DNBArchImpl.cpp
16.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__)
#if __DARWIN_UNIX03
#define PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(reg) __##reg
#else
#define PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(reg) reg
#endif
#include "MacOSX/ppc/DNBArchImpl.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "MacOSX/MachThread.h"
static const uint8_t g_breakpoint_opcode[] = {0x7F, 0xC0, 0x00, 0x08};
const uint8_t *DNBArchMachPPC::SoftwareBreakpointOpcode(nub_size_t size) {
if (size == 4)
return g_breakpoint_opcode;
return NULL;
}
uint32_t DNBArchMachPPC::GetCPUType() { return CPU_TYPE_POWERPC; }
uint64_t DNBArchMachPPC::GetPC(uint64_t failValue) {
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0);
return failValue;
}
kern_return_t DNBArchMachPPC::SetPC(uint64_t value) {
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS) {
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0) = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t DNBArchMachPPC::GetSP(uint64_t failValue) {
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(r1);
return failValue;
}
kern_return_t DNBArchMachPPC::GetGPRState(bool force) {
if (force || m_state.GetError(e_regSetGPR, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeGPR;
m_state.SetError(e_regSetGPR, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetGPR,
(thread_state_t)&m_state.gpr, &count));
}
return m_state.GetError(e_regSetGPR, Read);
}
kern_return_t DNBArchMachPPC::GetFPRState(bool force) {
if (force || m_state.GetError(e_regSetFPR, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeFPR;
m_state.SetError(e_regSetFPR, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetFPR,
(thread_state_t)&m_state.fpr, &count));
}
return m_state.GetError(e_regSetFPR, Read);
}
kern_return_t DNBArchMachPPC::GetEXCState(bool force) {
if (force || m_state.GetError(e_regSetEXC, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeEXC;
m_state.SetError(e_regSetEXC, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetEXC,
(thread_state_t)&m_state.exc, &count));
}
return m_state.GetError(e_regSetEXC, Read);
}
kern_return_t DNBArchMachPPC::GetVECState(bool force) {
if (force || m_state.GetError(e_regSetVEC, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeVEC;
m_state.SetError(e_regSetVEC, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetVEC,
(thread_state_t)&m_state.vec, &count));
}
return m_state.GetError(e_regSetVEC, Read);
}
kern_return_t DNBArchMachPPC::SetGPRState() {
m_state.SetError(e_regSetGPR, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetGPR,
(thread_state_t)&m_state.gpr,
e_regSetWordSizeGPR));
return m_state.GetError(e_regSetGPR, Write);
}
kern_return_t DNBArchMachPPC::SetFPRState() {
m_state.SetError(e_regSetFPR, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetFPR,
(thread_state_t)&m_state.fpr,
e_regSetWordSizeFPR));
return m_state.GetError(e_regSetFPR, Write);
}
kern_return_t DNBArchMachPPC::SetEXCState() {
m_state.SetError(e_regSetEXC, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetEXC,
(thread_state_t)&m_state.exc,
e_regSetWordSizeEXC));
return m_state.GetError(e_regSetEXC, Write);
}
kern_return_t DNBArchMachPPC::SetVECState() {
m_state.SetError(e_regSetVEC, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetVEC,
(thread_state_t)&m_state.vec,
e_regSetWordSizeVEC));
return m_state.GetError(e_regSetVEC, Write);
}
bool DNBArchMachPPC::ThreadWillResume() {
bool success = true;
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping()) {
// This is the primary thread, let the arch do anything it needs
success = EnableHardwareSingleStep(true) == KERN_SUCCESS;
}
return success;
}
bool DNBArchMachPPC::ThreadDidStop() {
bool success = true;
m_state.InvalidateAllRegisterStates();
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS) {
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping()) {
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
} else {
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
// Set the single step bit in the processor status register.
kern_return_t DNBArchMachPPC::EnableHardwareSingleStep(bool enable) {
DNBLogThreadedIf(LOG_STEP,
"DNBArchMachPPC::EnableHardwareSingleStep( enable = %d )",
enable);
if (GetGPRState(false) == KERN_SUCCESS) {
const uint32_t trace_bit = 0x400;
if (enable)
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr1) |= trace_bit;
else
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr1) &= ~trace_bit;
return SetGPRState();
}
return m_state.GetError(e_regSetGPR, Read);
}
// Register information definitions for 32 bit PowerPC.
