RegisterScavenging.cpp 27.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
//===- RegisterScavenging.cpp - Machine register scavenging ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements the machine register scavenger. It can provide
/// information, such as unused registers, at any point in a machine basic
/// block. It also provides a mechanism to make registers available by evicting
/// them to spill slots.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <string>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "reg-scavenging"

STATISTIC(NumScavengedRegs, "Number of frame index regs scavenged");

void RegScavenger::setRegUsed(Register Reg, LaneBitmask LaneMask) {
  LiveUnits.addRegMasked(Reg, LaneMask);
}

void RegScavenger::init(MachineBasicBlock &MBB) {
  MachineFunction &MF = *MBB.getParent();
  TII = MF.getSubtarget().getInstrInfo();
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();
  LiveUnits.init(*TRI);

  assert((NumRegUnits == 0 || NumRegUnits == TRI->getNumRegUnits()) &&
         "Target changed?");

  // Self-initialize.
  if (!this->MBB) {
    NumRegUnits = TRI->getNumRegUnits();
    KillRegUnits.resize(NumRegUnits);
    DefRegUnits.resize(NumRegUnits);
    TmpRegUnits.resize(NumRegUnits);
  }
  this->MBB = &MBB;

  for (ScavengedInfo &SI : Scavenged) {
    SI.Reg = 0;
    SI.Restore = nullptr;
  }

  Tracking = false;
}

void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) {
  init(MBB);
  LiveUnits.addLiveIns(MBB);
}

void RegScavenger::enterBasicBlockEnd(MachineBasicBlock &MBB) {
  init(MBB);
  LiveUnits.addLiveOuts(MBB);

  // Move internal iterator at the last instruction of the block.
  if (MBB.begin() != MBB.end()) {
    MBBI = std::prev(MBB.end());
    Tracking = true;
  }
}

void RegScavenger::addRegUnits(BitVector &BV, Register Reg) {
  for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
    BV.set(*RUI);
}

void RegScavenger::removeRegUnits(BitVector &BV, Register Reg) {
  for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI)
    BV.reset(*RUI);
}

void RegScavenger::determineKillsAndDefs() {
  assert(Tracking && "Must be tracking to determine kills and defs");

  MachineInstr &MI = *MBBI;
  assert(!MI.isDebugInstr() && "Debug values have no kills or defs");

  // Find out which registers are early clobbered, killed, defined, and marked
  // def-dead in this instruction.
  KillRegUnits.reset();
  DefRegUnits.reset();
  for (const MachineOperand &MO : MI.operands()) {
    if (MO.isRegMask()) {
      TmpRegUnits.clear();
      for (unsigned RU = 0, RUEnd = TRI->getNumRegUnits(); RU != RUEnd; ++RU) {
        for (MCRegUnitRootIterator RURI(RU, TRI); RURI.isValid(); ++RURI) {
          if (MO.clobbersPhysReg(*RURI)) {
            TmpRegUnits.set(RU);
            break;
          }
        }
      }

      // Apply the mask.
      KillRegUnits |= TmpRegUnits;
    }
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Register::isPhysicalRegister(Reg) || isReserved(Reg))
      continue;

    if (MO.isUse()) {
      // Ignore undef uses.
      if (MO.isUndef())
        continue;
      if (MO.isKill())
        addRegUnits(KillRegUnits, Reg);
    } else {
      assert(MO.isDef());
      if (MO.isDead())
        addRegUnits(KillRegUnits, Reg);
      else
        addRegUnits(DefRegUnits, Reg);
    }
  }
}

void RegScavenger::unprocess() {
  assert(Tracking && "Cannot unprocess because we're not tracking");

  MachineInstr &MI = *MBBI;
  if (!MI.isDebugInstr()) {
    determineKillsAndDefs();

    // Commit the changes.
    setUnused(DefRegUnits);
    setUsed(KillRegUnits);
  }

  if (MBBI == MBB->begin()) {
    MBBI = MachineBasicBlock::iterator(nullptr);
    Tracking = false;
  } else
    --MBBI;
}

void RegScavenger::forward() {
  // Move ptr forward.
  if (!Tracking) {
    MBBI = MBB->begin();
    Tracking = true;
  } else {
    assert(MBBI != MBB->end() && "Already past the end of the basic block!");
    MBBI = std::next(MBBI);
  }
  assert(MBBI != MBB->end() && "Already at the end of the basic block!");

