ConstantRange.cpp 53.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
//===- ConstantRange.cpp - ConstantRange implementation -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value.  This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range.  To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators.  When used with boolean values, the following are important
// ranges (other integral ranges use min/max values for special range values):
//
//  [F, F) = {}     = Empty set
//  [T, F) = {T}
//  [F, T) = {F}
//  [T, T) = {F, T} = Full set
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>

using namespace llvm;

ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
    : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
      Upper(Lower) {}

ConstantRange::ConstantRange(APInt V)
    : Lower(std::move(V)), Upper(Lower + 1) {}

ConstantRange::ConstantRange(APInt L, APInt U)
    : Lower(std::move(L)), Upper(std::move(U)) {
  assert(Lower.getBitWidth() == Upper.getBitWidth() &&
         "ConstantRange with unequal bit widths");
  assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
         "Lower == Upper, but they aren't min or max value!");
}

ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
                                           bool IsSigned) {
  assert(!Known.hasConflict() && "Expected valid KnownBits");

  if (Known.isUnknown())
    return getFull(Known.getBitWidth());

  // For unsigned ranges, or signed ranges with known sign bit, create a simple
  // range between the smallest and largest possible value.
  if (!IsSigned || Known.isNegative() || Known.isNonNegative())
    return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);

  // If we don't know the sign bit, pick the lower bound as a negative number
  // and the upper bound as a non-negative one.
  APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
  Lower.setSignBit();
  Upper.clearSignBit();
  return ConstantRange(Lower, Upper + 1);
}

ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
                                                   const ConstantRange &CR) {
  if (CR.isEmptySet())
    return CR;

  uint32_t W = CR.getBitWidth();
  switch (Pred) {
  default:
    llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
  case CmpInst::ICMP_EQ:
    return CR;
  case CmpInst::ICMP_NE:
    if (CR.isSingleElement())
      return ConstantRange(CR.getUpper(), CR.getLower());
    return getFull(W);
  case CmpInst::ICMP_ULT: {
    APInt UMax(CR.getUnsignedMax());
    if (UMax.isMinValue())
      return getEmpty(W);
    return ConstantRange(APInt::getMinValue(W), std::move(UMax));
  }
  case CmpInst::ICMP_SLT: {
    APInt SMax(CR.getSignedMax());
    if (SMax.isMinSignedValue())
      return getEmpty(W);
    return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
  }
  case CmpInst::ICMP_ULE:
    return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
  case CmpInst::ICMP_SLE:
    return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
  case CmpInst::ICMP_UGT: {
    APInt UMin(CR.getUnsignedMin());
    if (UMin.isMaxValue())
      return getEmpty(W);
    return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
  }
  case CmpInst::ICMP_SGT: {
    APInt SMin(CR.getSignedMin());
    if (SMin.isMaxSignedValue())
      return getEmpty(W);
    return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
  }
  case CmpInst::ICMP_UGE:
    return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
  case CmpInst::ICMP_SGE:
    return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
  }
}

ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
                                                      const ConstantRange &CR) {
  // Follows from De-Morgan's laws:
  //
  // ~(~A union ~B) == A intersect B.
  //
  return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
      .inverse();
}

ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
                                                 const APInt &C) {
  // Computes the exact range that is equal to both the constant ranges returned
  // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
  // when RHS is a singleton such as an APInt and so the assert is valid.
  // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
  // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
  //
  assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
  return makeAllowedICmpRegion(Pred, C);
}

bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
                                      APInt &RHS) const {
  bool Success = false;

  if (isFullSet() || isEmptySet()) {
    Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
    RHS = APInt(getBitWidth(), 0);
    Success = true;
  } else if (auto *OnlyElt = getSingleElement()) {
    Pred = CmpInst::ICMP_EQ;
    RHS = *OnlyElt;
    Success = true;
  } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
    Pred = CmpInst::ICMP_NE;
    RHS = *OnlyMissingElt;
    Success = true;
  } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
    Pred =
        getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
    RHS = getUpper();
    Success = true;
  } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
    Pred =
        getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
    RHS = getLower();
    Success = true;
  }

  assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
         "Bad result!");

  return Success;
}

/// Exact mul nuw region for single element RHS.
static ConstantRange makeExactMulNUWRegion(const APInt &V) {
  unsigned BitWidth = V.getBitWidth();
  if (V == 0)
    return ConstantRange::getFull(V.getBitWidth());

  return ConstantRange::getNonEmpty(
      APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
                             APInt::Rounding::UP),
      APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
                             APInt::Rounding::DOWN) + 1);
}

/// Exact mul nsw region for single element RHS.
static ConstantRange makeExactMulNSWRegion(const APInt &V) {
  // Handle special case for 0, -1 and 1. See the last for reason why we
  // specialize -1 and 1.
  unsigned BitWidth = V.getBitWidth();
  if (V == 0 || V.isOneValue())
    return ConstantRange::getFull(BitWidth);

