}

kern_return_t DNBArchMachARM::GetEXCState(bool force) {
  int set = e_regSetEXC;
  // Check if we have valid cached registers
  if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
    return KERN_SUCCESS;

  // Read the registers from our thread
  mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
  kern_return_t kret =
      ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE,
                         (thread_state_t)&m_state.context.exc, &count);
  m_state.SetError(set, Read, kret);
  return kret;
}

static void DumpDBGState(const DNBArchMachARM::DBG &dbg) {
  uint32_t i = 0;
  for (i = 0; i < 16; i++) {
    DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } "
                               "WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
                     i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i],
                     dbg.__wcr[i]);
  }
}

kern_return_t DNBArchMachARM::GetDBGState(bool force) {
  int set = e_regSetDBG;

  // Check if we have valid cached registers
  if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
    return KERN_SUCCESS;

// Read the registers from our thread
#if defined(ARM_DEBUG_STATE32) && (defined(__arm64__) || defined(__aarch64__))
  mach_msg_type_number_t count = ARM_DEBUG_STATE32_COUNT;
  kern_return_t kret =
      ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32,
                         (thread_state_t)&m_state.dbg, &count);
#else
  mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
  kern_return_t kret =
      ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE,
                         (thread_state_t)&m_state.dbg, &count);
#endif
  m_state.SetError(set, Read, kret);

  return kret;
}

kern_return_t DNBArchMachARM::SetGPRState() {
  int set = e_regSetGPR;
  kern_return_t kret = ::thread_set_state(
      m_thread->MachPortNumber(), ARM_THREAD_STATE,
      (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
  m_state.SetError(set, Write,
                   kret); // Set the current write error for this register set
  m_state.InvalidateRegisterSetState(set); // Invalidate the current register
                                           // state in case registers are read
                                           // back differently
  return kret;                             // Return the error code
}

kern_return_t DNBArchMachARM::SetVFPState() {
  int set = e_regSetVFP;
  kern_return_t kret;
  mach_msg_type_number_t count;

#if defined(__arm64__) || defined(__aarch64__)
  count = ARM_NEON_STATE_COUNT;
  kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_NEON_STATE,
                            (thread_state_t)&m_state.context.vfp, count);
#else
  count = ARM_VFP_STATE_COUNT;
  kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_VFP_STATE,
                            (thread_state_t)&m_state.context.vfp, count);
#endif

#if defined(__arm64__) || defined(__aarch64__)
  if (DNBLogEnabledForAny(LOG_THREAD)) {
    DNBLogThreaded(
        "thread_set_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
        "\n   q0  = 0x%16.16llx%16.16llx"
        "\n   q1  = 0x%16.16llx%16.16llx"
        "\n   q2  = 0x%16.16llx%16.16llx"
        "\n   q3  = 0x%16.16llx%16.16llx"
        "\n   q4  = 0x%16.16llx%16.16llx"
        "\n   q5  = 0x%16.16llx%16.16llx"
        "\n   q6  = 0x%16.16llx%16.16llx"
        "\n   q7  = 0x%16.16llx%16.16llx"
        "\n   q8  = 0x%16.16llx%16.16llx"
        "\n   q9  = 0x%16.16llx%16.16llx"
        "\n   q10 = 0x%16.16llx%16.16llx"
        "\n   q11 = 0x%16.16llx%16.16llx"
        "\n   q12 = 0x%16.16llx%16.16llx"
        "\n   q13 = 0x%16.16llx%16.16llx"
        "\n   q14 = 0x%16.16llx%16.16llx"
        "\n   q15 = 0x%16.16llx%16.16llx"
        "\n  fpsr = 0x%8.8x"
        "\n  fpcr = 0x%8.8x\n\n",
        m_thread->MachPortNumber(), ARM_NEON_STATE, ARM_NEON_STATE_COUNT, kret,
        count, ((uint64_t *)&m_state.context.vfp.__v[0])[0],
        ((uint64_t *)&m_state.context.vfp.__v[0])[1],
        ((uint64_t *)&m_state.context.vfp.__v[1])[0],
        ((uint64_t *)&m_state.context.vfp.__v[1])[1],
        ((uint64_t *)&m_state.context.vfp.__v[2])[0],
        ((uint64_t *)&m_state.context.vfp.__v[2])[1],
        ((uint64_t *)&m_state.context.vfp.__v[3])[0],
        ((uint64_t *)&m_state.context.vfp.__v[3])[1],
        ((uint64_t *)&m_state.context.vfp.__v[4])[0],
        ((uint64_t *)&m_state.context.vfp.__v[4])[1],
        ((uint64_t *)&m_state.context.vfp.__v[5])[0],
        ((uint64_t *)&m_state.context.vfp.__v[5])[1],
        ((uint64_t *)&m_state.context.vfp.__v[6])[0],
        ((uint64_t *)&m_state.context.vfp.__v[6])[1],
        ((uint64_t *)&m_state.context.vfp.__v[7])[0],
        ((uint64_t *)&m_state.context.vfp.__v[7])[1],
        ((uint64_t *)&m_state.context.vfp.__v[8])[0],
        ((uint64_t *)&m_state.context.vfp.__v[8])[1],
        ((uint64_t *)&m_state.context.vfp.__v[9])[0],
        ((uint64_t *)&m_state.context.vfp.__v[9])[1],
        ((uint64_t *)&m_state.context.vfp.__v[10])[0],
        ((uint64_t *)&m_state.context.vfp.__v[10])[1],
        ((uint64_t *)&m_state.context.vfp.__v[11])[0],
        ((uint64_t *)&m_state.context.vfp.__v[11])[1],
        ((uint64_t *)&m_state.context.vfp.__v[12])[0],
        ((uint64_t *)&m_state.context.vfp.__v[12])[1],
        ((uint64_t *)&m_state.context.vfp.__v[13])[0],
        ((uint64_t *)&m_state.context.vfp.__v[13])[1],
        ((uint64_t *)&m_state.context.vfp.__v[14])[0],
        ((uint64_t *)&m_state.context.vfp.__v[14])[1],
        ((uint64_t *)&m_state.context.vfp.__v[15])[0],
        ((uint64_t *)&m_state.context.vfp.__v[15])[1],
        m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
  }
#else
  if (DNBLogEnabledForAny(LOG_THREAD)) {
    uint32_t *r = &m_state.context.vfp.__r[0];
    DNBLogThreaded(
        "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
        m_thread->MachPortNumber(), ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT,
        kret, count);
    DNBLogThreaded("   s0=%8.8x  s1=%8.8x  s2=%8.8x  s3=%8.8x  s4=%8.8x  "
                   "s5=%8.8x  s6=%8.8x  s7=%8.8x",
                   r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
    DNBLogThreaded("   s8=%8.8x  s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x "
                   "s13=%8.8x s14=%8.8x s15=%8.8x",
                   r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
    DNBLogThreaded("  s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x "
                   "s21=%8.8x s22=%8.8x s23=%8.8x",
                   r[16], r[17], r[18], r[19], r[20], r[21], r[22], r[23]);
    DNBLogThreaded("  s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x "
                   "s29=%8.8x s30=%8.8x s31=%8.8x",
                   r[24], r[25], r[26], r[27], r[28], r[29], r[30], r[31]);
    DNBLogThreaded("  s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x "
                   "s37=%8.8x s38=%8.8x s39=%8.8x",
                   r[32], r[33], r[34], r[35], r[36], r[37], r[38], r[39]);
    DNBLogThreaded("  s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x "
                   "s45=%8.8x s46=%8.8x s47=%8.8x",
                   r[40], r[41], r[42], r[43], r[44], r[45], r[46], r[47]);
    DNBLogThreaded("  s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x "
                   "s53=%8.8x s54=%8.8x s55=%8.8x",
                   r[48], r[49], r[50], r[51], r[52], r[53], r[54], r[55]);
    DNBLogThreaded("  s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x "
                   "s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",
                   r[56], r[57], r[58], r[59], r[60], r[61], r[62], r[63],
                   r[64]);
  }
#endif

  m_state.SetError(set, Write,
                   kret); // Set the current write error for this register set
  m_state.InvalidateRegisterSetState(set); // Invalidate the current register
                                           // state in case registers are read
                                           // back differently
  return kret;                             // Return the error code
}

kern_return_t DNBArchMachARM::SetEXCState() {
  int set = e_regSetEXC;
  kern_return_t kret = ::thread_set_state(
      m_thread->MachPortNumber(), ARM_EXCEPTION_STATE,
      (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
  m_state.SetError(set, Write,
                   kret); // Set the current write error for this register set
  m_state.InvalidateRegisterSetState(set); // Invalidate the current register
                                           // state in case registers are read
                                           // back differently
  return kret;                             // Return the error code
}