  MachineInstr &MI = *MBBI;

  for (SmallVectorImpl<ScavengedInfo>::iterator I = Scavenged.begin(),
         IE = Scavenged.end(); I != IE; ++I) {
    if (I->Restore != &MI)
      continue;

    I->Reg = 0;
    I->Restore = nullptr;
  }

  if (MI.isDebugInstr())
    return;

  determineKillsAndDefs();

  // Verify uses and defs.
#ifndef NDEBUG
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Register::isPhysicalRegister(Reg) || isReserved(Reg))
      continue;
    if (MO.isUse()) {
      if (MO.isUndef())
        continue;
      if (!isRegUsed(Reg)) {
        // Check if it's partial live: e.g.
        // D0 = insert_subreg undef D0, S0
        // ... D0
        // The problem is the insert_subreg could be eliminated. The use of
        // D0 is using a partially undef value. This is not *incorrect* since
        // S1 is can be freely clobbered.
        // Ideally we would like a way to model this, but leaving the
        // insert_subreg around causes both correctness and performance issues.
        bool SubUsed = false;
        for (const MCPhysReg &SubReg : TRI->subregs(Reg))
          if (isRegUsed(SubReg)) {
            SubUsed = true;
            break;
          }
        bool SuperUsed = false;
        for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
          if (isRegUsed(*SR)) {
            SuperUsed = true;
            break;
          }
        }
        if (!SubUsed && !SuperUsed) {
          MBB->getParent()->verify(nullptr, "In Register Scavenger");
          llvm_unreachable("Using an undefined register!");
        }
        (void)SubUsed;
        (void)SuperUsed;
      }
    } else {
      assert(MO.isDef());
#if 0
      // FIXME: Enable this once we've figured out how to correctly transfer
      // implicit kills during codegen passes like the coalescer.
      assert((KillRegs.test(Reg) || isUnused(Reg) ||
              isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) &&
             "Re-defining a live register!");
#endif
    }
  }
#endif // NDEBUG

  // Commit the changes.
  setUnused(KillRegUnits);
  setUsed(DefRegUnits);
}

void RegScavenger::backward() {
  assert(Tracking && "Must be tracking to determine kills and defs");

  const MachineInstr &MI = *MBBI;
  LiveUnits.stepBackward(MI);

  // Expire scavenge spill frameindex uses.
  for (ScavengedInfo &I : Scavenged) {
    if (I.Restore == &MI) {
      I.Reg = 0;
      I.Restore = nullptr;
    }
  }

  if (MBBI == MBB->begin()) {
    MBBI = MachineBasicBlock::iterator(nullptr);
    Tracking = false;
  } else
    --MBBI;
}

bool RegScavenger::isRegUsed(Register Reg, bool includeReserved) const {
  if (isReserved(Reg))
    return includeReserved;
  return !LiveUnits.available(Reg);
}

Register RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const {
  for (Register Reg : *RC) {
    if (!isRegUsed(Reg)) {
      LLVM_DEBUG(dbgs() << "Scavenger found unused reg: " << printReg(Reg, TRI)
                        << "\n");
      return Reg;
    }
  }
  return 0;
}

BitVector RegScavenger::getRegsAvailable(const TargetRegisterClass *RC) {
  BitVector Mask(TRI->getNumRegs());
  for (Register Reg : *RC)
    if (!isRegUsed(Reg))
      Mask.set(Reg);
  return Mask;
}

Register RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI,
                                       BitVector &Candidates,
                                       unsigned InstrLimit,
                                       MachineBasicBlock::iterator &UseMI) {
  int Survivor = Candidates.find_first();
  assert(Survivor > 0 && "No candidates for scavenging");

  MachineBasicBlock::iterator ME = MBB->getFirstTerminator();
  assert(StartMI != ME && "MI already at terminator");
  MachineBasicBlock::iterator RestorePointMI = StartMI;
  MachineBasicBlock::iterator MI = StartMI;

  bool inVirtLiveRange = false;
  for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) {
    if (MI->isDebugInstr()) {
      ++InstrLimit; // Don't count debug instructions
      continue;
    }
    bool isVirtKillInsn = false;
    bool isVirtDefInsn = false;
    // Remove any candidates touched by instruction.
    for (const MachineOperand &MO : MI->operands()) {
      if (MO.isRegMask())
        Candidates.clearBitsNotInMask(MO.getRegMask());
      if (!MO.isReg() || MO.isUndef() || !MO.getReg())
        continue;
      if (Register::isVirtualRegister(MO.getReg())) {
        if (MO.isDef())
          isVirtDefInsn = true;
        else if (MO.isKill())
          isVirtKillInsn = true;
        continue;
      }
      for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
        Candidates.reset(*AI);
    }
    // If we're not in a virtual reg's live range, this is a valid
    // restore point.
    if (!inVirtLiveRange) RestorePointMI = MI;