  APInt MinValue = APInt::getSignedMinValue(BitWidth);
  APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
  // e.g. Returning [-127, 127], represented as [-127, -128).
  if (V.isAllOnesValue())
    return ConstantRange(-MaxValue, MinValue);

  APInt Lower, Upper;
  if (V.isNegative()) {
    Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
    Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
  } else {
    Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
    Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
  }
  // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
  // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
  // and 1 are already handled as special cases.
  return ConstantRange(Lower, Upper + 1);
}

ConstantRange
ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
                                          const ConstantRange &Other,
                                          unsigned NoWrapKind) {
  using OBO = OverflowingBinaryOperator;

  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");

  assert((NoWrapKind == OBO::NoSignedWrap ||
          NoWrapKind == OBO::NoUnsignedWrap) &&
         "NoWrapKind invalid!");

  bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
  unsigned BitWidth = Other.getBitWidth();

  switch (BinOp) {
  default:
    llvm_unreachable("Unsupported binary op");

  case Instruction::Add: {
    if (Unsigned)
      return getNonEmpty(APInt::getNullValue(BitWidth),
                         -Other.getUnsignedMax());

    APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
    APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
    return getNonEmpty(
        SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
        SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
  }

  case Instruction::Sub: {
    if (Unsigned)
      return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));

    APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
    APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
    return getNonEmpty(
        SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
        SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
  }

  case Instruction::Mul:
    if (Unsigned)
      return makeExactMulNUWRegion(Other.getUnsignedMax());

    return makeExactMulNSWRegion(Other.getSignedMin())
        .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));

  case Instruction::Shl: {
    // For given range of shift amounts, if we ignore all illegal shift amounts
    // (that always produce poison), what shift amount range is left?
    ConstantRange ShAmt = Other.intersectWith(
        ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
    if (ShAmt.isEmptySet()) {
      // If the entire range of shift amounts is already poison-producing,
      // then we can freely add more poison-producing flags ontop of that.
      return getFull(BitWidth);
    }
    // There are some legal shift amounts, we can compute conservatively-correct
    // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
    // to be at most bitwidth-1, which results in most conservative range.
    APInt ShAmtUMax = ShAmt.getUnsignedMax();
    if (Unsigned)
      return getNonEmpty(APInt::getNullValue(BitWidth),
                         APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
    return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
                       APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
  }
  }
}

ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
                                                   const APInt &Other,
                                                   unsigned NoWrapKind) {
  // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
  // "for all" and "for any" coincide in this case.
  return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
}

bool ConstantRange::isFullSet() const {
  return Lower == Upper && Lower.isMaxValue();
}

bool ConstantRange::isEmptySet() const {
  return Lower == Upper && Lower.isMinValue();
}

bool ConstantRange::isWrappedSet() const {
  return Lower.ugt(Upper) && !Upper.isNullValue();
}

bool ConstantRange::isUpperWrapped() const {
  return Lower.ugt(Upper);
}

bool ConstantRange::isSignWrappedSet() const {
  return Lower.sgt(Upper) && !Upper.isMinSignedValue();
}

bool ConstantRange::isUpperSignWrapped() const {
  return Lower.sgt(Upper);
}

bool
ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
  assert(getBitWidth() == Other.getBitWidth());
  if (isFullSet())
    return false;
  if (Other.isFullSet())
    return true;
  return (Upper - Lower).ult(Other.Upper - Other.Lower);
}

bool
ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
  assert(MaxSize && "MaxSize can't be 0.");
  // If this a full set, we need special handling to avoid needing an extra bit
  // to represent the size.
  if (isFullSet())
    return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);

  return (Upper - Lower).ugt(MaxSize);
}

bool ConstantRange::isAllNegative() const {
  // Empty set is all negative, full set is not.
  if (isEmptySet())
    return true;
  if (isFullSet())
    return false;

  return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
}

bool ConstantRange::isAllNonNegative() const {
  // Empty and full set are automatically treated correctly.
  return !isSignWrappedSet() && Lower.isNonNegative();
}

APInt ConstantRange::getUnsignedMax() const {
  if (isFullSet() || isUpperWrapped())
    return APInt::getMaxValue(getBitWidth());
  return getUpper() - 1;
}

APInt ConstantRange::getUnsignedMin() const {
  if (isFullSet() || isWrappedSet())
    return APInt::getMinValue(getBitWidth());
  return getLower();
}

APInt ConstantRange::getSignedMax() const {
  if (isFullSet() || isUpperSignWrapped())
    return APInt::getSignedMaxValue(getBitWidth());
  return getUpper() - 1;
}

