ConstantRange.cpp
53.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
//===- ConstantRange.cpp - ConstantRange implementation -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value. This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range. To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators. When used with boolean values, the following are important
// ranges (other integral ranges use min/max values for special range values):
//
// [F, F) = {} = Empty set
// [T, F) = {T}
// [F, T) = {F}
// [T, T) = {F, T} = Full set
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
using namespace llvm;
ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
: Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
Upper(Lower) {}
ConstantRange::ConstantRange(APInt V)
: Lower(std::move(V)), Upper(Lower + 1) {}
ConstantRange::ConstantRange(APInt L, APInt U)
: Lower(std::move(L)), Upper(std::move(U)) {
assert(Lower.getBitWidth() == Upper.getBitWidth() &&
"ConstantRange with unequal bit widths");
assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
"Lower == Upper, but they aren't min or max value!");
}
ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
bool IsSigned) {
assert(!Known.hasConflict() && "Expected valid KnownBits");
if (Known.isUnknown())
return getFull(Known.getBitWidth());
// For unsigned ranges, or signed ranges with known sign bit, create a simple
// range between the smallest and largest possible value.
if (!IsSigned || Known.isNegative() || Known.isNonNegative())
return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
// If we don't know the sign bit, pick the lower bound as a negative number
// and the upper bound as a non-negative one.
APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
Lower.setSignBit();
Upper.clearSignBit();
return ConstantRange(Lower, Upper + 1);
}
ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &CR) {
if (CR.isEmptySet())
return CR;
uint32_t W = CR.getBitWidth();
switch (Pred) {
default:
llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
case CmpInst::ICMP_EQ:
return CR;
case CmpInst::ICMP_NE:
if (CR.isSingleElement())
return ConstantRange(CR.getUpper(), CR.getLower());
return getFull(W);
case CmpInst::ICMP_ULT: {
APInt UMax(CR.getUnsignedMax());
if (UMax.isMinValue())
return getEmpty(W);
return ConstantRange(APInt::getMinValue(W), std::move(UMax));
}
case CmpInst::ICMP_SLT: {
APInt SMax(CR.getSignedMax());
if (SMax.isMinSignedValue())
return getEmpty(W);
return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
}
case CmpInst::ICMP_ULE:
return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
case CmpInst::ICMP_SLE:
return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
case CmpInst::ICMP_UGT: {
APInt UMin(CR.getUnsignedMin());
if (UMin.isMaxValue())
return getEmpty(W);
return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
}
case CmpInst::ICMP_SGT: {
APInt SMin(CR.getSignedMin());
if (SMin.isMaxSignedValue())
return getEmpty(W);
return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
}
case CmpInst::ICMP_UGE:
return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
case CmpInst::ICMP_SGE:
return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
}
}
ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &CR) {
// Follows from De-Morgan's laws:
//
// ~(~A union ~B) == A intersect B.
//
return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
.inverse();
}
ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
const APInt &C) {
// Computes the exact range that is equal to both the constant ranges returned
// by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
// when RHS is a singleton such as an APInt and so the assert is valid.
// However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
// returns [0,4) but makeSatisfyICmpRegion returns [0,2).
//
assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
return makeAllowedICmpRegion(Pred, C);
}
bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
APInt &RHS) const {
bool Success = false;
if (isFullSet() || isEmptySet()) {
Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
RHS = APInt(getBitWidth(), 0);
Success = true;
} else if (auto *OnlyElt = getSingleElement()) {
Pred = CmpInst::ICMP_EQ;
RHS = *OnlyElt;
Success = true;
} else if (auto *OnlyMissingElt = getSingleMissingElement()) {
Pred = CmpInst::ICMP_NE;
RHS = *OnlyMissingElt;
Success = true;
} else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
Pred =
getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
RHS = getUpper();
Success = true;
} else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
Pred =
getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
RHS = getLower();
Success = true;
}
assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
"Bad result!");
return Success;
}
/// Exact mul nuw region for single element RHS.