    // Update whether we're in the live range of a virtual register
    if (isVirtKillInsn) inVirtLiveRange = false;
    if (isVirtDefInsn) inVirtLiveRange = true;

    // Was our survivor untouched by this instruction?
    if (Candidates.test(Survivor))
      continue;

    // All candidates gone?
    if (Candidates.none())
      break;

    Survivor = Candidates.find_first();
  }
  // If we ran off the end, that's where we want to restore.
  if (MI == ME) RestorePointMI = ME;
  assert(RestorePointMI != StartMI &&
         "No available scavenger restore location!");

  // We ran out of candidates, so stop the search.
  UseMI = RestorePointMI;
  return Survivor;
}

/// Given the bitvector \p Available of free register units at position
/// \p From. Search backwards to find a register that is part of \p
/// Candidates and not used/clobbered until the point \p To. If there is
/// multiple candidates continue searching and pick the one that is not used/
/// clobbered for the longest time.
/// Returns the register and the earliest position we know it to be free or
/// the position MBB.end() if no register is available.
static std::pair<MCPhysReg, MachineBasicBlock::iterator>
findSurvivorBackwards(const MachineRegisterInfo &MRI,
    MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
    const LiveRegUnits &LiveOut, ArrayRef<MCPhysReg> AllocationOrder,
    bool RestoreAfter) {
  bool FoundTo = false;
  MCPhysReg Survivor = 0;
  MachineBasicBlock::iterator Pos;
  MachineBasicBlock &MBB = *From->getParent();
  unsigned InstrLimit = 25;
  unsigned InstrCountDown = InstrLimit;
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  LiveRegUnits Used(TRI);

  for (MachineBasicBlock::iterator I = From;; --I) {
    const MachineInstr &MI = *I;

    Used.accumulate(MI);

    if (I == To) {
      // See if one of the registers in RC wasn't used so far.
      for (MCPhysReg Reg : AllocationOrder) {
        if (!MRI.isReserved(Reg) && Used.available(Reg) &&
            LiveOut.available(Reg))
          return std::make_pair(Reg, MBB.end());
      }
      // Otherwise we will continue up to InstrLimit instructions to find
      // the register which is not defined/used for the longest time.
      FoundTo = true;
      Pos = To;
      // Note: It was fine so far to start our search at From, however now that
      // we have to spill, and can only place the restore after From then
      // add the regs used/defed by std::next(From) to the set.
      if (RestoreAfter)
        Used.accumulate(*std::next(From));
    }
    if (FoundTo) {
      if (Survivor == 0 || !Used.available(Survivor)) {
        MCPhysReg AvilableReg = 0;
        for (MCPhysReg Reg : AllocationOrder) {
          if (!MRI.isReserved(Reg) && Used.available(Reg)) {
            AvilableReg = Reg;
            break;
          }
        }
        if (AvilableReg == 0)
          break;
        Survivor = AvilableReg;
      }
      if (--InstrCountDown == 0)
        break;

      // Keep searching when we find a vreg since the spilled register will
      // be usefull for this other vreg as well later.
      bool FoundVReg = false;
      for (const MachineOperand &MO : MI.operands()) {
        if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
          FoundVReg = true;
          break;
        }
      }
      if (FoundVReg) {
        InstrCountDown = InstrLimit;
        Pos = I;
      }
      if (I == MBB.begin())
        break;
    }
  }

  return std::make_pair(Survivor, Pos);
}

static unsigned getFrameIndexOperandNum(MachineInstr &MI) {
  unsigned i = 0;
  while (!MI.getOperand(i).isFI()) {
    ++i;
    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
  }
  return i;
}