enum gpr_regnums {
e_regNumGPR_srr0,
e_regNumGPR_srr1,
e_regNumGPR_r0,
e_regNumGPR_r1,
e_regNumGPR_r2,
e_regNumGPR_r3,
e_regNumGPR_r4,
e_regNumGPR_r5,
e_regNumGPR_r6,
e_regNumGPR_r7,
e_regNumGPR_r8,
e_regNumGPR_r9,
e_regNumGPR_r10,
e_regNumGPR_r11,
e_regNumGPR_r12,
e_regNumGPR_r13,
e_regNumGPR_r14,
e_regNumGPR_r15,
e_regNumGPR_r16,
e_regNumGPR_r17,
e_regNumGPR_r18,
e_regNumGPR_r19,
e_regNumGPR_r20,
e_regNumGPR_r21,
e_regNumGPR_r22,
e_regNumGPR_r23,
e_regNumGPR_r24,
e_regNumGPR_r25,
e_regNumGPR_r26,
e_regNumGPR_r27,
e_regNumGPR_r28,
e_regNumGPR_r29,
e_regNumGPR_r30,
e_regNumGPR_r31,
e_regNumGPR_cr,
e_regNumGPR_xer,
e_regNumGPR_lr,
e_regNumGPR_ctr,
e_regNumGPR_mq,
e_regNumGPR_vrsave
};
// General purpose registers
static DNBRegisterInfo g_gpr_registers[] = {
{"srr0", Uint, 4, Hex}, {"srr1", Uint, 4, Hex}, {"r0", Uint, 4, Hex},
{"r1", Uint, 4, Hex}, {"r2", Uint, 4, Hex}, {"r3", Uint, 4, Hex},
{"r4", Uint, 4, Hex}, {"r5", Uint, 4, Hex}, {"r6", Uint, 4, Hex},
{"r7", Uint, 4, Hex}, {"r8", Uint, 4, Hex}, {"r9", Uint, 4, Hex},
{"r10", Uint, 4, Hex}, {"r11", Uint, 4, Hex}, {"r12", Uint, 4, Hex},
{"r13", Uint, 4, Hex}, {"r14", Uint, 4, Hex}, {"r15", Uint, 4, Hex},
{"r16", Uint, 4, Hex}, {"r17", Uint, 4, Hex}, {"r18", Uint, 4, Hex},
{"r19", Uint, 4, Hex}, {"r20", Uint, 4, Hex}, {"r21", Uint, 4, Hex},
{"r22", Uint, 4, Hex}, {"r23", Uint, 4, Hex}, {"r24", Uint, 4, Hex},
{"r25", Uint, 4, Hex}, {"r26", Uint, 4, Hex}, {"r27", Uint, 4, Hex},
{"r28", Uint, 4, Hex}, {"r29", Uint, 4, Hex}, {"r30", Uint, 4, Hex},
{"r31", Uint, 4, Hex}, {"cr", Uint, 4, Hex}, {"xer", Uint, 4, Hex},
{"lr", Uint, 4, Hex}, {"ctr", Uint, 4, Hex}, {"mq", Uint, 4, Hex},
{"vrsave", Uint, 4, Hex},
};
// Floating point registers
static DNBRegisterInfo g_fpr_registers[] = {
{"fp0", IEEE754, 8, Float}, {"fp1", IEEE754, 8, Float},
{"fp2", IEEE754, 8, Float}, {"fp3", IEEE754, 8, Float},
{"fp4", IEEE754, 8, Float}, {"fp5", IEEE754, 8, Float},
{"fp6", IEEE754, 8, Float}, {"fp7", IEEE754, 8, Float},
{"fp8", IEEE754, 8, Float}, {"fp9", IEEE754, 8, Float},
{"fp10", IEEE754, 8, Float}, {"fp11", IEEE754, 8, Float},
{"fp12", IEEE754, 8, Float}, {"fp13", IEEE754, 8, Float},
{"fp14", IEEE754, 8, Float}, {"fp15", IEEE754, 8, Float},
{"fp16", IEEE754, 8, Float}, {"fp17", IEEE754, 8, Float},
{"fp18", IEEE754, 8, Float}, {"fp19", IEEE754, 8, Float},
{"fp20", IEEE754, 8, Float}, {"fp21", IEEE754, 8, Float},
{"fp22", IEEE754, 8, Float}, {"fp23", IEEE754, 8, Float},
{"fp24", IEEE754, 8, Float}, {"fp25", IEEE754, 8, Float},
{"fp26", IEEE754, 8, Float}, {"fp27", IEEE754, 8, Float},
{"fp28", IEEE754, 8, Float}, {"fp29", IEEE754, 8, Float},
{"fp30", IEEE754, 8, Float}, {"fp31", IEEE754, 8, Float},
{"fpscr", Uint, 4, Hex}};
// Exception registers
static DNBRegisterInfo g_exc_registers[] = {{"dar", Uint, 4, Hex},
{"dsisr", Uint, 4, Hex},
{"exception", Uint, 4, Hex}};
// Altivec registers
static DNBRegisterInfo g_vec_registers[] = {
{"vr0", Vector, 16, VectorOfFloat32},
{"vr1", Vector, 16, VectorOfFloat32},
{"vr2", Vector, 16, VectorOfFloat32},
{"vr3", Vector, 16, VectorOfFloat32},
{"vr4", Vector, 16, VectorOfFloat32},
{"vr5", Vector, 16, VectorOfFloat32},
{"vr6", Vector, 16, VectorOfFloat32},
{"vr7", Vector, 16, VectorOfFloat32},
{"vr8", Vector, 16, VectorOfFloat32},
{"vr9", Vector, 16, VectorOfFloat32},
{"vr10", Vector, 16, VectorOfFloat32},
{"vr11", Vector, 16, VectorOfFloat32},
{"vr12", Vector, 16, VectorOfFloat32},
{"vr13", Vector, 16, VectorOfFloat32},
{"vr14", Vector, 16, VectorOfFloat32},
{"vr15", Vector, 16, VectorOfFloat32},
{"vr16", Vector, 16, VectorOfFloat32},
{"vr17", Vector, 16, VectorOfFloat32},
{"vr18", Vector, 16, VectorOfFloat32},
{"vr19", Vector, 16, VectorOfFloat32},
{"vr20", Vector, 16, VectorOfFloat32},
{"vr21", Vector, 16, VectorOfFloat32},
{"vr22", Vector, 16, VectorOfFloat32},
{"vr23", Vector, 16, VectorOfFloat32},
{"vr24", Vector, 16, VectorOfFloat32},
{"vr25", Vector, 16, VectorOfFloat32},
{"vr26", Vector, 16, VectorOfFloat32},
{"vr27", Vector, 16, VectorOfFloat32},
{"vr28", Vector, 16, VectorOfFloat32},
{"vr29", Vector, 16, VectorOfFloat32},
{"vr30", Vector, 16, VectorOfFloat32},
{"vr31", Vector, 16, VectorOfFloat32},
{"vscr", Uint, 16, Hex},
{"vrvalid", Uint, 4, Hex}};
// Number of registers in each register set