static ConstantRange makeExactMulNUWRegion(const APInt &V) {
unsigned BitWidth = V.getBitWidth();
if (V == 0)
return ConstantRange::getFull(V.getBitWidth());
return ConstantRange::getNonEmpty(
APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
APInt::Rounding::UP),
APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
APInt::Rounding::DOWN) + 1);
}
/// Exact mul nsw region for single element RHS.
static ConstantRange makeExactMulNSWRegion(const APInt &V) {
// Handle special case for 0, -1 and 1. See the last for reason why we
// specialize -1 and 1.
unsigned BitWidth = V.getBitWidth();
if (V == 0 || V.isOneValue())
return ConstantRange::getFull(BitWidth);
APInt MinValue = APInt::getSignedMinValue(BitWidth);
APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
// e.g. Returning [-127, 127], represented as [-127, -128).
if (V.isAllOnesValue())
return ConstantRange(-MaxValue, MinValue);
APInt Lower, Upper;
if (V.isNegative()) {
Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
} else {
Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
}
// ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
// Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
// and 1 are already handled as special cases.
return ConstantRange(Lower, Upper + 1);
}
ConstantRange
ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind) {
using OBO = OverflowingBinaryOperator;
assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
assert((NoWrapKind == OBO::NoSignedWrap ||
NoWrapKind == OBO::NoUnsignedWrap) &&
"NoWrapKind invalid!");
bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
unsigned BitWidth = Other.getBitWidth();
switch (BinOp) {
default:
llvm_unreachable("Unsupported binary op");
case Instruction::Add: {
if (Unsigned)
return getNonEmpty(APInt::getNullValue(BitWidth),
-Other.getUnsignedMax());
APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
return getNonEmpty(
SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
}
case Instruction::Sub: {
if (Unsigned)
return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
return getNonEmpty(
SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
}
case Instruction::Mul:
if (Unsigned)
return makeExactMulNUWRegion(Other.getUnsignedMax());
return makeExactMulNSWRegion(Other.getSignedMin())
.intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
case Instruction::Shl: {
// For given range of shift amounts, if we ignore all illegal shift amounts
// (that always produce poison), what shift amount range is left?
ConstantRange ShAmt = Other.intersectWith(
ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
if (ShAmt.isEmptySet()) {
// If the entire range of shift amounts is already poison-producing,
// then we can freely add more poison-producing flags ontop of that.
return getFull(BitWidth);
}
// There are some legal shift amounts, we can compute conservatively-correct
// range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
// to be at most bitwidth-1, which results in most conservative range.
APInt ShAmtUMax = ShAmt.getUnsignedMax();
if (Unsigned)
return getNonEmpty(APInt::getNullValue(BitWidth),
APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
}
}
}
ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
const APInt &Other,
unsigned NoWrapKind) {
// makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
// "for all" and "for any" coincide in this case.
return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
}
bool ConstantRange::isFullSet() const {
return Lower == Upper && Lower.isMaxValue();
}
bool ConstantRange::isEmptySet() const {
return Lower == Upper && Lower.isMinValue();
}
bool ConstantRange::isWrappedSet() const {
return Lower.ugt(Upper) && !Upper.isNullValue();
}
bool ConstantRange::isUpperWrapped() const {
return Lower.ugt(Upper);
}
bool ConstantRange::isSignWrappedSet() const {
return Lower.sgt(Upper) && !Upper.isMinSignedValue();
}
bool ConstantRange::isUpperSignWrapped() const {
return Lower.sgt(Upper);
}
bool
ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
assert(getBitWidth() == Other.getBitWidth());
if (isFullSet())
return false;
if (Other.isFullSet())
return true;
return (Upper - Lower).ult(Other.Upper - Other.Lower);
}
bool
ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
assert(MaxSize && "MaxSize can't be 0.");
// If this a full set, we need special handling to avoid needing an extra bit
// to represent the size.