RegScavenger::ScavengedInfo &
RegScavenger::spill(Register Reg, const TargetRegisterClass &RC, int SPAdj,
                    MachineBasicBlock::iterator Before,
                    MachineBasicBlock::iterator &UseMI) {
  // Find an available scavenging slot with size and alignment matching
  // the requirements of the class RC.
  const MachineFunction &MF = *Before->getMF();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned NeedSize = TRI->getSpillSize(RC);
  unsigned NeedAlign = TRI->getSpillAlignment(RC);

  unsigned SI = Scavenged.size(), Diff = std::numeric_limits<unsigned>::max();
  int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd();
  for (unsigned I = 0; I < Scavenged.size(); ++I) {
    if (Scavenged[I].Reg != 0)
      continue;
    // Verify that this slot is valid for this register.
    int FI = Scavenged[I].FrameIndex;
    if (FI < FIB || FI >= FIE)
      continue;
    unsigned S = MFI.getObjectSize(FI);
    unsigned A = MFI.getObjectAlignment(FI);
    if (NeedSize > S || NeedAlign > A)
      continue;
    // Avoid wasting slots with large size and/or large alignment. Pick one
    // that is the best fit for this register class (in street metric).
    // Picking a larger slot than necessary could happen if a slot for a
    // larger register is reserved before a slot for a smaller one. When
    // trying to spill a smaller register, the large slot would be found
    // first, thus making it impossible to spill the larger register later.
    unsigned D = (S-NeedSize) + (A-NeedAlign);
    if (D < Diff) {
      SI = I;
      Diff = D;
    }
  }

  if (SI == Scavenged.size()) {
    // We need to scavenge a register but have no spill slot, the target
    // must know how to do it (if not, we'll assert below).
    Scavenged.push_back(ScavengedInfo(FIE));
  }

  // Avoid infinite regress
  Scavenged[SI].Reg = Reg;

  // If the target knows how to save/restore the register, let it do so;
  // otherwise, use the emergency stack spill slot.
  if (!TRI->saveScavengerRegister(*MBB, Before, UseMI, &RC, Reg)) {
    // Spill the scavenged register before \p Before.
    int FI = Scavenged[SI].FrameIndex;
    if (FI < FIB || FI >= FIE) {
      std::string Msg = std::string("Error while trying to spill ") +
          TRI->getName(Reg) + " from class " + TRI->getRegClassName(&RC) +
          ": Cannot scavenge register without an emergency spill slot!";
      report_fatal_error(Msg.c_str());
    }
    TII->storeRegToStackSlot(*MBB, Before, Reg, true, Scavenged[SI].FrameIndex,
                             &RC, TRI);
    MachineBasicBlock::iterator II = std::prev(Before);

    unsigned FIOperandNum = getFrameIndexOperandNum(*II);
    TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);

    // Restore the scavenged register before its use (or first terminator).
    TII->loadRegFromStackSlot(*MBB, UseMI, Reg, Scavenged[SI].FrameIndex,
                              &RC, TRI);
    II = std::prev(UseMI);

    FIOperandNum = getFrameIndexOperandNum(*II);
    TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
  }
  return Scavenged[SI];
}

Register RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
                                        MachineBasicBlock::iterator I,
                                        int SPAdj, bool AllowSpill) {
  MachineInstr &MI = *I;
  const MachineFunction &MF = *MI.getMF();
  // Consider all allocatable registers in the register class initially
  BitVector Candidates = TRI->getAllocatableSet(MF, RC);

  // Exclude all the registers being used by the instruction.
  for (const MachineOperand &MO : MI.operands()) {
    if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) &&
        !Register::isVirtualRegister(MO.getReg()))
      for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
        Candidates.reset(*AI);
  }

  // Try to find a register that's unused if there is one, as then we won't
  // have to spill.
  BitVector Available = getRegsAvailable(RC);
  Available &= Candidates;
  if (Available.any())
    Candidates = Available;

  // Find the register whose use is furthest away.
  MachineBasicBlock::iterator UseMI;
  Register SReg = findSurvivorReg(I, Candidates, 25, UseMI);

  // If we found an unused register there is no reason to spill it.
  if (!isRegUsed(SReg)) {
    LLVM_DEBUG(dbgs() << "Scavenged register: " << printReg(SReg, TRI) << "\n");
    return SReg;
  }

  if (!AllowSpill)
    return 0;

  ScavengedInfo &Scavenged = spill(SReg, *RC, SPAdj, I, UseMI);
  Scavenged.Restore = &*std::prev(UseMI);

  LLVM_DEBUG(dbgs() << "Scavenged register (with spill): "
                    << printReg(SReg, TRI) << "\n");

  return SReg;
}

Register RegScavenger::scavengeRegisterBackwards(const TargetRegisterClass &RC,
                                                 MachineBasicBlock::iterator To,
                                                 bool RestoreAfter, int SPAdj,
                                                 bool AllowSpill) {
  const MachineBasicBlock &MBB = *To->getParent();
  const MachineFunction &MF = *MBB.getParent();