kern_return_t DNBArchMachARM::SetDBGState(bool also_set_on_task) {
  int set = e_regSetDBG;
#if defined(ARM_DEBUG_STATE32) && (defined(__arm64__) || defined(__aarch64__))
  kern_return_t kret =
      ::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32,
                         (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
  if (also_set_on_task) {
    kern_return_t task_kret = ::task_set_state(
        m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE32,
        (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
    if (task_kret != KERN_SUCCESS)
      DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to "
                                        "set debug control register state: "
                                        "0x%8.8x.",
                       kret);
  }
#else
  kern_return_t kret =
      ::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE,
                         (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
  if (also_set_on_task) {
    kern_return_t task_kret = ::task_set_state(
        m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE,
        (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
    if (task_kret != KERN_SUCCESS)
      DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to "
                                        "set debug control register state: "
                                        "0x%8.8x.",
                       kret);
  }
#endif

  m_state.SetError(set, Write,
                   kret); // Set the current write error for this register set
  m_state.InvalidateRegisterSetState(set); // Invalidate the current register
                                           // state in case registers are read
                                           // back differently
  return kret;                             // Return the error code
}

void DNBArchMachARM::ThreadWillResume() {
  // Do we need to step this thread? If so, let the mach thread tell us so.
  if (m_thread->IsStepping()) {
    // This is the primary thread, let the arch do anything it needs
    if (NumSupportedHardwareBreakpoints() > 0) {
      if (EnableHardwareSingleStep(true) != KERN_SUCCESS) {
        DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable "
                       "hardware single step");
      }
    }
  }

  // Disable the triggered watchpoint temporarily before we resume.
  // Plus, we try to enable hardware single step to execute past the instruction
  // which triggered our watchpoint.
  if (m_watchpoint_did_occur) {
    if (m_watchpoint_hw_index >= 0) {
      kern_return_t kret = GetDBGState(false);
      if (kret == KERN_SUCCESS &&
          !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
        // The watchpoint might have been disabled by the user.  We don't need
        // to do anything at all
        // to enable hardware single stepping.
        m_watchpoint_did_occur = false;
        m_watchpoint_hw_index = -1;
        return;
      }

      DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
      DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
                                        "DisableHardwareWatchpoint(%d) called",
                       m_watchpoint_hw_index);

      // Enable hardware single step to move past the watchpoint-triggering
      // instruction.
      m_watchpoint_resume_single_step_enabled =
          (EnableHardwareSingleStep(true) == KERN_SUCCESS);

      // If we are not able to enable single step to move past the
      // watchpoint-triggering instruction,
      // at least we should reset the two watchpoint member variables so that
      // the next time around
      // this callback function is invoked, the enclosing logical branch is
      // skipped.
      if (!m_watchpoint_resume_single_step_enabled) {
        // Reset the two watchpoint member variables.
        m_watchpoint_did_occur = false;
        m_watchpoint_hw_index = -1;
        DNBLogThreadedIf(
            LOG_WATCHPOINTS,
            "DNBArchMachARM::ThreadWillResume() failed to enable single step");
      } else
        DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
                                          "succeeded to enable single step");
    }
  }
}

bool DNBArchMachARM::ThreadDidStop() {
  bool success = true;

  m_state.InvalidateRegisterSetState(e_regSetALL);

  if (m_watchpoint_resume_single_step_enabled) {
    // Great!  We now disable the hardware single step as well as re-enable the
    // hardware watchpoint.
    // See also ThreadWillResume().
    if (EnableHardwareSingleStep(false) == KERN_SUCCESS) {
      if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) {
        ReenableHardwareWatchpoint(m_watchpoint_hw_index);
        m_watchpoint_resume_single_step_enabled = false;
        m_watchpoint_did_occur = false;
        m_watchpoint_hw_index = -1;
      } else {
        DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
                    "is true but (m_watchpoint_did_occur && "
                    "m_watchpoint_hw_index >= 0) does not hold!");
      }
    } else {
      DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
                  "is true but unable to disable single step!");
    }
  }

  // Are we stepping a single instruction?
  if (GetGPRState(true) == KERN_SUCCESS) {
    // We are single stepping, was this the primary thread?
    if (m_thread->IsStepping()) {
      success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
    } else {
      // The MachThread will automatically restore the suspend count
      // in ThreadDidStop(), so we don't need to do anything here if
      // we weren't the primary thread the last time
    }
  }
  return success;
}

bool DNBArchMachARM::NotifyException(MachException::Data &exc) {
  switch (exc.exc_type) {
  default:
    break;
  case EXC_BREAKPOINT:
    if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) {
      // The data break address is passed as exc_data[1].
      nub_addr_t addr = exc.exc_data[1];
      // Find the hardware index with the side effect of possibly massaging the
      // addr to return the starting address as seen from the debugger side.
      uint32_t hw_index = GetHardwareWatchpointHit(addr);
      DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
                                        "watchpoint %d was hit on address "
                                        "0x%llx",
                       hw_index, (uint64_t)addr);
      const int num_watchpoints = NumSupportedHardwareWatchpoints();
      for (int i = 0; i < num_watchpoints; i++) {
        if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i &&
            GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) {
          addr = GetWatchpointAddressByIndex(i);
          DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
                                            "It is a linked watchpoint; "
                                            "rewritten to index %d addr 0x%llx",
                           LoHi[i], (uint64_t)addr);
        }
      }
      if (hw_index != INVALID_NUB_HW_INDEX) {
        m_watchpoint_did_occur = true;
        m_watchpoint_hw_index = hw_index;
        exc.exc_data[1] = addr;
        // Piggyback the hw_index in the exc.data.
        exc.exc_data.push_back(hw_index);
      }

      return true;
    }
    break;
  }
  return false;
}

bool DNBArchMachARM::StepNotComplete() {
  if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS) {
    kern_return_t kret = KERN_INVALID_ARGUMENT;
    kret = GetGPRState(false);
    if (kret == KERN_SUCCESS) {
      if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr) {
        DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8llx",
                         (uint64_t)m_hw_single_chained_step_addr);
        return true;
      }
    }
  }

  m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
  return false;
}

// Set the single step bit in the processor status register.
kern_return_t DNBArchMachARM::EnableHardwareSingleStep(bool enable) {
  DNBError err;
  DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);

  err = GetGPRState(false);

  if (err.Fail()) {
    err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
    return err.Status();
  }

  err = GetDBGState(false);

  if (err.Fail()) {
    err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
    return err.Status();
  }

// The use of __arm64__ here is not ideal.  If debugserver is running on
// an armv8 device, regardless of whether it was built for arch arm or arch
// arm64,
// it needs to use the MDSCR_EL1 SS bit to single instruction step.

#if defined(__arm64__) || defined(__aarch64__)
  if (enable) {
    DNBLogThreadedIf(LOG_STEP,
                     "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx",
                     __FUNCTION__, (uint64_t)m_state.context.gpr.__pc);
    m_state.dbg.__mdscr_el1 |=
        1; // Set bit 0 (single step, SS) in the MDSCR_EL1.
  } else {
    DNBLogThreadedIf(LOG_STEP,
                     "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx",
                     __FUNCTION__, (uint64_t)m_state.context.gpr.__pc);
    m_state.dbg.__mdscr_el1 &=
        ~(1ULL); // Clear bit 0 (single step, SS) in the MDSCR_EL1.
  }
#else
  const uint32_t i = 0;
  if (enable) {
    m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;

    // Save our previous state
    m_dbg_save = m_state.dbg;
    // Set a breakpoint that will stop when the PC doesn't match the current
    // one!
    m_state.dbg.__bvr[i] =
        m_state.context.gpr.__pc &
        0xFFFFFFFCu; // Set the current PC as the breakpoint address
    m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch
                           S_USER |              // Stop only in user mode
                           BCR_ENABLE;           // Enable this breakpoint
    if (m_state.context.gpr.__cpsr & 0x20) {
      // Thumb breakpoint
      if (m_state.context.gpr.__pc & 2)
        m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
      else
        m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;

      uint16_t opcode;
      if (sizeof(opcode) ==
          m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc,
                                                 sizeof(opcode), &opcode)) {
        if (IsThumb32Opcode(opcode)) {
          // 32 bit thumb opcode...
          if (m_state.context.gpr.__pc & 2) {
            // We can't take care of a 32 bit thumb instruction single step
            // with just IVA mismatching. We will need to chain an extra
            // hardware single step in order to complete this single step...
            m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
          } else {
            // Extend the number of bits to ignore for the mismatch
            m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
          }
        }
      }
    } else {
      // ARM breakpoint
      m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
    }

    DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x  BCR%u=0x%8.8x", __FUNCTION__,
                     i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);

    for (uint32_t j = i + 1; j < 16; ++j) {
      // Disable all others
      m_state.dbg.__bvr[j] = 0;
      m_state.dbg.__bcr[j] = 0;
    }
  } else {
    // Just restore the state we had before we did single stepping
    m_state.dbg = m_dbg_save;
  }
#endif

  return SetDBGState(false);
}

// return 1 if bit "BIT" is set in "value"
static inline uint32_t bit(uint32_t value, uint32_t bit) {
  return (value >> bit) & 1u;
}

// return the bitfield "value[msbit:lsbit]".
static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit) {
  assert(msbit >= lsbit);
  uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
  value <<=
      shift_left; // shift anything above the msbit off of the unsigned edge
  value >>= (shift_left + lsbit); // shift it back again down to the lsbit
                                  // (including undoing any shift from above)
  return value;                   // return our result
}

bool DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr) {
  uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
  uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
  uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
  uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag

  switch (condition) {
  case COND_EQ: // (0x0)
    if (cpsr_z == 1)
      return true;
    break;
  case COND_NE: // (0x1)
    if (cpsr_z == 0)
      return true;
    break;
  case COND_CS: // (0x2)
    if (cpsr_c == 1)
      return true;
    break;
  case COND_CC: // (0x3)
    if (cpsr_c == 0)
      return true;
    break;
  case COND_MI: // (0x4)
    if (cpsr_n == 1)
      return true;
    break;
  case COND_PL: // (0x5)
    if (cpsr_n == 0)
      return true;
    break;
  case COND_VS: // (0x6)
    if (cpsr_v == 1)
      return true;
    break;
  case COND_VC: // (0x7)
    if (cpsr_v == 0)
      return true;
    break;
  case COND_HI: // (0x8)
    if ((cpsr_c == 1) && (cpsr_z == 0))
      return true;
    break;
  case COND_LS: // (0x9)
    if ((cpsr_c == 0) || (cpsr_z == 1))
      return true;
    break;
  case COND_GE: // (0xA)
    if (cpsr_n == cpsr_v)
      return true;
    break;
  case COND_LT: // (0xB)
    if (cpsr_n != cpsr_v)
      return true;
    break;
  case COND_GT: // (0xC)
    if ((cpsr_z == 0) && (cpsr_n == cpsr_v))
      return true;
    break;
  case COND_LE: // (0xD)
    if ((cpsr_z == 1) || (cpsr_n != cpsr_v))
      return true;
    break;
  default:
    return true;
    break;
  }

  return false;
}

uint32_t DNBArchMachARM::NumSupportedHardwareBreakpoints() {
  // Set the init value to something that will let us know that we need to
  // autodetect how many breakpoints are supported dynamically...
  static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
  if (g_num_supported_hw_breakpoints == UINT_MAX) {
    // Set this to zero in case we can't tell if there are any HW breakpoints
    g_num_supported_hw_breakpoints = 0;

    size_t len;
    uint32_t n = 0;
    len = sizeof(n);
    if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0) {
      g_num_supported_hw_breakpoints = n;
      DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
    } else {
#if !defined(__arm64__) && !defined(__aarch64__)
      // Read the DBGDIDR to get the number of available hardware breakpoints
      // However, in some of our current armv7 processors, hardware
      // breakpoints/watchpoints were not properly connected. So detect those
      // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
      // field to distinguish CPU architectures. This is a hack until we can
      // get <rdar://problem/6372672> fixed, at which point we will switch to
      // using a different sysctl string that will tell us how many BRPs
      // are available to us directly without having to read DBGDIDR.
      uint32_t register_DBGDIDR;

      asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
      uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
      // Zero is reserved for the BRP count, so don't increment it if it is zero
      if (numBRPs > 0)
        numBRPs++;
      DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)",
                       register_DBGDIDR, numBRPs);

      if (numBRPs > 0) {
        uint32_t cpusubtype;
        len = sizeof(cpusubtype);
        // TODO: remove this hack and change to using hw.optional.xx when
        // implmented
        if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) {
          DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
          if (cpusubtype == CPU_SUBTYPE_ARM_V7)
            DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for "
                                         "armv7 (rdar://problem/6372672)");
          else
            g_num_supported_hw_breakpoints = numBRPs;
        }
      }
#endif
    }
  }
  return g_num_supported_hw_breakpoints;
}

uint32_t DNBArchMachARM::NumSupportedHardwareWatchpoints() {
  // Set the init value to something that will let us know that we need to
  // autodetect how many watchpoints are supported dynamically...
  static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
  if (g_num_supported_hw_watchpoints == UINT_MAX) {
    // Set this to zero in case we can't tell if there are any HW breakpoints
    g_num_supported_hw_watchpoints = 0;

    size_t len;
    uint32_t n = 0;
    len = sizeof(n);
    if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0) {
      g_num_supported_hw_watchpoints = n;
      DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
    } else {
#if !defined(__arm64__) && !defined(__aarch64__)
      // Read the DBGDIDR to get the number of available hardware breakpoints
      // However, in some of our current armv7 processors, hardware
      // breakpoints/watchpoints were not properly connected. So detect those
      // cases using a field in a sysctl. For now we are using "hw.cpusubtype"
      // field to distinguish CPU architectures. This is a hack until we can
      // get <rdar://problem/6372672> fixed, at which point we will switch to
      // using a different sysctl string that will tell us how many WRPs
      // are available to us directly without having to read DBGDIDR.

      uint32_t register_DBGDIDR;
      asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
      uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
      DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)",
                       register_DBGDIDR, numWRPs);

      if (numWRPs > 0) {
        uint32_t cpusubtype;
        size_t len;
        len = sizeof(cpusubtype);
        // TODO: remove this hack and change to using hw.optional.xx when
        // implmented
        if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) {
          DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);

          if (cpusubtype == CPU_SUBTYPE_ARM_V7)
            DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for "
                                         "armv7 (rdar://problem/6372672)");
          else
            g_num_supported_hw_watchpoints = numWRPs;
        }
      }
#endif
    }
  }
  return g_num_supported_hw_watchpoints;
}

uint32_t DNBArchMachARM::EnableHardwareBreakpoint(nub_addr_t addr,
                                                  nub_size_t size) {
  // Make sure our address isn't bogus
  if (addr & 1)
    return INVALID_NUB_HW_INDEX;

  kern_return_t kret = GetDBGState(false);

  if (kret == KERN_SUCCESS) {
    const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
    uint32_t i;
    for (i = 0; i < num_hw_breakpoints; ++i) {
      if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
        break; // We found an available hw breakpoint slot (in i)
    }

    // See if we found an available hw breakpoint slot above
    if (i < num_hw_breakpoints) {
      // Make sure bits 1:0 are clear in our address
      m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);

      if (size == 2 || addr & 2) {
        uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;

        // We have a thumb breakpoint
        // We have an ARM breakpoint
        m_state.dbg.__bcr[i] =
            BCR_M_IMVA_MATCH | // Stop on address mismatch
            byte_addr_select | // Set the correct byte address select so we only
                               // trigger on the correct opcode
            S_USER |           // Which modes should this breakpoint stop in?
            BCR_ENABLE;        // Enable this hardware breakpoint
        DNBLogThreadedIf(LOG_BREAKPOINTS,
                         "DNBArchMachARM::EnableHardwareBreakpoint( addr = "
                         "0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / "
                         "0x%8.8x (Thumb)",
                         (uint64_t)addr, (uint64_t)size, i, i,
                         m_state.dbg.__bvr[i], m_state.dbg.__bcr[i]);
      } else if (size == 4) {
        // We have an ARM breakpoint
        m_state.dbg.__bcr[i] =
            BCR_M_IMVA_MATCH | // Stop on address mismatch
            BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA
            S_USER |       // Which modes should this breakpoint stop in?
            BCR_ENABLE;    // Enable this hardware breakpoint
        DNBLogThreadedIf(LOG_BREAKPOINTS,
                         "DNBArchMachARM::EnableHardwareBreakpoint( addr = "
                         "0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / "
                         "0x%8.8x (ARM)",
                         (uint64_t)addr, (uint64_t)size, i, i,
                         m_state.dbg.__bvr[i], m_state.dbg.__bcr[i]);
      }

      kret = SetDBGState(false);
      DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::"
                                        "EnableHardwareBreakpoint() "
                                        "SetDBGState() => 0x%8.8x.",
                       kret);

      if (kret == KERN_SUCCESS)
        return i;
    } else {
      DNBLogThreadedIf(LOG_BREAKPOINTS,
                       "DNBArchMachARM::EnableHardwareBreakpoint(addr = "
                       "0x%8.8llx, size = %llu) => all hardware breakpoint "
                       "resources are being used.",
                       (uint64_t)addr, (uint64_t)size);
    }
  }

  return INVALID_NUB_HW_INDEX;
}

bool DNBArchMachARM::DisableHardwareBreakpoint(uint32_t hw_index) {
  kern_return_t kret = GetDBGState(false);

  const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
  if (kret == KERN_SUCCESS) {
    if (hw_index < num_hw_points) {
      m_state.dbg.__bcr[hw_index] = 0;
      DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint("
                                        " %u ) - BVR%u = 0x%8.8x  BCR%u = "
                                        "0x%8.8x",
                       hw_index, hw_index, m_state.dbg.__bvr[hw_index],
                       hw_index, m_state.dbg.__bcr[hw_index]);

      kret = SetDBGState(false);

      if (kret == KERN_SUCCESS)
        return true;
    }
  }
  return false;
}

// ARM v7 watchpoints may be either word-size or double-word-size.
// It's implementation defined which they can handle.  It looks like on an
// armv8 device, armv7 processes can watch dwords.  But on a genuine armv7
// device I tried, only word watchpoints are supported.