APInt ConstantRange::getSignedMin() const {
  if (isFullSet() || isSignWrappedSet())
    return APInt::getSignedMinValue(getBitWidth());
  return getLower();
}

bool ConstantRange::contains(const APInt &V) const {
  if (Lower == Upper)
    return isFullSet();

  if (!isUpperWrapped())
    return Lower.ule(V) && V.ult(Upper);
  return Lower.ule(V) || V.ult(Upper);
}

bool ConstantRange::contains(const ConstantRange &Other) const {
  if (isFullSet() || Other.isEmptySet()) return true;
  if (isEmptySet() || Other.isFullSet()) return false;

  if (!isUpperWrapped()) {
    if (Other.isUpperWrapped())
      return false;

    return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
  }

  if (!Other.isUpperWrapped())
    return Other.getUpper().ule(Upper) ||
           Lower.ule(Other.getLower());

  return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
}

ConstantRange ConstantRange::subtract(const APInt &Val) const {
  assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
  // If the set is empty or full, don't modify the endpoints.
  if (Lower == Upper)
    return *this;
  return ConstantRange(Lower - Val, Upper - Val);
}

ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
  return intersectWith(CR.inverse());
}

static ConstantRange getPreferredRange(
    const ConstantRange &CR1, const ConstantRange &CR2,
    ConstantRange::PreferredRangeType Type) {
  if (Type == ConstantRange::Unsigned) {
    if (!CR1.isWrappedSet() && CR2.isWrappedSet())
      return CR1;
    if (CR1.isWrappedSet() && !CR2.isWrappedSet())
      return CR2;
  } else if (Type == ConstantRange::Signed) {
    if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
      return CR1;
    if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
      return CR2;
  }

  if (CR1.isSizeStrictlySmallerThan(CR2))
    return CR1;
  return CR2;
}

ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
                                           PreferredRangeType Type) const {
  assert(getBitWidth() == CR.getBitWidth() &&
         "ConstantRange types don't agree!");

  // Handle common cases.
  if (   isEmptySet() || CR.isFullSet()) return *this;
  if (CR.isEmptySet() ||    isFullSet()) return CR;

  if (!isUpperWrapped() && CR.isUpperWrapped())
    return CR.intersectWith(*this, Type);

  if (!isUpperWrapped() && !CR.isUpperWrapped()) {
    if (Lower.ult(CR.Lower)) {
      // L---U       : this
      //       L---U : CR
      if (Upper.ule(CR.Lower))
        return getEmpty();

      // L---U       : this
      //   L---U     : CR
      if (Upper.ult(CR.Upper))
        return ConstantRange(CR.Lower, Upper);

      // L-------U   : this
      //   L---U     : CR
      return CR;
    }
    //   L---U     : this
    // L-------U   : CR
    if (Upper.ult(CR.Upper))
      return *this;

    //   L-----U   : this
    // L-----U     : CR
    if (Lower.ult(CR.Upper))
      return ConstantRange(Lower, CR.Upper);

    //       L---U : this
    // L---U       : CR
    return getEmpty();
  }

  if (isUpperWrapped() && !CR.isUpperWrapped()) {
    if (CR.Lower.ult(Upper)) {
      // ------U   L--- : this
      //  L--U          : CR
      if (CR.Upper.ult(Upper))
        return CR;

      // ------U   L--- : this
      //  L------U      : CR
      if (CR.Upper.ule(Lower))
        return ConstantRange(CR.Lower, Upper);

      // ------U   L--- : this
      //  L----------U  : CR
      return getPreferredRange(*this, CR, Type);
    }
    if (CR.Lower.ult(Lower)) {
      // --U      L---- : this
      //     L--U       : CR
      if (CR.Upper.ule(Lower))
        return getEmpty();

      // --U      L---- : this
      //     L------U   : CR
      return ConstantRange(Lower, CR.Upper);
    }

    // --U  L------ : this
    //        L--U  : CR
    return CR;
  }

  if (CR.Upper.ult(Upper)) {
    // ------U L-- : this
    // --U L------ : CR
    if (CR.Lower.ult(Upper))
      return getPreferredRange(*this, CR, Type);

    // ----U   L-- : this
    // --U   L---- : CR
    if (CR.Lower.ult(Lower))
      return ConstantRange(Lower, CR.Upper);

    // ----U L---- : this
    // --U     L-- : CR
    return CR;
  }
  if (CR.Upper.ule(Lower)) {
    // --U     L-- : this
    // ----U L---- : CR
    if (CR.Lower.ult(Lower))
      return *this;

    // --U   L---- : this
    // ----U   L-- : CR
    return ConstantRange(CR.Lower, Upper);
  }

  // --U L------ : this
  // ------U L-- : CR
  return getPreferredRange(*this, CR, Type);
}

ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
                                       PreferredRangeType Type) const {
  assert(getBitWidth() == CR.getBitWidth() &&
         "ConstantRange types don't agree!");

  if (   isFullSet() || CR.isEmptySet()) return *this;
  if (CR.isFullSet() ||    isEmptySet()) return CR;

  if (!isUpperWrapped() && CR.isUpperWrapped())
    return CR.unionWith(*this, Type);

  if (!isUpperWrapped() && !CR.isUpperWrapped()) {
    //        L---U  and  L---U        : this
    //  L---U                   L---U  : CR
    // result in one of
    //  L---------U
    // -----U L-----
    if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
      return getPreferredRange(
          ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);

    APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
    APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;

    if (L.isNullValue() && U.isNullValue())
      return getFull();

    return ConstantRange(std::move(L), std::move(U));
  }

  if (!CR.isUpperWrapped()) {
    // ------U   L-----  and  ------U   L----- : this
    //   L--U                            L--U  : CR
    if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
      return *this;

    // ------U   L----- : this
    //    L---------U   : CR
    if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
      return getFull();

    // ----U       L---- : this
    //       L---U       : CR
    // results in one of
    // ----------U L----
    // ----U L----------
    if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
      return getPreferredRange(
          ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);

    // ----U     L----- : this
    //        L----U    : CR
    if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
      return ConstantRange(CR.Lower, Upper);

    // ------U    L---- : this
    //    L-----U       : CR
    assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
           "ConstantRange::unionWith missed a case with one range wrapped");
    return ConstantRange(Lower, CR.Upper);
  }

  // ------U    L----  and  ------U    L---- : this
  // -U  L-----------  and  ------------U  L : CR
  if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
    return getFull();

  APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
  APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;

  return ConstantRange(std::move(L), std::move(U));
}

ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
                                    uint32_t ResultBitWidth) const {
  switch (CastOp) {
  default:
    llvm_unreachable("unsupported cast type");
  case Instruction::Trunc:
    return truncate(ResultBitWidth);
  case Instruction::SExt:
    return signExtend(ResultBitWidth);
  case Instruction::ZExt:
    return zeroExtend(ResultBitWidth);
  case Instruction::BitCast:
    return *this;
  case Instruction::FPToUI:
  case Instruction::FPToSI:
    if (getBitWidth() == ResultBitWidth)
      return *this;
    else
      return getFull(ResultBitWidth);
  case Instruction::UIToFP: {
    // TODO: use input range if available
    auto BW = getBitWidth();
    APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
    APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
    return ConstantRange(std::move(Min), std::move(Max));
  }
  case Instruction::SIToFP: {
    // TODO: use input range if available
    auto BW = getBitWidth();
    APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
    APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
    return ConstantRange(std::move(SMin), std::move(SMax));
  }
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::AddrSpaceCast:
    // Conservatively return getFull set.
    return getFull(ResultBitWidth);
  };
}

ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
  if (isEmptySet()) return getEmpty(DstTySize);

  unsigned SrcTySize = getBitWidth();
  assert(SrcTySize < DstTySize && "Not a value extension");
  if (isFullSet() || isUpperWrapped()) {
    // Change into [0, 1 << src bit width)
    APInt LowerExt(DstTySize, 0);
    if (!Upper) // special case: [X, 0) -- not really wrapping around
      LowerExt = Lower.zext(DstTySize);
    return ConstantRange(std::move(LowerExt),
                         APInt::getOneBitSet(DstTySize, SrcTySize));
  }

  return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
}

ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
  if (isEmptySet()) return getEmpty(DstTySize);

  unsigned SrcTySize = getBitWidth();
  assert(SrcTySize < DstTySize && "Not a value extension");

  // special case: [X, INT_MIN) -- not really wrapping around
  if (Upper.isMinSignedValue())
    return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));

  if (isFullSet() || isSignWrappedSet()) {
    return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
                         APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
  }

  return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
}

ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
  assert(getBitWidth() > DstTySize && "Not a value truncation");
  if (isEmptySet())
    return getEmpty(DstTySize);
  if (isFullSet())
    return getFull(DstTySize);

  APInt LowerDiv(Lower), UpperDiv(Upper);
  ConstantRange Union(DstTySize, /*isFullSet=*/false);

  // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
  // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
  // then we do the union with [MaxValue, Upper)
  if (isUpperWrapped()) {
    // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
    // truncated range.
    if (Upper.getActiveBits() > DstTySize ||
        Upper.countTrailingOnes() == DstTySize)
      return getFull(DstTySize);

    Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
    UpperDiv.setAllBits();

    // Union covers the MaxValue case, so return if the remaining range is just
    // MaxValue(DstTy).
    if (LowerDiv == UpperDiv)
      return Union;
  }

  // Chop off the most significant bits that are past the destination bitwidth.
  if (LowerDiv.getActiveBits() > DstTySize) {
    // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
    APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
    LowerDiv -= Adjust;
    UpperDiv -= Adjust;
  }

  unsigned UpperDivWidth = UpperDiv.getActiveBits();
  if (UpperDivWidth <= DstTySize)
    return ConstantRange(LowerDiv.trunc(DstTySize),
                         UpperDiv.trunc(DstTySize)).unionWith(Union);

  // The truncated value wraps around. Check if we can do better than fullset.
  if (UpperDivWidth == DstTySize + 1) {
    // Clear the MSB so that UpperDiv wraps around.
    UpperDiv.clearBit(DstTySize);
    if (UpperDiv.ult(LowerDiv))
      return ConstantRange(LowerDiv.trunc(DstTySize),
                           UpperDiv.trunc(DstTySize)).unionWith(Union);
  }

  return getFull(DstTySize);
}

ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
  unsigned SrcTySize = getBitWidth();
  if (SrcTySize > DstTySize)
    return truncate(DstTySize);
  if (SrcTySize < DstTySize)
    return zeroExtend(DstTySize);
  return *this;
}

ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
  unsigned SrcTySize = getBitWidth();
  if (SrcTySize > DstTySize)
    return truncate(DstTySize);
  if (SrcTySize < DstTySize)
    return signExtend(DstTySize);
  return *this;
}

ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
                                      const ConstantRange &Other) const {
  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");

  switch (BinOp) {
  case Instruction::Add:
    return add(Other);
  case Instruction::Sub:
    return sub(Other);
  case Instruction::Mul:
    return multiply(Other);
  case Instruction::UDiv:
    return udiv(Other);
  case Instruction::SDiv:
    return sdiv(Other);
  case Instruction::URem:
    return urem(Other);
  case Instruction::SRem:
    return srem(Other);
  case Instruction::Shl:
    return shl(Other);
  case Instruction::LShr:
    return lshr(Other);
  case Instruction::AShr:
    return ashr(Other);
  case Instruction::And:
    return binaryAnd(Other);
  case Instruction::Or:
    return binaryOr(Other);
  // Note: floating point operations applied to abstract ranges are just
  // ideal integer operations with a lossy representation
  case Instruction::FAdd:
    return add(Other);
  case Instruction::FSub:
    return sub(Other);
  case Instruction::FMul:
    return multiply(Other);
  default:
    // Conservatively return getFull set.
    return getFull();
  }
}

ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
                                                 const ConstantRange &Other,
                                                 unsigned NoWrapKind) const {
  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");

  switch (BinOp) {
  case Instruction::Add:
    return addWithNoWrap(Other, NoWrapKind);
  case Instruction::Sub:
    return subWithNoWrap(Other, NoWrapKind);
  default:
    // Don't know about this Overflowing Binary Operation.
    // Conservatively fallback to plain binop handling.
    return binaryOp(BinOp, Other);
  }
}

ConstantRange
ConstantRange::add(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() || Other.isFullSet())
    return getFull();

  APInt NewLower = getLower() + Other.getLower();
  APInt NewUpper = getUpper() + Other.getUpper() - 1;
  if (NewLower == NewUpper)
    return getFull();

  ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
  if (X.isSizeStrictlySmallerThan(*this) ||
      X.isSizeStrictlySmallerThan(Other))
    // We've wrapped, therefore, full set.
    return getFull();
  return X;
}

ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
                                           unsigned NoWrapKind,
                                           PreferredRangeType RangeType) const {
  // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
  // (X is from this, and Y is from Other)
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() && Other.isFullSet())
    return getFull();

  using OBO = OverflowingBinaryOperator;
  ConstantRange Result = add(Other);

  // If an overflow happens for every value pair in these two constant ranges,
  // we must return Empty set. In this case, we get that for free, because we
  // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
  // in an empty set.

  if (NoWrapKind & OBO::NoSignedWrap)
    Result = Result.intersectWith(sadd_sat(Other), RangeType);

  if (NoWrapKind & OBO::NoUnsignedWrap)
    Result = Result.intersectWith(uadd_sat(Other), RangeType);

  return Result;
}

ConstantRange
ConstantRange::sub(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() || Other.isFullSet())
    return getFull();

  APInt NewLower = getLower() - Other.getUpper() + 1;
  APInt NewUpper = getUpper() - Other.getLower();
  if (NewLower == NewUpper)
    return getFull();

  ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
  if (X.isSizeStrictlySmallerThan(*this) ||
      X.isSizeStrictlySmallerThan(Other))
    // We've wrapped, therefore, full set.
    return getFull();
  return X;
}

ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
                                           unsigned NoWrapKind,
                                           PreferredRangeType RangeType) const {
  // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
  // (X is from this, and Y is from Other)
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  if (isFullSet() && Other.isFullSet())
    return getFull();

  using OBO = OverflowingBinaryOperator;
  ConstantRange Result = sub(Other);

  // If an overflow happens for every value pair in these two constant ranges,
  // we must return Empty set. In signed case, we get that for free, because we
  // get lucky that intersection of sub() with ssub_sat() results in an
  // empty set. But for unsigned we must perform the overflow check manually.

  if (NoWrapKind & OBO::NoSignedWrap)
    Result = Result.intersectWith(ssub_sat(Other), RangeType);

  if (NoWrapKind & OBO::NoUnsignedWrap) {
    if (getUnsignedMax().ult(Other.getUnsignedMin()))
      return getEmpty(); // Always overflows.
    Result = Result.intersectWith(usub_sat(Other), RangeType);
  }

  return Result;
}

ConstantRange
ConstantRange::multiply(const ConstantRange &Other) const {
  // TODO: If either operand is a single element and the multiply is known to
  // be non-wrapping, round the result min and max value to the appropriate
  // multiple of that element. If wrapping is possible, at least adjust the
  // range according to the greatest power-of-two factor of the single element.