  // Find the register whose use is furthest away.
  MachineBasicBlock::iterator UseMI;
  ArrayRef<MCPhysReg> AllocationOrder = RC.getRawAllocationOrder(MF);
  std::pair<MCPhysReg, MachineBasicBlock::iterator> P =
      findSurvivorBackwards(*MRI, MBBI, To, LiveUnits, AllocationOrder,
                            RestoreAfter);
  MCPhysReg Reg = P.first;
  MachineBasicBlock::iterator SpillBefore = P.second;
  assert(Reg != 0 && "No register left to scavenge!");
  // Found an available register?
  if (SpillBefore == MBB.end()) {
    LLVM_DEBUG(dbgs() << "Scavenged free register: " << printReg(Reg, TRI)
               << '\n');
    return Reg;
  }

  if (!AllowSpill)
    return 0;

  MachineBasicBlock::iterator ReloadAfter =
    RestoreAfter ? std::next(MBBI) : MBBI;
  MachineBasicBlock::iterator ReloadBefore = std::next(ReloadAfter);
  if (ReloadBefore != MBB.end())
    LLVM_DEBUG(dbgs() << "Reload before: " << *ReloadBefore << '\n');
  ScavengedInfo &Scavenged = spill(Reg, RC, SPAdj, SpillBefore, ReloadBefore);
  Scavenged.Restore = &*std::prev(SpillBefore);
  LiveUnits.removeReg(Reg);
  LLVM_DEBUG(dbgs() << "Scavenged register with spill: " << printReg(Reg, TRI)
             << " until " << *SpillBefore);
  return Reg;
}

/// Allocate a register for the virtual register \p VReg. The last use of
/// \p VReg is around the current position of the register scavenger \p RS.
/// \p ReserveAfter controls whether the scavenged register needs to be reserved
/// after the current instruction, otherwise it will only be reserved before the
/// current instruction.
static Register scavengeVReg(MachineRegisterInfo &MRI, RegScavenger &RS,
                             Register VReg, bool ReserveAfter) {
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
#ifndef NDEBUG
  // Verify that all definitions and uses are in the same basic block.
  const MachineBasicBlock *CommonMBB = nullptr;
  // Real definition for the reg, re-definitions are not considered.
  const MachineInstr *RealDef = nullptr;
  for (MachineOperand &MO : MRI.reg_nodbg_operands(VReg)) {
    MachineBasicBlock *MBB = MO.getParent()->getParent();
    if (CommonMBB == nullptr)
      CommonMBB = MBB;
    assert(MBB == CommonMBB && "All defs+uses must be in the same basic block");
    if (MO.isDef()) {
      const MachineInstr &MI = *MO.getParent();
      if (!MI.readsRegister(VReg, &TRI)) {
        assert((!RealDef || RealDef == &MI) &&
               "Can have at most one definition which is not a redefinition");
        RealDef = &MI;
      }
    }
  }
  assert(RealDef != nullptr && "Must have at least 1 Def");
#endif

  // We should only have one definition of the register. However to accommodate
  // the requirements of two address code we also allow definitions in
  // subsequent instructions provided they also read the register. That way
  // we get a single contiguous lifetime.
  //
  // Definitions in MRI.def_begin() are unordered, search for the first.
  MachineRegisterInfo::def_iterator FirstDef =
    std::find_if(MRI.def_begin(VReg), MRI.def_end(),
                 [VReg, &TRI](const MachineOperand &MO) {
      return !MO.getParent()->readsRegister(VReg, &TRI);
    });
  assert(FirstDef != MRI.def_end() &&
         "Must have one definition that does not redefine vreg");
  MachineInstr &DefMI = *FirstDef->getParent();

  // The register scavenger will report a free register inserting an emergency
  // spill/reload if necessary.
  int SPAdj = 0;
  const TargetRegisterClass &RC = *MRI.getRegClass(VReg);
  Register SReg = RS.scavengeRegisterBackwards(RC, DefMI.getIterator(),
                                               ReserveAfter, SPAdj);
  MRI.replaceRegWith(VReg, SReg);
  ++NumScavengedRegs;
  return SReg;
}

/// Allocate (scavenge) vregs inside a single basic block.
/// Returns true if the target spill callback created new vregs and a 2nd pass
/// is necessary.
static bool scavengeFrameVirtualRegsInBlock(MachineRegisterInfo &MRI,
                                            RegScavenger &RS,
                                            MachineBasicBlock &MBB) {
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  RS.enterBasicBlockEnd(MBB);

  unsigned InitialNumVirtRegs = MRI.getNumVirtRegs();
  bool NextInstructionReadsVReg = false;
  for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ) {
    --I;
    // Move RegScavenger to the position between *I and *std::next(I).
    RS.backward(I);