#if defined(__arm64__) || defined(__aarch64__)
#define WATCHPOINTS_ARE_DWORD 1
#else
#undef WATCHPOINTS_ARE_DWORD
#endif

uint32_t DNBArchMachARM::EnableHardwareWatchpoint(nub_addr_t addr,
                                                  nub_size_t size, bool read,
                                                  bool write,
                                                  bool also_set_on_task) {

  DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint("
                                    "addr = 0x%8.8llx, size = %zu, read = %u, "
                                    "write = %u)",
                   (uint64_t)addr, size, read, write);

  const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();

  // Can't watch zero bytes
  if (size == 0)
    return INVALID_NUB_HW_INDEX;

  // We must watch for either read or write
  if (read == false && write == false)
    return INVALID_NUB_HW_INDEX;

  // Otherwise, can't watch more than 8 bytes per WVR/WCR pair
  if (size > 8)
    return INVALID_NUB_HW_INDEX;

// Treat arm watchpoints as having an 8-byte alignment requirement.  You can put
// a watchpoint on a 4-byte
// offset address but you can only watch 4 bytes with that watchpoint.

// arm watchpoints on an 8-byte (double word) aligned addr can watch any bytes
// in that
// 8-byte long region of memory.  They can watch the 1st byte, the 2nd byte, 3rd
// byte, etc, or any
// combination therein by setting the bits in the BAS [12:5] (Byte Address
// Select) field of
// the DBGWCRn_EL1 reg for the watchpoint.

// If the MASK [28:24] bits in the DBGWCRn_EL1 allow a single watchpoint to
// monitor a larger region
// of memory (16 bytes, 32 bytes, or 2GB) but the Byte Address Select bitfield
// then selects a larger
// range of bytes, instead of individual bytes.  See the ARMv8 Debug
// Architecture manual for details.
// This implementation does not currently use the MASK bits; the largest single
// region watched by a single
// watchpoint right now is 8-bytes.

#if defined(WATCHPOINTS_ARE_DWORD)
  nub_addr_t aligned_wp_address = addr & ~0x7;
  uint32_t addr_dword_offset = addr & 0x7;
  const int max_watchpoint_size = 8;
#else
  nub_addr_t aligned_wp_address = addr & ~0x3;
  uint32_t addr_dword_offset = addr & 0x3;
  const int max_watchpoint_size = 4;
#endif

  DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint "
                                    "aligned_wp_address is 0x%llx and "
                                    "addr_dword_offset is 0x%x",
                   (uint64_t)aligned_wp_address, addr_dword_offset);

  // Do we need to split up this logical watchpoint into two hardware watchpoint
  // registers?
  // e.g. a watchpoint of length 4 on address 6.  We need do this with
  //   one watchpoint on address 0 with bytes 6 & 7 being monitored
  //   one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored

  if (addr_dword_offset + size > max_watchpoint_size) {
    DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
                                      "EnableHardwareWatchpoint(addr = "
                                      "0x%8.8llx, size = %zu) needs two "
                                      "hardware watchpoints slots to monitor",
                     (uint64_t)addr, size);
    int low_watchpoint_size = max_watchpoint_size - addr_dword_offset;
    int high_watchpoint_size = addr_dword_offset + size - max_watchpoint_size;

    uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read,
                                           write, also_set_on_task);
    if (lo == INVALID_NUB_HW_INDEX)
      return INVALID_NUB_HW_INDEX;
    uint32_t hi = EnableHardwareWatchpoint(
        aligned_wp_address + max_watchpoint_size, high_watchpoint_size, read,
        write, also_set_on_task);
    if (hi == INVALID_NUB_HW_INDEX) {
      DisableHardwareWatchpoint(lo, also_set_on_task);
      return INVALID_NUB_HW_INDEX;
    }
    // Tag this lo->hi mapping in our database.
    LoHi[lo] = hi;
    return lo;
  }

  // At this point
  //  1 aligned_wp_address is the requested address rounded down to 8-byte
  //  alignment
  //  2 addr_dword_offset is the offset into that double word (8-byte) region
  //  that we are watching
  //  3 size is the number of bytes within that 8-byte region that we are
  //  watching

  // Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the
  // above.
  // The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4,
  // etc, up to 0b11111111 for 8.
  // then we shift those bits left by the offset into this dword that we are
  // interested in.
  // e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of
  // 0b11110000.
  uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset;

  // Read the debug state
  kern_return_t kret = GetDBGState(true);

  if (kret == KERN_SUCCESS) {
    // Check to make sure we have the needed hardware support
    uint32_t i = 0;

    for (i = 0; i < num_hw_watchpoints; ++i) {
      if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
        break; // We found an available hw watchpoint slot (in i)
    }

    // See if we found an available hw watchpoint slot above
    if (i < num_hw_watchpoints) {
      // DumpDBGState(m_state.dbg);

      // Clear any previous LoHi joined-watchpoint that may have been in use
      LoHi[i] = 0;

      // shift our Byte Address Select bits up to the correct bit range for the
      // DBGWCRn_EL1
      byte_address_select = byte_address_select << 5;

      // Make sure bits 1:0 are clear in our address
      m_state.dbg.__wvr[i] = aligned_wp_address;   // DVA (Data Virtual Address)
      m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow
                                                   // the DVA that we will watch
                             S_USER |              // Stop only in user mode
                             (read ? WCR_LOAD : 0) |   // Stop on read access?
                             (write ? WCR_STORE : 0) | // Stop on write access?
                             WCR_ENABLE; // Enable this watchpoint;

      DNBLogThreadedIf(
          LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding "
                           "watchpoint on address 0x%llx with control register "
                           "value 0x%x",
          (uint64_t)m_state.dbg.__wvr[i], (uint32_t)m_state.dbg.__wcr[i]);

      // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
      // automatically, don't need to do it here.

      kret = SetDBGState(also_set_on_task);
      // DumpDBGState(m_state.dbg);

      DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
                                        "EnableHardwareWatchpoint() "
                                        "SetDBGState() => 0x%8.8x.",
                       kret);

      if (kret == KERN_SUCCESS)
        return i;
    } else {
      DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
                                        "EnableHardwareWatchpoint(): All "
                                        "hardware resources (%u) are in use.",
                       num_hw_watchpoints);
    }
  }
  return INVALID_NUB_HW_INDEX;
}

bool DNBArchMachARM::ReenableHardwareWatchpoint(uint32_t hw_index) {
  // If this logical watchpoint # is actually implemented using
  // two hardware watchpoint registers, re-enable both of them.

  if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
    return ReenableHardwareWatchpoint_helper(hw_index) &&
           ReenableHardwareWatchpoint_helper(LoHi[hw_index]);
  } else {
    return ReenableHardwareWatchpoint_helper(hw_index);
  }
}

bool DNBArchMachARM::ReenableHardwareWatchpoint_helper(uint32_t hw_index) {
  kern_return_t kret = GetDBGState(false);
  if (kret != KERN_SUCCESS)
    return false;
  const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
  if (hw_index >= num_hw_points)
    return false;

  m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
  m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;

  DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( "
                                    "%u ) - WVR%u = 0x%8.8llx  WCR%u = "
                                    "0x%8.8llx",
                   hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
                   hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);

  // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
  // automatically, don't need to do it here.