if (isFullSet())
return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
return (Upper - Lower).ugt(MaxSize);
}
bool ConstantRange::isAllNegative() const {
// Empty set is all negative, full set is not.
if (isEmptySet())
return true;
if (isFullSet())
return false;
return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
}
bool ConstantRange::isAllNonNegative() const {
// Empty and full set are automatically treated correctly.
return !isSignWrappedSet() && Lower.isNonNegative();
}
APInt ConstantRange::getUnsignedMax() const {
if (isFullSet() || isUpperWrapped())
return APInt::getMaxValue(getBitWidth());
return getUpper() - 1;
}
APInt ConstantRange::getUnsignedMin() const {
if (isFullSet() || isWrappedSet())
return APInt::getMinValue(getBitWidth());
return getLower();
}
APInt ConstantRange::getSignedMax() const {
if (isFullSet() || isUpperSignWrapped())
return APInt::getSignedMaxValue(getBitWidth());
return getUpper() - 1;
}
APInt ConstantRange::getSignedMin() const {
if (isFullSet() || isSignWrappedSet())
return APInt::getSignedMinValue(getBitWidth());
return getLower();
}
bool ConstantRange::contains(const APInt &V) const {
if (Lower == Upper)
return isFullSet();
if (!isUpperWrapped())
return Lower.ule(V) && V.ult(Upper);
return Lower.ule(V) || V.ult(Upper);
}
bool ConstantRange::contains(const ConstantRange &Other) const {
if (isFullSet() || Other.isEmptySet()) return true;
if (isEmptySet() || Other.isFullSet()) return false;
if (!isUpperWrapped()) {
if (Other.isUpperWrapped())
return false;
return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
}
if (!Other.isUpperWrapped())
return Other.getUpper().ule(Upper) ||
Lower.ule(Other.getLower());
return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
}
ConstantRange ConstantRange::subtract(const APInt &Val) const {
assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
// If the set is empty or full, don't modify the endpoints.
if (Lower == Upper)
return *this;
return ConstantRange(Lower - Val, Upper - Val);
}
ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
return intersectWith(CR.inverse());
}
static ConstantRange getPreferredRange(
const ConstantRange &CR1, const ConstantRange &CR2,
ConstantRange::PreferredRangeType Type) {
if (Type == ConstantRange::Unsigned) {
if (!CR1.isWrappedSet() && CR2.isWrappedSet())
return CR1;
if (CR1.isWrappedSet() && !CR2.isWrappedSet())
return CR2;
} else if (Type == ConstantRange::Signed) {
if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
return CR1;
if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
return CR2;
}
if (CR1.isSizeStrictlySmallerThan(CR2))
return CR1;
return CR2;
}
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
PreferredRangeType Type) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
// Handle common cases.
if ( isEmptySet() || CR.isFullSet()) return *this;
if (CR.isEmptySet() || isFullSet()) return CR;
if (!isUpperWrapped() && CR.isUpperWrapped())
return CR.intersectWith(*this, Type);
if (!isUpperWrapped() && !CR.isUpperWrapped()) {
if (Lower.ult(CR.Lower)) {
// L---U : this
// L---U : CR
if (Upper.ule(CR.Lower))
return getEmpty();
// L---U : this
// L---U : CR
if (Upper.ult(CR.Upper))
return ConstantRange(CR.Lower, Upper);
// L-------U : this
// L---U : CR
return CR;
}
// L---U : this
// L-------U : CR
if (Upper.ult(CR.Upper))
return *this;
// L-----U : this
// L-----U : CR
if (Lower.ult(CR.Upper))
return ConstantRange(Lower, CR.Upper);
// L---U : this
// L---U : CR
return getEmpty();
}
if (isUpperWrapped() && !CR.isUpperWrapped()) {
if (CR.Lower.ult(Upper)) {
// ------U L--- : this
// L--U : CR
if (CR.Upper.ult(Upper))
return CR;
// ------U L--- : this
// L------U : CR
if (CR.Upper.ule(Lower))
return ConstantRange(CR.Lower, Upper);