const size_t k_num_gpr_registers =
sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_fpr_registers =
sizeof(g_fpr_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_exc_registers =
sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_vec_registers =
sizeof(g_vec_registers) / sizeof(DNBRegisterInfo);
// Total number of registers for this architecture
const size_t k_num_ppc_registers = k_num_gpr_registers + k_num_fpr_registers +
k_num_exc_registers + k_num_vec_registers;
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
static const DNBRegisterSetInfo g_reg_sets[] = {
{"PowerPC Registers", NULL, k_num_ppc_registers},
{"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
{"Floating Point Registers", g_fpr_registers, k_num_fpr_registers},
{"Exception State Registers", g_exc_registers, k_num_exc_registers},
{"Altivec Registers", g_vec_registers, k_num_vec_registers}};
// Total number of register sets for this architecture
const size_t k_num_register_sets =
sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachPPC::GetRegisterSetInfo(nub_size_t *num_reg_sets) const {
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool DNBArchMachPPC::GetRegisterValue(uint32_t set, uint32_t reg,
DNBRegisterValue *value) const {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = e_regNumGPR_srr0;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = e_regNumGPR_r1;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
// Return false for now instead of returning r30 as gcc 3.x would
// use a variety of registers for the FP and it takes inspecting
// the stack to make sure there is a frame pointer before we can
// determine the FP.
return false;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = e_regNumGPR_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = e_regNumGPR_srr1;
break;
default:
return false;
}
}
if (!m_state.RegsAreValid(set))
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
value->info = *regInfo;
switch (set) {
case e_regSetGPR:
if (reg < k_num_gpr_registers) {
value->value.uint32 =
(&m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0))[reg];
return true;
}
break;
case e_regSetFPR:
if (reg < 32) {
value->value.float64 =
m_state.fpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(fpregs)[reg];
return true;
} else if (reg == 32) {
value->value.uint32 =
m_state.fpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(fpscr);
return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers) {
value->value.uint32 =
(&m_state.exc.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(dar))[reg];
return true;
}
break;
case e_regSetVEC:
if (reg < k_num_vec_registers) {
if (reg < 33) // FP0 - FP31 and VSCR
{
// Copy all 4 uint32 values for this vector register
value->value.v_uint32[0] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[0];
value->value.v_uint32[1] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[1];
value->value.v_uint32[2] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[2];
value->value.v_uint32[3] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[3];
return true;
} else if (reg == 34) // VRVALID
{
value->value.uint32 =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vrvalid);
return true;
}
}
break;
}
}
return false;
}
kern_return_t DNBArchMachPPC::GetRegisterState(int set, bool force) {
switch (set) {
case e_regSetALL:
return GetGPRState(force) | GetFPRState(force) | GetEXCState(force) |
GetVECState(force);
case e_regSetGPR:
return GetGPRState(force);
case e_regSetFPR:
return GetFPRState(force);
case e_regSetEXC:
return GetEXCState(force);
case e_regSetVEC:
return GetVECState(force);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t DNBArchMachPPC::SetRegisterState(int set) {
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set) {
case e_regSetALL:
return SetGPRState() | SetFPRState() | SetEXCState() | SetVECState();
case e_regSetGPR:
return SetGPRState();
case e_regSetFPR:
return SetFPRState();
case e_regSetEXC:
return SetEXCState();
case e_regSetVEC:
return SetVECState();
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
bool DNBArchMachPPC::RegisterSetStateIsValid(int set) const {
return m_state.RegsAreValid(set);
}
#endif // #if defined (__powerpc__) || defined (__ppc__) || defined (__ppc64__)