  kret = SetDBGState(false);

  return (kret == KERN_SUCCESS);
}

bool DNBArchMachARM::DisableHardwareWatchpoint(uint32_t hw_index,
                                               bool also_set_on_task) {
  if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
    return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) &&
           DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task);
  } else {
    return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task);
  }
}

bool DNBArchMachARM::DisableHardwareWatchpoint_helper(uint32_t hw_index,
                                                      bool also_set_on_task) {
  kern_return_t kret = GetDBGState(false);
  if (kret != KERN_SUCCESS)
    return false;

  const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
  if (hw_index >= num_hw_points)
    return false;

  m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
  m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];

  m_state.dbg.__wvr[hw_index] = 0;
  m_state.dbg.__wcr[hw_index] = 0;
  DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint("
                                    " %u ) - WVR%u = 0x%8.8llx  WCR%u = "
                                    "0x%8.8llx",
                   hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
                   hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);

  kret = SetDBGState(also_set_on_task);

  return (kret == KERN_SUCCESS);
}

// Returns -1 if the trailing bit patterns are not one of:
// { 0b???1, 0b??10, 0b?100, 0b1000 }.
static inline int32_t LowestBitSet(uint32_t val) {
  for (unsigned i = 0; i < 4; ++i) {
    if (bit(val, i))
      return i;
  }
  return -1;
}

// Iterate through the debug registers; return the index of the first watchpoint
// whose address matches.
// As a side effect, the starting address as understood by the debugger is
// returned which could be
// different from 'addr' passed as an in/out argument.
uint32_t DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr) {
  // Read the debug state
  kern_return_t kret = GetDBGState(true);
  // DumpDBGState(m_state.dbg);
  DNBLogThreadedIf(
      LOG_WATCHPOINTS,
      "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.",
      kret);
  DNBLogThreadedIf(LOG_WATCHPOINTS,
                   "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx",
                   (uint64_t)addr);

// This is the watchpoint value to match against, i.e., word address.
#if defined(WATCHPOINTS_ARE_DWORD)
  nub_addr_t wp_val = addr & ~((nub_addr_t)7);
#else
  nub_addr_t wp_val = addr & ~((nub_addr_t)3);
#endif
  if (kret == KERN_SUCCESS) {
    DBG &debug_state = m_state.dbg;
    uint32_t i, num = NumSupportedHardwareWatchpoints();
    for (i = 0; i < num; ++i) {
      nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
      DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::"
                                        "GetHardwareWatchpointHit() slot: %u "
                                        "(addr = 0x%llx).",
                       i, (uint64_t)wp_addr);
      if (wp_val == wp_addr) {
#if defined(WATCHPOINTS_ARE_DWORD)
        uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5);
#else
        uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
#endif

        // Sanity check the byte_mask, first.
        if (LowestBitSet(byte_mask) < 0)
          continue;

        // Compute the starting address (from the point of view of the
        // debugger).
        addr = wp_addr + LowestBitSet(byte_mask);
        return i;
      }
    }
  }
  return INVALID_NUB_HW_INDEX;
}

nub_addr_t DNBArchMachARM::GetWatchpointAddressByIndex(uint32_t hw_index) {
  kern_return_t kret = GetDBGState(true);
  if (kret != KERN_SUCCESS)
    return INVALID_NUB_ADDRESS;
  const uint32_t num = NumSupportedHardwareWatchpoints();
  if (hw_index >= num)
    return INVALID_NUB_ADDRESS;
  if (IsWatchpointEnabled(m_state.dbg, hw_index))
    return GetWatchAddress(m_state.dbg, hw_index);
  return INVALID_NUB_ADDRESS;
}

bool DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state,
                                         uint32_t hw_index) {
  // Watchpoint Control Registers, bitfield definitions
  // ...
  // Bits    Value    Description
  // [0]     0        Watchpoint disabled
  //         1        Watchpoint enabled.
  return (debug_state.__wcr[hw_index] & 1u);
}

nub_addr_t DNBArchMachARM::GetWatchAddress(const DBG &debug_state,
                                           uint32_t hw_index) {
  // Watchpoint Value Registers, bitfield definitions
  // Bits        Description
  // [31:2]      Watchpoint value (word address, i.e., 4-byte aligned)
  // [1:0]       RAZ/SBZP
  return bits(debug_state.__wvr[hw_index], 31, 0);
}

// Register information definitions for 32 bit ARMV7.
enum gpr_regnums {
  gpr_r0 = 0,
  gpr_r1,
  gpr_r2,
  gpr_r3,
  gpr_r4,
  gpr_r5,
  gpr_r6,
  gpr_r7,
  gpr_r8,
  gpr_r9,
  gpr_r10,
  gpr_r11,
  gpr_r12,
  gpr_sp,
  gpr_lr,
  gpr_pc,
  gpr_cpsr
};

enum {
  vfp_s0 = 0,
  vfp_s1,
  vfp_s2,
  vfp_s3,
  vfp_s4,
  vfp_s5,
  vfp_s6,
  vfp_s7,
  vfp_s8,
  vfp_s9,
  vfp_s10,
  vfp_s11,
  vfp_s12,
  vfp_s13,
  vfp_s14,
  vfp_s15,
  vfp_s16,
  vfp_s17,
  vfp_s18,
  vfp_s19,
  vfp_s20,
  vfp_s21,
  vfp_s22,
  vfp_s23,
  vfp_s24,
  vfp_s25,
  vfp_s26,
  vfp_s27,
  vfp_s28,
  vfp_s29,
  vfp_s30,
  vfp_s31,
  vfp_d0,
  vfp_d1,
  vfp_d2,
  vfp_d3,
  vfp_d4,
  vfp_d5,
  vfp_d6,
  vfp_d7,
  vfp_d8,
  vfp_d9,
  vfp_d10,
  vfp_d11,
  vfp_d12,
  vfp_d13,
  vfp_d14,
  vfp_d15,
  vfp_d16,
  vfp_d17,
  vfp_d18,
  vfp_d19,
  vfp_d20,
  vfp_d21,
  vfp_d22,
  vfp_d23,
  vfp_d24,
  vfp_d25,
  vfp_d26,
  vfp_d27,
  vfp_d28,
  vfp_d29,
  vfp_d30,
  vfp_d31,
  vfp_q0,
  vfp_q1,
  vfp_q2,
  vfp_q3,
  vfp_q4,
  vfp_q5,
  vfp_q6,
  vfp_q7,
  vfp_q8,
  vfp_q9,
  vfp_q10,
  vfp_q11,
  vfp_q12,
  vfp_q13,
  vfp_q14,
  vfp_q15,
#if defined(__arm64__) || defined(__aarch64__)
  vfp_fpsr,
  vfp_fpcr,
#else
  vfp_fpscr
#endif
};

enum {
  exc_exception,
  exc_fsr,
  exc_far,
};

#define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM::GPR, __r[idx]))
#define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM::GPR, __##reg))

#define EXC_OFFSET(reg)                                                        \
  (offsetof(DNBArchMachARM::EXC, __##reg) +                                    \
   offsetof(DNBArchMachARM::Context, exc))

// These macros will auto define the register name, alt name, register size,
// register offset, encoding, format and native register. This ensures that
// the register state structures are defined correctly and have the correct
// sizes and offsets.
#define DEFINE_GPR_IDX(idx, reg, alt, gen)                                     \
  {                                                                            \
    e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx),      \
        ehframe_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL        \
  }
#define DEFINE_GPR_NAME(reg, alt, gen, inval)                                  \
  {                                                                            \
    e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg),     \
        ehframe_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval       \
  }

// In case we are debugging to a debug target that the ability to
// change into the protected modes with folded registers (ABT, IRQ,
// FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR
// gets modified.

const char *g_invalidate_cpsr[] = {"r8",  "r9", "r10", "r11",
                                   "r12", "sp", "lr",  NULL};