  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // Multiplication is signedness-independent. However different ranges can be
  // obtained depending on how the input ranges are treated. These different
  // ranges are all conservatively correct, but one might be better than the
  // other. We calculate two ranges; one treating the inputs as unsigned
  // and the other signed, then return the smallest of these ranges.

  // Unsigned range first.
  APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
  APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
  APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
  APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);

  ConstantRange Result_zext = ConstantRange(this_min * Other_min,
                                            this_max * Other_max + 1);
  ConstantRange UR = Result_zext.truncate(getBitWidth());

  // If the unsigned range doesn't wrap, and isn't negative then it's a range
  // from one positive number to another which is as good as we can generate.
  // In this case, skip the extra work of generating signed ranges which aren't
  // going to be better than this range.
  if (!UR.isUpperWrapped() &&
      (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
    return UR;

  // Now the signed range. Because we could be dealing with negative numbers
  // here, the lower bound is the smallest of the cartesian product of the
  // lower and upper ranges; for example:
  //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
  // Similarly for the upper bound, swapping min for max.

  this_min = getSignedMin().sext(getBitWidth() * 2);
  this_max = getSignedMax().sext(getBitWidth() * 2);
  Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
  Other_max = Other.getSignedMax().sext(getBitWidth() * 2);

  auto L = {this_min * Other_min, this_min * Other_max,
            this_max * Other_min, this_max * Other_max};
  auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
  ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
  ConstantRange SR = Result_sext.truncate(getBitWidth());

  return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
}

ConstantRange
ConstantRange::smax(const ConstantRange &Other) const {
  // X smax Y is: range(smax(X_smin, Y_smin),
  //                    smax(X_smax, Y_smax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
  APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange
ConstantRange::umax(const ConstantRange &Other) const {
  // X umax Y is: range(umax(X_umin, Y_umin),
  //                    umax(X_umax, Y_umax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
  APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange
ConstantRange::smin(const ConstantRange &Other) const {
  // X smin Y is: range(smin(X_smin, Y_smin),
  //                    smin(X_smax, Y_smax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
  APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange
ConstantRange::umin(const ConstantRange &Other) const {
  // X umin Y is: range(umin(X_umin, Y_umin),
  //                    umin(X_umax, Y_umax))
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();
  APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
  APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange
ConstantRange::udiv(const ConstantRange &RHS) const {
  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
    return getEmpty();

  APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());

  APInt RHS_umin = RHS.getUnsignedMin();
  if (RHS_umin.isNullValue()) {
    // We want the lowest value in RHS excluding zero. Usually that would be 1
    // except for a range in the form of [X, 1) in which case it would be X.
    if (RHS.getUpper() == 1)
      RHS_umin = RHS.getLower();
    else
      RHS_umin = 1;
  }

  APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
  return getNonEmpty(std::move(Lower), std::move(Upper));
}

ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
  // We split up the LHS and RHS into positive and negative components
  // and then also compute the positive and negative components of the result
  // separately by combining division results with the appropriate signs.
  APInt Zero = APInt::getNullValue(getBitWidth());
  APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
  ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
  ConstantRange NegFilter(SignedMin, Zero);
  ConstantRange PosL = intersectWith(PosFilter);
  ConstantRange NegL = intersectWith(NegFilter);
  ConstantRange PosR = RHS.intersectWith(PosFilter);
  ConstantRange NegR = RHS.intersectWith(NegFilter);

  ConstantRange PosRes = getEmpty();
  if (!PosL.isEmptySet() && !PosR.isEmptySet())
    // pos / pos = pos.
    PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
                           (PosL.Upper - 1).sdiv(PosR.Lower) + 1);

  if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
    // neg / neg = pos.
    //
    // We need to deal with one tricky case here: SignedMin / -1 is UB on the
    // IR level, so we'll want to exclude this case when calculating bounds.
    // (For APInts the operation is well-defined and yields SignedMin.) We
    // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
    APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
    if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
      // Remove -1 from the LHS. Skip if it's the only element, as this would
      // leave us with an empty set.
      if (!NegR.Lower.isAllOnesValue()) {
        APInt AdjNegRUpper;
        if (RHS.Lower.isAllOnesValue())
          // Negative part of [-1, X] without -1 is [SignedMin, X].
          AdjNegRUpper = RHS.Upper;
        else
          // [X, -1] without -1 is [X, -2].
          AdjNegRUpper = NegR.Upper - 1;

        PosRes = PosRes.unionWith(
            ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
      }

      // Remove SignedMin from the RHS. Skip if it's the only element, as this
      // would leave us with an empty set.
      if (NegL.Upper != SignedMin + 1) {
        APInt AdjNegLLower;
        if (Upper == SignedMin + 1)
          // Negative part of [X, SignedMin] without SignedMin is [X, -1].
          AdjNegLLower = Lower;
        else
          // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
          AdjNegLLower = NegL.Lower + 1;

        PosRes = PosRes.unionWith(
            ConstantRange(std::move(Lo),
                          AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
      }
    } else {
      PosRes = PosRes.unionWith(
          ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
    }
  }

