PHITransAddr.cpp 16.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
//===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the PHITransAddr class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

static bool CanPHITrans(Instruction *Inst) {
  if (isa<PHINode>(Inst) ||
      isa<GetElementPtrInst>(Inst))
    return true;

  if (isa<CastInst>(Inst) &&
      isSafeToSpeculativelyExecute(Inst))
    return true;

  if (Inst->getOpcode() == Instruction::Add &&
      isa<ConstantInt>(Inst->getOperand(1)))
    return true;

  //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
  //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
  //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
  return false;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void PHITransAddr::dump() const {
  if (!Addr) {
    dbgs() << "PHITransAddr: null\n";
    return;
  }
  dbgs() << "PHITransAddr: " << *Addr << "\n";
  for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
    dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
}
#endif


static bool VerifySubExpr(Value *Expr,
                          SmallVectorImpl<Instruction*> &InstInputs) {
  // If this is a non-instruction value, there is nothing to do.
  Instruction *I = dyn_cast<Instruction>(Expr);
  if (!I) return true;

  // If it's an instruction, it is either in Tmp or its operands recursively
  // are.
  SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
  if (Entry != InstInputs.end()) {
    InstInputs.erase(Entry);
    return true;
  }

  // If it isn't in the InstInputs list it is a subexpr incorporated into the
  // address.  Sanity check that it is phi translatable.
  if (!CanPHITrans(I)) {
    errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
    errs() << *I << '\n';
    llvm_unreachable("Either something is missing from InstInputs or "
                     "CanPHITrans is wrong.");
  }

  // Validate the operands of the instruction.
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (!VerifySubExpr(I->getOperand(i), InstInputs))
      return false;

  return true;
}

/// Verify - Check internal consistency of this data structure.  If the
/// structure is valid, it returns true.  If invalid, it prints errors and
/// returns false.
bool PHITransAddr::Verify() const {
  if (!Addr) return true;

  SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());

  if (!VerifySubExpr(Addr, Tmp))
    return false;

  if (!Tmp.empty()) {
    errs() << "PHITransAddr contains extra instructions:\n";
    for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
      errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
    llvm_unreachable("This is unexpected.");
  }

  // a-ok.
  return true;
}


/// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
/// if we have some hope of doing it.  This should be used as a filter to
/// avoid calling PHITranslateValue in hopeless situations.
bool PHITransAddr::IsPotentiallyPHITranslatable() const {
  // If the input value is not an instruction, or if it is not defined in CurBB,
  // then we don't need to phi translate it.
  Instruction *Inst = dyn_cast<Instruction>(Addr);
  return !Inst || CanPHITrans(Inst);
}


static void RemoveInstInputs(Value *V,
                             SmallVectorImpl<Instruction*> &InstInputs) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return;

  // If the instruction is in the InstInputs list, remove it.
  SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
  if (Entry != InstInputs.end()) {
    InstInputs.erase(Entry);
    return;
  }

  assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");

  // Otherwise, it must have instruction inputs itself.  Zap them recursively.
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
      RemoveInstInputs(Op, InstInputs);
  }
}

Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
                                         BasicBlock *PredBB,
                                         const DominatorTree *DT) {
  // If this is a non-instruction value, it can't require PHI translation.
  Instruction *Inst = dyn_cast<Instruction>(V);
  if (!Inst) return V;

  // Determine whether 'Inst' is an input to our PHI translatable expression.
  bool isInput = is_contained(InstInputs, Inst);

  // Handle inputs instructions if needed.
  if (isInput) {
    if (Inst->getParent() != CurBB) {
      // If it is an input defined in a different block, then it remains an
      // input.
      return Inst;
    }

    // If 'Inst' is defined in this block and is an input that needs to be phi
    // translated, we need to incorporate the value into the expression or fail.