// General purpose registers
const DNBRegisterInfo DNBArchMachARM::g_gpr_registers[] = {
    DEFINE_GPR_IDX(0, r0, "arg1", GENERIC_REGNUM_ARG1),
    DEFINE_GPR_IDX(1, r1, "arg2", GENERIC_REGNUM_ARG2),
    DEFINE_GPR_IDX(2, r2, "arg3", GENERIC_REGNUM_ARG3),
    DEFINE_GPR_IDX(3, r3, "arg4", GENERIC_REGNUM_ARG4),
    DEFINE_GPR_IDX(4, r4, NULL, INVALID_NUB_REGNUM),
    DEFINE_GPR_IDX(5, r5, NULL, INVALID_NUB_REGNUM),
    DEFINE_GPR_IDX(6, r6, NULL, INVALID_NUB_REGNUM),
    DEFINE_GPR_IDX(7, r7, "fp", GENERIC_REGNUM_FP),
    DEFINE_GPR_IDX(8, r8, NULL, INVALID_NUB_REGNUM),
    DEFINE_GPR_IDX(9, r9, NULL, INVALID_NUB_REGNUM),
    DEFINE_GPR_IDX(10, r10, NULL, INVALID_NUB_REGNUM),
    DEFINE_GPR_IDX(11, r11, NULL, INVALID_NUB_REGNUM),
    DEFINE_GPR_IDX(12, r12, NULL, INVALID_NUB_REGNUM),
    DEFINE_GPR_NAME(sp, "r13", GENERIC_REGNUM_SP, NULL),
    DEFINE_GPR_NAME(lr, "r14", GENERIC_REGNUM_RA, NULL),
    DEFINE_GPR_NAME(pc, "r15", GENERIC_REGNUM_PC, NULL),
    DEFINE_GPR_NAME(cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr)};

const char *g_contained_q0[]{"q0", NULL};
const char *g_contained_q1[]{"q1", NULL};
const char *g_contained_q2[]{"q2", NULL};
const char *g_contained_q3[]{"q3", NULL};
const char *g_contained_q4[]{"q4", NULL};
const char *g_contained_q5[]{"q5", NULL};
const char *g_contained_q6[]{"q6", NULL};
const char *g_contained_q7[]{"q7", NULL};
const char *g_contained_q8[]{"q8", NULL};
const char *g_contained_q9[]{"q9", NULL};
const char *g_contained_q10[]{"q10", NULL};
const char *g_contained_q11[]{"q11", NULL};
const char *g_contained_q12[]{"q12", NULL};
const char *g_contained_q13[]{"q13", NULL};
const char *g_contained_q14[]{"q14", NULL};
const char *g_contained_q15[]{"q15", NULL};

const char *g_invalidate_q0[]{"q0", "d0", "d1", "s0", "s1", "s2", "s3", NULL};
const char *g_invalidate_q1[]{"q1", "d2", "d3", "s4", "s5", "s6", "s7", NULL};
const char *g_invalidate_q2[]{"q2", "d4", "d5", "s8", "s9", "s10", "s11", NULL};
const char *g_invalidate_q3[]{"q3",  "d6",  "d7",  "s12",
                              "s13", "s14", "s15", NULL};
const char *g_invalidate_q4[]{"q4",  "d8",  "d9",  "s16",
                              "s17", "s18", "s19", NULL};
const char *g_invalidate_q5[]{"q5",  "d10", "d11", "s20",
                              "s21", "s22", "s23", NULL};
const char *g_invalidate_q6[]{"q6",  "d12", "d13", "s24",
                              "s25", "s26", "s27", NULL};
const char *g_invalidate_q7[]{"q7",  "d14", "d15", "s28",
                              "s29", "s30", "s31", NULL};
const char *g_invalidate_q8[]{"q8", "d16", "d17", NULL};
const char *g_invalidate_q9[]{"q9", "d18", "d19", NULL};
const char *g_invalidate_q10[]{"q10", "d20", "d21", NULL};
const char *g_invalidate_q11[]{"q11", "d22", "d23", NULL};
const char *g_invalidate_q12[]{"q12", "d24", "d25", NULL};
const char *g_invalidate_q13[]{"q13", "d26", "d27", NULL};
const char *g_invalidate_q14[]{"q14", "d28", "d29", NULL};
const char *g_invalidate_q15[]{"q15", "d30", "d31", NULL};

#define VFP_S_OFFSET_IDX(idx)                                                  \
  (((idx) % 4) * 4) // offset into q reg: 0, 4, 8, 12
#define VFP_D_OFFSET_IDX(idx) (((idx) % 2) * 8) // offset into q reg: 0, 8
#define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX((idx)*4))

#define VFP_OFFSET_NAME(reg)                                                   \
  (offsetof(DNBArchMachARM::FPU, __##reg) +                                    \
   offsetof(DNBArchMachARM::Context, vfp))

#define FLOAT_FORMAT Float

#define DEFINE_VFP_S_IDX(idx)                                                  \
  e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4,           \
      VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx,                 \
      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
#define DEFINE_VFP_D_IDX(idx)                                                  \
  e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8,           \
      VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx,                 \
      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
#define DEFINE_VFP_Q_IDX(idx)                                                  \
  e_regSetVFP, vfp_q##idx, "q" #idx, NULL, Vector, VectorOfUInt8, 16,          \
      VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx,                 \
      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM

// Floating point registers
const DNBRegisterInfo DNBArchMachARM::g_vfp_registers[] = {
    {DEFINE_VFP_S_IDX(0), g_contained_q0, g_invalidate_q0},
    {DEFINE_VFP_S_IDX(1), g_contained_q0, g_invalidate_q0},
    {DEFINE_VFP_S_IDX(2), g_contained_q0, g_invalidate_q0},
    {DEFINE_VFP_S_IDX(3), g_contained_q0, g_invalidate_q0},
    {DEFINE_VFP_S_IDX(4), g_contained_q1, g_invalidate_q1},
    {DEFINE_VFP_S_IDX(5), g_contained_q1, g_invalidate_q1},
    {DEFINE_VFP_S_IDX(6), g_contained_q1, g_invalidate_q1},
    {DEFINE_VFP_S_IDX(7), g_contained_q1, g_invalidate_q1},
    {DEFINE_VFP_S_IDX(8), g_contained_q2, g_invalidate_q2},
    {DEFINE_VFP_S_IDX(9), g_contained_q2, g_invalidate_q2},
    {DEFINE_VFP_S_IDX(10), g_contained_q2, g_invalidate_q2},
    {DEFINE_VFP_S_IDX(11), g_contained_q2, g_invalidate_q2},
    {DEFINE_VFP_S_IDX(12), g_contained_q3, g_invalidate_q3},
    {DEFINE_VFP_S_IDX(13), g_contained_q3, g_invalidate_q3},
    {DEFINE_VFP_S_IDX(14), g_contained_q3, g_invalidate_q3},
    {DEFINE_VFP_S_IDX(15), g_contained_q3, g_invalidate_q3},
    {DEFINE_VFP_S_IDX(16), g_contained_q4, g_invalidate_q4},
    {DEFINE_VFP_S_IDX(17), g_contained_q4, g_invalidate_q4},
    {DEFINE_VFP_S_IDX(18), g_contained_q4, g_invalidate_q4},
    {DEFINE_VFP_S_IDX(19), g_contained_q4, g_invalidate_q4},
    {DEFINE_VFP_S_IDX(20), g_contained_q5, g_invalidate_q5},
    {DEFINE_VFP_S_IDX(21), g_contained_q5, g_invalidate_q5},
    {DEFINE_VFP_S_IDX(22), g_contained_q5, g_invalidate_q5},
    {DEFINE_VFP_S_IDX(23), g_contained_q5, g_invalidate_q5},
    {DEFINE_VFP_S_IDX(24), g_contained_q6, g_invalidate_q6},
    {DEFINE_VFP_S_IDX(25), g_contained_q6, g_invalidate_q6},
    {DEFINE_VFP_S_IDX(26), g_contained_q6, g_invalidate_q6},
    {DEFINE_VFP_S_IDX(27), g_contained_q6, g_invalidate_q6},
    {DEFINE_VFP_S_IDX(28), g_contained_q7, g_invalidate_q7},
    {DEFINE_VFP_S_IDX(29), g_contained_q7, g_invalidate_q7},
    {DEFINE_VFP_S_IDX(30), g_contained_q7, g_invalidate_q7},
    {DEFINE_VFP_S_IDX(31), g_contained_q7, g_invalidate_q7},