// ------U L--- : this
// L----------U : CR
return getPreferredRange(*this, CR, Type);
}
if (CR.Lower.ult(Lower)) {
// --U L---- : this
// L--U : CR
if (CR.Upper.ule(Lower))
return getEmpty();
// --U L---- : this
// L------U : CR
return ConstantRange(Lower, CR.Upper);
}
// --U L------ : this
// L--U : CR
return CR;
}
if (CR.Upper.ult(Upper)) {
// ------U L-- : this
// --U L------ : CR
if (CR.Lower.ult(Upper))
return getPreferredRange(*this, CR, Type);
// ----U L-- : this
// --U L---- : CR
if (CR.Lower.ult(Lower))
return ConstantRange(Lower, CR.Upper);
// ----U L---- : this
// --U L-- : CR
return CR;
}
if (CR.Upper.ule(Lower)) {
// --U L-- : this
// ----U L---- : CR
if (CR.Lower.ult(Lower))
return *this;
// --U L---- : this
// ----U L-- : CR
return ConstantRange(CR.Lower, Upper);
}
// --U L------ : this
// ------U L-- : CR
return getPreferredRange(*this, CR, Type);
}
ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
PreferredRangeType Type) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
if ( isFullSet() || CR.isEmptySet()) return *this;
if (CR.isFullSet() || isEmptySet()) return CR;
if (!isUpperWrapped() && CR.isUpperWrapped())
return CR.unionWith(*this, Type);
if (!isUpperWrapped() && !CR.isUpperWrapped()) {
// L---U and L---U : this
// L---U L---U : CR
// result in one of
// L---------U
// -----U L-----
if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
return getPreferredRange(
ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
if (L.isNullValue() && U.isNullValue())
return getFull();
return ConstantRange(std::move(L), std::move(U));
}
if (!CR.isUpperWrapped()) {
// ------U L----- and ------U L----- : this
// L--U L--U : CR
if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
return *this;
// ------U L----- : this
// L---------U : CR
if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
return getFull();
// ----U L---- : this
// L---U : CR
// results in one of
// ----------U L----
// ----U L----------
if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
return getPreferredRange(
ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
// ----U L----- : this
// L----U : CR
if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
return ConstantRange(CR.Lower, Upper);
// ------U L---- : this
// L-----U : CR
assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
"ConstantRange::unionWith missed a case with one range wrapped");
return ConstantRange(Lower, CR.Upper);
}
// ------U L---- and ------U L---- : this
// -U L----------- and ------------U L : CR
if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
return getFull();
APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
return ConstantRange(std::move(L), std::move(U));
}
ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
uint32_t ResultBitWidth) const {
switch (CastOp) {
default:
llvm_unreachable("unsupported cast type");
case Instruction::Trunc:
return truncate(ResultBitWidth);
case Instruction::SExt:
return signExtend(ResultBitWidth);
case Instruction::ZExt:
return zeroExtend(ResultBitWidth);
case Instruction::BitCast:
return *this;
case Instruction::FPToUI:
case Instruction::FPToSI:
if (getBitWidth() == ResultBitWidth)
return *this;
else
return getFull(ResultBitWidth);
case Instruction::UIToFP: {
// TODO: use input range if available
auto BW = getBitWidth();
APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
return ConstantRange(std::move(Min), std::move(Max));
}
case Instruction::SIToFP: {
// TODO: use input range if available
auto BW = getBitWidth();
APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
return ConstantRange(std::move(SMin), std::move(SMax));
}
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::AddrSpaceCast:
// Conservatively return getFull set.