    // In either case, the instruction itself isn't an input any longer.
    InstInputs.erase(find(InstInputs, Inst));

    // If this is a PHI, go ahead and translate it.
    if (PHINode *PN = dyn_cast<PHINode>(Inst))
      return AddAsInput(PN->getIncomingValueForBlock(PredBB));

    // If this is a non-phi value, and it is analyzable, we can incorporate it
    // into the expression by making all instruction operands be inputs.
    if (!CanPHITrans(Inst))
      return nullptr;

    // All instruction operands are now inputs (and of course, they may also be
    // defined in this block, so they may need to be phi translated themselves.
    for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
      if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
        InstInputs.push_back(Op);
  }

  // Ok, it must be an intermediate result (either because it started that way
  // or because we just incorporated it into the expression).  See if its
  // operands need to be phi translated, and if so, reconstruct it.

  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
    if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
    Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
    if (!PHIIn) return nullptr;
    if (PHIIn == Cast->getOperand(0))
      return Cast;

    // Find an available version of this cast.

    // Constants are trivial to find.
    if (Constant *C = dyn_cast<Constant>(PHIIn))
      return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
                                              C, Cast->getType()));

    // Otherwise we have to see if a casted version of the incoming pointer
    // is available.  If so, we can use it, otherwise we have to fail.
    for (User *U : PHIIn->users()) {
      if (CastInst *CastI = dyn_cast<CastInst>(U))
        if (CastI->getOpcode() == Cast->getOpcode() &&
            CastI->getType() == Cast->getType() &&
            (!DT || DT->dominates(CastI->getParent(), PredBB)))
          return CastI;
    }
    return nullptr;
  }

  // Handle getelementptr with at least one PHI translatable operand.
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
    SmallVector<Value*, 8> GEPOps;
    bool AnyChanged = false;
    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
      Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
      if (!GEPOp) return nullptr;

      AnyChanged |= GEPOp != GEP->getOperand(i);
      GEPOps.push_back(GEPOp);
    }

    if (!AnyChanged)
      return GEP;

    // Simplify the GEP to handle 'gep x, 0' -> x etc.
    if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(),
                                   GEPOps, {DL, TLI, DT, AC})) {
      for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
        RemoveInstInputs(GEPOps[i], InstInputs);

      return AddAsInput(V);
    }

    // Scan to see if we have this GEP available.
    Value *APHIOp = GEPOps[0];
    for (User *U : APHIOp->users()) {
      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
        if (GEPI->getType() == GEP->getType() &&
            GEPI->getNumOperands() == GEPOps.size() &&
            GEPI->getParent()->getParent() == CurBB->getParent() &&
            (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
          if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin()))
            return GEPI;
        }
    }
    return nullptr;
  }

  // Handle add with a constant RHS.
  if (Inst->getOpcode() == Instruction::Add &&
      isa<ConstantInt>(Inst->getOperand(1))) {
    // PHI translate the LHS.
    Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
    bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
    bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();

    Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
    if (!LHS) return nullptr;

    // If the PHI translated LHS is an add of a constant, fold the immediates.
    if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
      if (BOp->getOpcode() == Instruction::Add)
        if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
          LHS = BOp->getOperand(0);
          RHS = ConstantExpr::getAdd(RHS, CI);
          isNSW = isNUW = false;

          // If the old 'LHS' was an input, add the new 'LHS' as an input.
          if (is_contained(InstInputs, BOp)) {
            RemoveInstInputs(BOp, InstInputs);
            AddAsInput(LHS);
          }
        }

    // See if the add simplifies away.
    if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) {
      // If we simplified the operands, the LHS is no longer an input, but Res
      // is.
      RemoveInstInputs(LHS, InstInputs);
      return AddAsInput(Res);
    }

    // If we didn't modify the add, just return it.
    if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
      return Inst;