    {DEFINE_VFP_D_IDX(0), g_contained_q0, g_invalidate_q0},
    {DEFINE_VFP_D_IDX(1), g_contained_q0, g_invalidate_q0},
    {DEFINE_VFP_D_IDX(2), g_contained_q1, g_invalidate_q1},
    {DEFINE_VFP_D_IDX(3), g_contained_q1, g_invalidate_q1},
    {DEFINE_VFP_D_IDX(4), g_contained_q2, g_invalidate_q2},
    {DEFINE_VFP_D_IDX(5), g_contained_q2, g_invalidate_q2},
    {DEFINE_VFP_D_IDX(6), g_contained_q3, g_invalidate_q3},
    {DEFINE_VFP_D_IDX(7), g_contained_q3, g_invalidate_q3},
    {DEFINE_VFP_D_IDX(8), g_contained_q4, g_invalidate_q4},
    {DEFINE_VFP_D_IDX(9), g_contained_q4, g_invalidate_q4},
    {DEFINE_VFP_D_IDX(10), g_contained_q5, g_invalidate_q5},
    {DEFINE_VFP_D_IDX(11), g_contained_q5, g_invalidate_q5},
    {DEFINE_VFP_D_IDX(12), g_contained_q6, g_invalidate_q6},
    {DEFINE_VFP_D_IDX(13), g_contained_q6, g_invalidate_q6},
    {DEFINE_VFP_D_IDX(14), g_contained_q7, g_invalidate_q7},
    {DEFINE_VFP_D_IDX(15), g_contained_q7, g_invalidate_q7},
    {DEFINE_VFP_D_IDX(16), g_contained_q8, g_invalidate_q8},
    {DEFINE_VFP_D_IDX(17), g_contained_q8, g_invalidate_q8},
    {DEFINE_VFP_D_IDX(18), g_contained_q9, g_invalidate_q9},
    {DEFINE_VFP_D_IDX(19), g_contained_q9, g_invalidate_q9},
    {DEFINE_VFP_D_IDX(20), g_contained_q10, g_invalidate_q10},
    {DEFINE_VFP_D_IDX(21), g_contained_q10, g_invalidate_q10},
    {DEFINE_VFP_D_IDX(22), g_contained_q11, g_invalidate_q11},
    {DEFINE_VFP_D_IDX(23), g_contained_q11, g_invalidate_q11},
    {DEFINE_VFP_D_IDX(24), g_contained_q12, g_invalidate_q12},
    {DEFINE_VFP_D_IDX(25), g_contained_q12, g_invalidate_q12},
    {DEFINE_VFP_D_IDX(26), g_contained_q13, g_invalidate_q13},
    {DEFINE_VFP_D_IDX(27), g_contained_q13, g_invalidate_q13},
    {DEFINE_VFP_D_IDX(28), g_contained_q14, g_invalidate_q14},
    {DEFINE_VFP_D_IDX(29), g_contained_q14, g_invalidate_q14},
    {DEFINE_VFP_D_IDX(30), g_contained_q15, g_invalidate_q15},
    {DEFINE_VFP_D_IDX(31), g_contained_q15, g_invalidate_q15},

    {DEFINE_VFP_Q_IDX(0), NULL, g_invalidate_q0},
    {DEFINE_VFP_Q_IDX(1), NULL, g_invalidate_q1},
    {DEFINE_VFP_Q_IDX(2), NULL, g_invalidate_q2},
    {DEFINE_VFP_Q_IDX(3), NULL, g_invalidate_q3},
    {DEFINE_VFP_Q_IDX(4), NULL, g_invalidate_q4},
    {DEFINE_VFP_Q_IDX(5), NULL, g_invalidate_q5},
    {DEFINE_VFP_Q_IDX(6), NULL, g_invalidate_q6},
    {DEFINE_VFP_Q_IDX(7), NULL, g_invalidate_q7},
    {DEFINE_VFP_Q_IDX(8), NULL, g_invalidate_q8},
    {DEFINE_VFP_Q_IDX(9), NULL, g_invalidate_q9},
    {DEFINE_VFP_Q_IDX(10), NULL, g_invalidate_q10},
    {DEFINE_VFP_Q_IDX(11), NULL, g_invalidate_q11},
    {DEFINE_VFP_Q_IDX(12), NULL, g_invalidate_q12},
    {DEFINE_VFP_Q_IDX(13), NULL, g_invalidate_q13},
    {DEFINE_VFP_Q_IDX(14), NULL, g_invalidate_q14},
    {DEFINE_VFP_Q_IDX(15), NULL, g_invalidate_q15},

#if defined(__arm64__) || defined(__aarch64__)
    {e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpsr),
     INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
     INVALID_NUB_REGNUM, NULL, NULL},
    {e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpcr),
     INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
     INVALID_NUB_REGNUM, NULL, NULL}
#else
    {e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4,
     VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
     INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}
#endif
};

// Exception registers

const DNBRegisterInfo DNBArchMachARM::g_exc_registers[] = {
    {e_regSetVFP, exc_exception, "exception", NULL, Uint, Hex, 4,
     EXC_OFFSET(exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
     INVALID_NUB_REGNUM, INVALID_NUB_REGNUM},
    {e_regSetVFP, exc_fsr, "fsr", NULL, Uint, Hex, 4, EXC_OFFSET(fsr),
     INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
     INVALID_NUB_REGNUM},
    {e_regSetVFP, exc_far, "far", NULL, Uint, Hex, 4, EXC_OFFSET(far),
     INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
     INVALID_NUB_REGNUM}};

// Number of registers in each register set
const size_t DNBArchMachARM::k_num_gpr_registers =
    sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_vfp_registers =
    sizeof(g_vfp_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_exc_registers =
    sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
const size_t DNBArchMachARM::k_num_all_registers =
    k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;

// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
const DNBRegisterSetInfo DNBArchMachARM::g_reg_sets[] = {
    {"ARM Registers", NULL, k_num_all_registers},
    {"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
    {"Floating Point Registers", g_vfp_registers, k_num_vfp_registers},
    {"Exception State Registers", g_exc_registers, k_num_exc_registers}};
// Total number of register sets for this architecture
const size_t DNBArchMachARM::k_num_register_sets =
    sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);

const DNBRegisterSetInfo *
DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets) {
  *num_reg_sets = k_num_register_sets;
  return g_reg_sets;
}

bool DNBArchMachARM::GetRegisterValue(uint32_t set, uint32_t reg,
                                      DNBRegisterValue *value) {
  if (set == REGISTER_SET_GENERIC) {
    switch (reg) {
    case GENERIC_REGNUM_PC: // Program Counter
      set = e_regSetGPR;
      reg = gpr_pc;
      break;

    case GENERIC_REGNUM_SP: // Stack Pointer
      set = e_regSetGPR;
      reg = gpr_sp;
      break;

    case GENERIC_REGNUM_FP: // Frame Pointer
      set = e_regSetGPR;
      reg = gpr_r7; // is this the right reg?
      break;

    case GENERIC_REGNUM_RA: // Return Address
      set = e_regSetGPR;
      reg = gpr_lr;
      break;

    case GENERIC_REGNUM_FLAGS: // Processor flags register
      set = e_regSetGPR;
      reg = gpr_cpsr;
      break;

    default:
      return false;
    }
  }

  if (GetRegisterState(set, false) != KERN_SUCCESS)
    return false;

  const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
  if (regInfo) {
    value->info = *regInfo;
    switch (set) {
    case e_regSetGPR:
      if (reg < k_num_gpr_registers) {
        value->value.uint32 = m_state.context.gpr.__r[reg];
        return true;
      }
      break;

    case e_regSetVFP:
      // "reg" is an index into the floating point register set at this point.
      // We need to translate it up so entry 0 in the fp reg set is the same as
      // vfp_s0
      // in the enumerated values for case statement below.
      if (reg >= vfp_s0 && reg <= vfp_s31) {
#if defined(__arm64__) || defined(__aarch64__)
        uint32_t *s_reg =
            ((uint32_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_s0);
        memcpy(&value->value.v_uint8, s_reg, 4);
#else
        value->value.uint32 = m_state.context.vfp.__r[reg];
#endif
        return true;
      } else if (reg >= vfp_d0 && reg <= vfp_d31) {
#if defined(__arm64__) || defined(__aarch64__)
        uint64_t *d_reg =
            ((uint64_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_d0);
        memcpy(&value->value.v_uint8, d_reg, 8);
#else
        uint32_t d_reg_idx = reg - vfp_d0;
        uint32_t s_reg_idx = d_reg_idx * 2;
        value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
        value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
#endif
        return true;
      } else if (reg >= vfp_q0 && reg <= vfp_q15) {
#if defined(__arm64__) || defined(__aarch64__)
        memcpy(&value->value.v_uint8,
               (uint8_t *)&m_state.context.vfp.__v[reg - vfp_q0], 16);
#else
        uint32_t s_reg_idx = (reg - vfp_q0) * 4;
        memcpy(&value->value.v_uint8,
               (uint8_t *)&m_state.context.vfp.__r[s_reg_idx], 16);
#endif
        return true;
      }
#if defined(__arm64__) || defined(__aarch64__)
      else if (reg == vfp_fpsr) {
        value->value.uint32 = m_state.context.vfp.__fpsr;
        return true;
      } else if (reg == vfp_fpcr) {
        value->value.uint32 = m_state.context.vfp.__fpcr;
        return true;
      }
#else
      else if (reg == vfp_fpscr) {
        value->value.uint32 = m_state.context.vfp.__fpscr;
        return true;
      }
#endif
      break;