    // Look for unassigned vregs in the uses of *std::next(I).
    if (NextInstructionReadsVReg) {
      MachineBasicBlock::iterator N = std::next(I);
      const MachineInstr &NMI = *N;
      for (const MachineOperand &MO : NMI.operands()) {
        if (!MO.isReg())
          continue;
        Register Reg = MO.getReg();
        // We only care about virtual registers and ignore virtual registers
        // created by the target callbacks in the process (those will be handled
        // in a scavenging round).
        if (!Register::isVirtualRegister(Reg) ||
            Register::virtReg2Index(Reg) >= InitialNumVirtRegs)
          continue;
        if (!MO.readsReg())
          continue;

        Register SReg = scavengeVReg(MRI, RS, Reg, true);
        N->addRegisterKilled(SReg, &TRI, false);
        RS.setRegUsed(SReg);
      }
    }

    // Look for unassigned vregs in the defs of *I.
    NextInstructionReadsVReg = false;
    const MachineInstr &MI = *I;
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg())
        continue;
      Register Reg = MO.getReg();
      // Only vregs, no newly created vregs (see above).
      if (!Register::isVirtualRegister(Reg) ||
          Register::virtReg2Index(Reg) >= InitialNumVirtRegs)
        continue;
      // We have to look at all operands anyway so we can precalculate here
      // whether there is a reading operand. This allows use to skip the use
      // step in the next iteration if there was none.
      assert(!MO.isInternalRead() && "Cannot assign inside bundles");
      assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses");
      if (MO.readsReg()) {
        NextInstructionReadsVReg = true;
      }
      if (MO.isDef()) {
        Register SReg = scavengeVReg(MRI, RS, Reg, false);
        I->addRegisterDead(SReg, &TRI, false);
      }
    }
  }
#ifndef NDEBUG
  for (const MachineOperand &MO : MBB.front().operands()) {
    if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
      continue;
    assert(!MO.isInternalRead() && "Cannot assign inside bundles");
    assert((!MO.isUndef() || MO.isDef()) && "Cannot handle undef uses");
    assert(!MO.readsReg() && "Vreg use in first instruction not allowed");
  }
#endif

  return MRI.getNumVirtRegs() != InitialNumVirtRegs;
}

void llvm::scavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger &RS) {
  // FIXME: Iterating over the instruction stream is unnecessary. We can simply
  // iterate over the vreg use list, which at this point only contains machine
  // operands for which eliminateFrameIndex need a new scratch reg.
  MachineRegisterInfo &MRI = MF.getRegInfo();
  // Shortcut.
  if (MRI.getNumVirtRegs() == 0) {
    MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
    return;
  }

  // Run through the instructions and find any virtual registers.
  for (MachineBasicBlock &MBB : MF) {
    if (MBB.empty())
      continue;

    bool Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB);
    if (Again) {
      LLVM_DEBUG(dbgs() << "Warning: Required two scavenging passes for block "
                        << MBB.getName() << '\n');
      Again = scavengeFrameVirtualRegsInBlock(MRI, RS, MBB);
      // The target required a 2nd run (because it created new vregs while
      // spilling). Refuse to do another pass to keep compiletime in check.
      if (Again)
        report_fatal_error("Incomplete scavenging after 2nd pass");
    }
  }

  MRI.clearVirtRegs();
  MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
}

namespace {

/// This class runs register scavenging independ of the PrologEpilogInserter.
/// This is used in for testing.
class ScavengerTest : public MachineFunctionPass {
public:
  static char ID;

  ScavengerTest() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override {
    const TargetSubtargetInfo &STI = MF.getSubtarget();
    const TargetFrameLowering &TFL = *STI.getFrameLowering();

    RegScavenger RS;
    // Let's hope that calling those outside of PrologEpilogueInserter works
    // well enough to initialize the scavenger with some emergency spillslots
    // for the target.
    BitVector SavedRegs;
    TFL.determineCalleeSaves(MF, SavedRegs, &RS);
    TFL.processFunctionBeforeFrameFinalized(MF, &RS);

    // Let's scavenge the current function
    scavengeFrameVirtualRegs(MF, RS);
    return true;
  }
};

} // end anonymous namespace

char ScavengerTest::ID;

INITIALIZE_PASS(ScavengerTest, "scavenger-test",
                "Scavenge virtual registers inside basic blocks", false, false)