    // Otherwise, see if we have this add available somewhere.
    for (User *U : LHS->users()) {
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
        if (BO->getOpcode() == Instruction::Add &&
            BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
            BO->getParent()->getParent() == CurBB->getParent() &&
            (!DT || DT->dominates(BO->getParent(), PredBB)))
          return BO;
    }

    return nullptr;
  }

  // Otherwise, we failed.
  return nullptr;
}


/// PHITranslateValue - PHI translate the current address up the CFG from
/// CurBB to Pred, updating our state to reflect any needed changes.  If
/// 'MustDominate' is true, the translated value must dominate
/// PredBB.  This returns true on failure and sets Addr to null.
bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
                                     const DominatorTree *DT,
                                     bool MustDominate) {
  assert(DT || !MustDominate);
  assert(Verify() && "Invalid PHITransAddr!");
  if (DT && DT->isReachableFromEntry(PredBB))
    Addr =
        PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr);
  else
    Addr = nullptr;
  assert(Verify() && "Invalid PHITransAddr!");

  if (MustDominate)
    // Make sure the value is live in the predecessor.
    if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
      if (!DT->dominates(Inst->getParent(), PredBB))
        Addr = nullptr;

  return Addr == nullptr;
}

/// PHITranslateWithInsertion - PHI translate this value into the specified
/// predecessor block, inserting a computation of the value if it is
/// unavailable.
///
/// All newly created instructions are added to the NewInsts list.  This
/// returns null on failure.
///
Value *PHITransAddr::
PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
                          const DominatorTree &DT,
                          SmallVectorImpl<Instruction*> &NewInsts) {
  unsigned NISize = NewInsts.size();

  // Attempt to PHI translate with insertion.
  Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);

  // If successful, return the new value.
  if (Addr) return Addr;

  // If not, destroy any intermediate instructions inserted.
  while (NewInsts.size() != NISize)
    NewInsts.pop_back_val()->eraseFromParent();
  return nullptr;
}


/// InsertPHITranslatedPointer - Insert a computation of the PHI translated
/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
/// block.  All newly created instructions are added to the NewInsts list.
/// This returns null on failure.
///
Value *PHITransAddr::
InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
                           BasicBlock *PredBB, const DominatorTree &DT,
                           SmallVectorImpl<Instruction*> &NewInsts) {
  // See if we have a version of this value already available and dominating
  // PredBB.  If so, there is no need to insert a new instance of it.
  PHITransAddr Tmp(InVal, DL, AC);
  if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true))
    return Tmp.getAddr();

  // We don't need to PHI translate values which aren't instructions.
  auto *Inst = dyn_cast<Instruction>(InVal);
  if (!Inst)
    return nullptr;

  // Handle cast of PHI translatable value.
  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
    if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
    Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
                                              CurBB, PredBB, DT, NewInsts);
    if (!OpVal) return nullptr;

    // Otherwise insert a cast at the end of PredBB.
    CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(),
                                     InVal->getName() + ".phi.trans.insert",
                                     PredBB->getTerminator());
    New->setDebugLoc(Inst->getDebugLoc());
    NewInsts.push_back(New);
    return New;
  }

  // Handle getelementptr with at least one PHI operand.
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
    SmallVector<Value*, 8> GEPOps;
    BasicBlock *CurBB = GEP->getParent();
    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
      Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
                                                CurBB, PredBB, DT, NewInsts);
      if (!OpVal) return nullptr;
      GEPOps.push_back(OpVal);
    }

    GetElementPtrInst *Result = GetElementPtrInst::Create(
        GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1),
        InVal->getName() + ".phi.trans.insert", PredBB->getTerminator());
    Result->setDebugLoc(Inst->getDebugLoc());
    Result->setIsInBounds(GEP->isInBounds());
    NewInsts.push_back(Result);
    return Result;
  }

#if 0
  // FIXME: This code works, but it is unclear that we actually want to insert
  // a big chain of computation in order to make a value available in a block.
  // This needs to be evaluated carefully to consider its cost trade offs.

  // Handle add with a constant RHS.
  if (Inst->getOpcode() == Instruction::Add &&
      isa<ConstantInt>(Inst->getOperand(1))) {
    // PHI translate the LHS.
    Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
                                              CurBB, PredBB, DT, NewInsts);
    if (OpVal == 0) return 0;

    BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
                                           InVal->getName()+".phi.trans.insert",
                                                    PredBB->getTerminator());
    Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
    Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
    NewInsts.push_back(Res);
    return Res;
  }
#endif

  return nullptr;
}