return getFull(ResultBitWidth);
};
}
ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
if (isEmptySet()) return getEmpty(DstTySize);
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet() || isUpperWrapped()) {
// Change into [0, 1 << src bit width)
APInt LowerExt(DstTySize, 0);
if (!Upper) // special case: [X, 0) -- not really wrapping around
LowerExt = Lower.zext(DstTySize);
return ConstantRange(std::move(LowerExt),
APInt::getOneBitSet(DstTySize, SrcTySize));
}
return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
}
ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
if (isEmptySet()) return getEmpty(DstTySize);
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
// special case: [X, INT_MIN) -- not really wrapping around
if (Upper.isMinSignedValue())
return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
if (isFullSet() || isSignWrappedSet()) {
return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
}
return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
}
ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
assert(getBitWidth() > DstTySize && "Not a value truncation");
if (isEmptySet())
return getEmpty(DstTySize);
if (isFullSet())
return getFull(DstTySize);
APInt LowerDiv(Lower), UpperDiv(Upper);
ConstantRange Union(DstTySize, /*isFullSet=*/false);
// Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
// We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
// then we do the union with [MaxValue, Upper)
if (isUpperWrapped()) {
// If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
// truncated range.
if (Upper.getActiveBits() > DstTySize ||
Upper.countTrailingOnes() == DstTySize)
return getFull(DstTySize);
Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
UpperDiv.setAllBits();
// Union covers the MaxValue case, so return if the remaining range is just
// MaxValue(DstTy).
if (LowerDiv == UpperDiv)
return Union;
}
// Chop off the most significant bits that are past the destination bitwidth.
if (LowerDiv.getActiveBits() > DstTySize) {
// Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
LowerDiv -= Adjust;
UpperDiv -= Adjust;
}
unsigned UpperDivWidth = UpperDiv.getActiveBits();
if (UpperDivWidth <= DstTySize)
return ConstantRange(LowerDiv.trunc(DstTySize),
UpperDiv.trunc(DstTySize)).unionWith(Union);
// The truncated value wraps around. Check if we can do better than fullset.
if (UpperDivWidth == DstTySize + 1) {
// Clear the MSB so that UpperDiv wraps around.
UpperDiv.clearBit(DstTySize);
if (UpperDiv.ult(LowerDiv))
return ConstantRange(LowerDiv.trunc(DstTySize),
UpperDiv.trunc(DstTySize)).unionWith(Union);
}
return getFull(DstTySize);
}
ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
if (SrcTySize > DstTySize)
return truncate(DstTySize);
if (SrcTySize < DstTySize)
return zeroExtend(DstTySize);
return *this;
}
ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
if (SrcTySize > DstTySize)
return truncate(DstTySize);
if (SrcTySize < DstTySize)
return signExtend(DstTySize);
return *this;
}
ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
const ConstantRange &Other) const {
assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
switch (BinOp) {
case Instruction::Add:
return add(Other);
case Instruction::Sub:
return sub(Other);
case Instruction::Mul:
return multiply(Other);
case Instruction::UDiv:
return udiv(Other);
case Instruction::SDiv:
return sdiv(Other);
case Instruction::URem:
return urem(Other);
case Instruction::SRem:
return srem(Other);
case Instruction::Shl:
return shl(Other);
case Instruction::LShr:
return lshr(Other);
case Instruction::AShr:
return ashr(Other);
case Instruction::And:
return binaryAnd(Other);
case Instruction::Or:
return binaryOr(Other);
// Note: floating point operations applied to abstract ranges are just
// ideal integer operations with a lossy representation
case Instruction::FAdd:
return add(Other);
case Instruction::FSub:
return sub(Other);
case Instruction::FMul:
return multiply(Other);
default:
// Conservatively return getFull set.
return getFull();
}
}
ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind) const {
assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
switch (BinOp) {
case Instruction::Add:
return addWithNoWrap(Other, NoWrapKind);
case Instruction::Sub:
return subWithNoWrap(Other, NoWrapKind);
default:
// Don't know about this Overflowing Binary Operation.