  ConstantRange NegRes = getEmpty();
  if (!PosL.isEmptySet() && !NegR.isEmptySet())
    // pos / neg = neg.
    NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
                           PosL.Lower.sdiv(NegR.Lower) + 1);

  if (!NegL.isEmptySet() && !PosR.isEmptySet())
    // neg / pos = neg.
    NegRes = NegRes.unionWith(
        ConstantRange(NegL.Lower.sdiv(PosR.Lower),
                      (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));

  // Prefer a non-wrapping signed range here.
  ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);

  // Preserve the zero that we dropped when splitting the LHS by sign.
  if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
    Res = Res.unionWith(ConstantRange(Zero));
  return Res;
}

ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
    return getEmpty();

  // L % R for L < R is L.
  if (getUnsignedMax().ult(RHS.getUnsignedMin()))
    return *this;

  // L % R is <= L and < R.
  APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
  return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
}

ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
  if (isEmptySet() || RHS.isEmptySet())
    return getEmpty();

  ConstantRange AbsRHS = RHS.abs();
  APInt MinAbsRHS = AbsRHS.getUnsignedMin();
  APInt MaxAbsRHS = AbsRHS.getUnsignedMax();

  // Modulus by zero is UB.
  if (MaxAbsRHS.isNullValue())
    return getEmpty();

  if (MinAbsRHS.isNullValue())
    ++MinAbsRHS;

  APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();

  if (MinLHS.isNonNegative()) {
    // L % R for L < R is L.
    if (MaxLHS.ult(MinAbsRHS))
      return *this;

    // L % R is <= L and < R.
    APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
    return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
  }

  // Same basic logic as above, but the result is negative.
  if (MaxLHS.isNegative()) {
    if (MinLHS.ugt(-MinAbsRHS))
      return *this;

    APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
    return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
  }

  // LHS range crosses zero.
  APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
  APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
  return ConstantRange(std::move(Lower), std::move(Upper));
}

ConstantRange
ConstantRange::binaryAnd(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // TODO: replace this with something less conservative

  APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
  return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
}

ConstantRange
ConstantRange::binaryOr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // TODO: replace this with something less conservative

  APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
  return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
}

ConstantRange
ConstantRange::shl(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt max = getUnsignedMax();
  APInt Other_umax = Other.getUnsignedMax();

  // If we are shifting by maximum amount of
  // zero return return the original range.
  if (Other_umax.isNullValue())
    return *this;
  // there's overflow!
  if (Other_umax.ugt(max.countLeadingZeros()))
    return getFull();

  // FIXME: implement the other tricky cases

  APInt min = getUnsignedMin();
  min <<= Other.getUnsignedMin();
  max <<= Other_umax;

  return ConstantRange(std::move(min), std::move(max) + 1);
}

ConstantRange
ConstantRange::lshr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
  APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
  return getNonEmpty(std::move(min), std::move(max));
}

ConstantRange
ConstantRange::ashr(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // May straddle zero, so handle both positive and negative cases.
  // 'PosMax' is the upper bound of the result of the ashr
  // operation, when Upper of the LHS of ashr is a non-negative.
  // number. Since ashr of a non-negative number will result in a
  // smaller number, the Upper value of LHS is shifted right with
  // the minimum value of 'Other' instead of the maximum value.
  APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;

  // 'PosMin' is the lower bound of the result of the ashr
  // operation, when Lower of the LHS is a non-negative number.
  // Since ashr of a non-negative number will result in a smaller
  // number, the Lower value of LHS is shifted right with the
  // maximum value of 'Other'.
  APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());

  // 'NegMax' is the upper bound of the result of the ashr
  // operation, when Upper of the LHS of ashr is a negative number.
  // Since 'ashr' of a negative number will result in a bigger
  // number, the Upper value of LHS is shifted right with the
  // maximum value of 'Other'.
  APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;

  // 'NegMin' is the lower bound of the result of the ashr
  // operation, when Lower of the LHS of ashr is a negative number.
  // Since 'ashr' of a negative number will result in a bigger
  // number, the Lower value of LHS is shifted right with the
  // minimum value of 'Other'.
  APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());

  APInt max, min;
  if (getSignedMin().isNonNegative()) {
    // Upper and Lower of LHS are non-negative.
    min = PosMin;
    max = PosMax;
  } else if (getSignedMax().isNegative()) {
    // Upper and Lower of LHS are negative.
    min = NegMin;
    max = NegMax;
  } else {
    // Upper is non-negative and Lower is negative.
    min = NegMin;
    max = PosMax;
  }
  return getNonEmpty(std::move(min), std::move(max));
}

ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
  APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
  APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
  APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
  APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
  APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  // Because we could be dealing with negative numbers here, the lower bound is
  // the smallest of the cartesian product of the lower and upper ranges;
  // for example:
  //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
  // Similarly for the upper bound, swapping min for max.