    case e_regSetEXC:
      if (reg < k_num_exc_registers) {
        value->value.uint32 = (&m_state.context.exc.__exception)[reg];
        return true;
      }
      break;
    }
  }
  return false;
}

bool DNBArchMachARM::SetRegisterValue(uint32_t set, uint32_t reg,
                                      const DNBRegisterValue *value) {
  if (set == REGISTER_SET_GENERIC) {
    switch (reg) {
    case GENERIC_REGNUM_PC: // Program Counter
      set = e_regSetGPR;
      reg = gpr_pc;
      break;

    case GENERIC_REGNUM_SP: // Stack Pointer
      set = e_regSetGPR;
      reg = gpr_sp;
      break;

    case GENERIC_REGNUM_FP: // Frame Pointer
      set = e_regSetGPR;
      reg = gpr_r7;
      break;

    case GENERIC_REGNUM_RA: // Return Address
      set = e_regSetGPR;
      reg = gpr_lr;
      break;

    case GENERIC_REGNUM_FLAGS: // Processor flags register
      set = e_regSetGPR;
      reg = gpr_cpsr;
      break;

    default:
      return false;
    }
  }

  if (GetRegisterState(set, false) != KERN_SUCCESS)
    return false;

  bool success = false;
  const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
  if (regInfo) {
    switch (set) {
    case e_regSetGPR:
      if (reg < k_num_gpr_registers) {
        m_state.context.gpr.__r[reg] = value->value.uint32;
        success = true;
      }
      break;

    case e_regSetVFP:
      // "reg" is an index into the floating point register set at this point.
      // We need to translate it up so entry 0 in the fp reg set is the same as
      // vfp_s0
      // in the enumerated values for case statement below.
      if (reg >= vfp_s0 && reg <= vfp_s31) {
#if defined(__arm64__) || defined(__aarch64__)
        uint32_t *s_reg =
            ((uint32_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_s0);
        memcpy(s_reg, &value->value.v_uint8, 4);
#else
        m_state.context.vfp.__r[reg] = value->value.uint32;
#endif
        success = true;
      } else if (reg >= vfp_d0 && reg <= vfp_d31) {
#if defined(__arm64__) || defined(__aarch64__)
        uint64_t *d_reg =
            ((uint64_t *)&m_state.context.vfp.__v[0]) + (reg - vfp_d0);
        memcpy(d_reg, &value->value.v_uint8, 8);
#else
        uint32_t d_reg_idx = reg - vfp_d0;
        uint32_t s_reg_idx = d_reg_idx * 2;
        m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
        m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
#endif
        success = true;
      } else if (reg >= vfp_q0 && reg <= vfp_q15) {
#if defined(__arm64__) || defined(__aarch64__)
        memcpy((uint8_t *)&m_state.context.vfp.__v[reg - vfp_q0],
               &value->value.v_uint8, 16);
#else
        uint32_t s_reg_idx = (reg - vfp_q0) * 4;
        memcpy((uint8_t *)&m_state.context.vfp.__r[s_reg_idx],
               &value->value.v_uint8, 16);
#endif
        success = true;
      }
#if defined(__arm64__) || defined(__aarch64__)
      else if (reg == vfp_fpsr) {
        m_state.context.vfp.__fpsr = value->value.uint32;
        success = true;
      } else if (reg == vfp_fpcr) {
        m_state.context.vfp.__fpcr = value->value.uint32;
        success = true;
      }
#else
      else if (reg == vfp_fpscr) {
        m_state.context.vfp.__fpscr = value->value.uint32;
        success = true;
      }
#endif
      break;

    case e_regSetEXC:
      if (reg < k_num_exc_registers) {
        (&m_state.context.exc.__exception)[reg] = value->value.uint32;
        success = true;
      }
      break;
    }
  }
  if (success)
    return SetRegisterState(set) == KERN_SUCCESS;
  return false;
}

kern_return_t DNBArchMachARM::GetRegisterState(int set, bool force) {
  switch (set) {
  case e_regSetALL:
    return GetGPRState(force) | GetVFPState(force) | GetEXCState(force) |
           GetDBGState(force);
  case e_regSetGPR:
    return GetGPRState(force);
  case e_regSetVFP:
    return GetVFPState(force);
  case e_regSetEXC:
    return GetEXCState(force);
  case e_regSetDBG:
    return GetDBGState(force);
  default:
    break;
  }
  return KERN_INVALID_ARGUMENT;
}

kern_return_t DNBArchMachARM::SetRegisterState(int set) {
  // Make sure we have a valid context to set.
  kern_return_t err = GetRegisterState(set, false);
  if (err != KERN_SUCCESS)
    return err;

  switch (set) {
  case e_regSetALL:
    return SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false);
  case e_regSetGPR:
    return SetGPRState();
  case e_regSetVFP:
    return SetVFPState();
  case e_regSetEXC:
    return SetEXCState();
  case e_regSetDBG:
    return SetDBGState(false);
  default:
    break;
  }
  return KERN_INVALID_ARGUMENT;
}

bool DNBArchMachARM::RegisterSetStateIsValid(int set) const {
  return m_state.RegsAreValid(set);
}

nub_size_t DNBArchMachARM::GetRegisterContext(void *buf, nub_size_t buf_len) {
  nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
                    sizeof(m_state.context.exc);

  if (buf && buf_len) {
    if (size > buf_len)
      size = buf_len;

    bool force = false;
    if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
      return 0;

    // Copy each struct individually to avoid any padding that might be between
    // the structs in m_state.context
    uint8_t *p = (uint8_t *)buf;
    ::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr));
    p += sizeof(m_state.context.gpr);
    ::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp));
    p += sizeof(m_state.context.vfp);
    ::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc));
    p += sizeof(m_state.context.exc);

    size_t bytes_written = p - (uint8_t *)buf;
    UNUSED_IF_ASSERT_DISABLED(bytes_written);
    assert(bytes_written == size);
  }
  DNBLogThreadedIf(
      LOG_THREAD,
      "DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf,
      (uint64_t)buf_len, (uint64_t)size);
  // Return the size of the register context even if NULL was passed in
  return size;
}

nub_size_t DNBArchMachARM::SetRegisterContext(const void *buf,
                                              nub_size_t buf_len) {
  nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
                    sizeof(m_state.context.exc);

  if (buf == NULL || buf_len == 0)
    size = 0;

  if (size) {
    if (size > buf_len)
      size = buf_len;

    // Copy each struct individually to avoid any padding that might be between
    // the structs in m_state.context
    uint8_t *p = (uint8_t *)buf;
    ::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr));
    p += sizeof(m_state.context.gpr);
    ::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp));
    p += sizeof(m_state.context.vfp);
    ::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc));
    p += sizeof(m_state.context.exc);

    size_t bytes_written = p - (uint8_t *)buf;
    UNUSED_IF_ASSERT_DISABLED(bytes_written);
    assert(bytes_written == size);

    if (SetGPRState() | SetVFPState() | SetEXCState())
      return 0;
  }
  DNBLogThreadedIf(
      LOG_THREAD,
      "DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf,
      (uint64_t)buf_len, (uint64_t)size);
  return size;
}

uint32_t DNBArchMachARM::SaveRegisterState() {
  kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
  DNBLogThreadedIf(
      LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
                  "(SetGPRState() for stop_count = %u)",
      m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());

  // Always re-read the registers because above we call thread_abort_safely();
  bool force = true;

  if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
    DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: "
                                 "GPR regs failed to read: %u ",
                     kret);
  } else if ((kret = GetVFPState(force)) != KERN_SUCCESS) {
    DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: "
                                 "%s regs failed to read: %u",
                     "VFP", kret);
  } else {
    const uint32_t save_id = GetNextRegisterStateSaveID();
    m_saved_register_states[save_id] = m_state.context;
    return save_id;
  }
  return UINT32_MAX;
}

bool DNBArchMachARM::RestoreRegisterState(uint32_t save_id) {
  SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
  if (pos != m_saved_register_states.end()) {
    m_state.context.gpr = pos->second.gpr;
    m_state.context.vfp = pos->second.vfp;
    kern_return_t kret;
    bool success = true;
    if ((kret = SetGPRState()) != KERN_SUCCESS) {
      DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::RestoreRegisterState "
                                   "(save_id = %u) error: GPR regs failed to "
                                   "write: %u",
                       save_id, kret);
      success = false;
    } else if ((kret = SetVFPState()) != KERN_SUCCESS) {
      DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM::RestoreRegisterState "
                                   "(save_id = %u) error: %s regs failed to "
                                   "write: %u",
                       save_id, "VFP", kret);
      success = false;
    }
    m_saved_register_states.erase(pos);
    return success;
  }
  return false;
}

#endif // #if defined (__arm__)