  APInt this_min = getSignedMin().sext(getBitWidth() * 2);
  APInt this_max = getSignedMax().sext(getBitWidth() * 2);
  APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
  APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2);

  auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min,
            this_max * Other_max};
  auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };

  // Note that we wanted to perform signed saturating multiplication,
  // so since we performed plain multiplication in twice the bitwidth,
  // we need to perform signed saturating truncation.
  return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()),
                     std::max(L, Compare).truncSSat(getBitWidth()) + 1);
}

ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
  APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return getEmpty();

  APInt Min = getSignedMin(), Max = getSignedMax();
  APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
  APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
  APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
  return getNonEmpty(std::move(NewL), std::move(NewU));
}

ConstantRange ConstantRange::inverse() const {
  if (isFullSet())
    return getEmpty();
  if (isEmptySet())
    return getFull();
  return ConstantRange(Upper, Lower);
}

ConstantRange ConstantRange::abs() const {
  if (isEmptySet())
    return getEmpty();

  if (isSignWrappedSet()) {
    APInt Lo;
    // Check whether the range crosses zero.
    if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
      Lo = APInt::getNullValue(getBitWidth());
    else
      Lo = APIntOps::umin(Lower, -Upper + 1);

    // SignedMin is included in the result range.
    return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
  }

  APInt SMin = getSignedMin(), SMax = getSignedMax();

  // All non-negative.
  if (SMin.isNonNegative())
    return *this;

  // All negative.
  if (SMax.isNegative())
    return ConstantRange(-SMax, -SMin + 1);

  // Range crosses zero.
  return ConstantRange(APInt::getNullValue(getBitWidth()),
                       APIntOps::umax(-SMin, SMax) + 1);
}

ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();

  // a u+ b overflows high iff a u> ~b.
  if (Min.ugt(~OtherMin))
    return OverflowResult::AlwaysOverflowsHigh;
  if (Max.ugt(~OtherMax))
    return OverflowResult::MayOverflow;
  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getSignedMin(), Max = getSignedMax();
  APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();

  APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
  APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());

  // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
  // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
  if (Min.isNonNegative() && OtherMin.isNonNegative() &&
      Min.sgt(SignedMax - OtherMin))
    return OverflowResult::AlwaysOverflowsHigh;
  if (Max.isNegative() && OtherMax.isNegative() &&
      Max.slt(SignedMin - OtherMax))
    return OverflowResult::AlwaysOverflowsLow;

  if (Max.isNonNegative() && OtherMax.isNonNegative() &&
      Max.sgt(SignedMax - OtherMax))
    return OverflowResult::MayOverflow;
  if (Min.isNegative() && OtherMin.isNegative() &&
      Min.slt(SignedMin - OtherMin))
    return OverflowResult::MayOverflow;

  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();

  // a u- b overflows low iff a u< b.
  if (Max.ult(OtherMin))
    return OverflowResult::AlwaysOverflowsLow;
  if (Min.ult(OtherMax))
    return OverflowResult::MayOverflow;
  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getSignedMin(), Max = getSignedMax();
  APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();

  APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
  APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());

  // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
  // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
  if (Min.isNonNegative() && OtherMax.isNegative() &&
      Min.sgt(SignedMax + OtherMax))
    return OverflowResult::AlwaysOverflowsHigh;
  if (Max.isNegative() && OtherMin.isNonNegative() &&
      Max.slt(SignedMin + OtherMin))
    return OverflowResult::AlwaysOverflowsLow;

  if (Max.isNonNegative() && OtherMin.isNegative() &&
      Max.sgt(SignedMax + OtherMin))
    return OverflowResult::MayOverflow;
  if (Min.isNegative() && OtherMax.isNonNegative() &&
      Min.slt(SignedMin + OtherMax))
    return OverflowResult::MayOverflow;

  return OverflowResult::NeverOverflows;
}

ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
    const ConstantRange &Other) const {
  if (isEmptySet() || Other.isEmptySet())
    return OverflowResult::MayOverflow;

  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
  bool Overflow;

  (void) Min.umul_ov(OtherMin, Overflow);
  if (Overflow)
    return OverflowResult::AlwaysOverflowsHigh;

  (void) Max.umul_ov(OtherMax, Overflow);
  if (Overflow)
    return OverflowResult::MayOverflow;

  return OverflowResult::NeverOverflows;
}

void ConstantRange::print(raw_ostream &OS) const {
  if (isFullSet())
    OS << "full-set";
  else if (isEmptySet())
    OS << "empty-set";
  else
    OS << "[" << Lower << "," << Upper << ")";
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ConstantRange::dump() const {
  print(dbgs());
}
#endif

ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
  const unsigned NumRanges = Ranges.getNumOperands() / 2;
  assert(NumRanges >= 1 && "Must have at least one range!");
  assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");

  auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
  auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));

  ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());

  for (unsigned i = 1; i < NumRanges; ++i) {
    auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
    auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));

    // Note: unionWith will potentially create a range that contains values not
    // contained in any of the original N ranges.
    CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
  }

  return CR;
}