// Conservatively fallback to plain binop handling.
return binaryOp(BinOp, Other);
}
}
ConstantRange
ConstantRange::add(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
if (isFullSet() || Other.isFullSet())
return getFull();
APInt NewLower = getLower() + Other.getLower();
APInt NewUpper = getUpper() + Other.getUpper() - 1;
if (NewLower == NewUpper)
return getFull();
ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
if (X.isSizeStrictlySmallerThan(*this) ||
X.isSizeStrictlySmallerThan(Other))
// We've wrapped, therefore, full set.
return getFull();
return X;
}
ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
unsigned NoWrapKind,
PreferredRangeType RangeType) const {
// Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
// (X is from this, and Y is from Other)
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
if (isFullSet() && Other.isFullSet())
return getFull();
using OBO = OverflowingBinaryOperator;
ConstantRange Result = add(Other);
// If an overflow happens for every value pair in these two constant ranges,
// we must return Empty set. In this case, we get that for free, because we
// get lucky that intersection of add() with uadd_sat()/sadd_sat() results
// in an empty set.
if (NoWrapKind & OBO::NoSignedWrap)
Result = Result.intersectWith(sadd_sat(Other), RangeType);
if (NoWrapKind & OBO::NoUnsignedWrap)
Result = Result.intersectWith(uadd_sat(Other), RangeType);
return Result;
}
ConstantRange
ConstantRange::sub(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
if (isFullSet() || Other.isFullSet())
return getFull();
APInt NewLower = getLower() - Other.getUpper() + 1;
APInt NewUpper = getUpper() - Other.getLower();
if (NewLower == NewUpper)
return getFull();
ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
if (X.isSizeStrictlySmallerThan(*this) ||
X.isSizeStrictlySmallerThan(Other))
// We've wrapped, therefore, full set.
return getFull();
return X;
}
ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
unsigned NoWrapKind,
PreferredRangeType RangeType) const {
// Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
// (X is from this, and Y is from Other)
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
if (isFullSet() && Other.isFullSet())
return getFull();
using OBO = OverflowingBinaryOperator;
ConstantRange Result = sub(Other);
// If an overflow happens for every value pair in these two constant ranges,
// we must return Empty set. In signed case, we get that for free, because we
// get lucky that intersection of sub() with ssub_sat() results in an
// empty set. But for unsigned we must perform the overflow check manually.
if (NoWrapKind & OBO::NoSignedWrap)
Result = Result.intersectWith(ssub_sat(Other), RangeType);
if (NoWrapKind & OBO::NoUnsignedWrap) {
if (getUnsignedMax().ult(Other.getUnsignedMin()))
return getEmpty(); // Always overflows.
Result = Result.intersectWith(usub_sat(Other), RangeType);
}
return Result;
}
ConstantRange
ConstantRange::multiply(const ConstantRange &Other) const {
// TODO: If either operand is a single element and the multiply is known to
// be non-wrapping, round the result min and max value to the appropriate
// multiple of that element. If wrapping is possible, at least adjust the
// range according to the greatest power-of-two factor of the single element.
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
// Multiplication is signedness-independent. However different ranges can be
// obtained depending on how the input ranges are treated. These different
// ranges are all conservatively correct, but one might be better than the
// other. We calculate two ranges; one treating the inputs as unsigned
// and the other signed, then return the smallest of these ranges.
// Unsigned range first.
APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
ConstantRange Result_zext = ConstantRange(this_min * Other_min,
this_max * Other_max + 1);
ConstantRange UR = Result_zext.truncate(getBitWidth());
// If the unsigned range doesn't wrap, and isn't negative then it's a range
// from one positive number to another which is as good as we can generate.
// In this case, skip the extra work of generating signed ranges which aren't
// going to be better than this range.
if (!UR.isUpperWrapped() &&
(UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
return UR;
// Now the signed range. Because we could be dealing with negative numbers
// here, the lower bound is the smallest of the cartesian product of the
// lower and upper ranges; for example:
// [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
// Similarly for the upper bound, swapping min for max.
this_min = getSignedMin().sext(getBitWidth() * 2);
this_max = getSignedMax().sext(getBitWidth() * 2);
Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
auto L = {this_min * Other_min, this_min * Other_max,
this_max * Other_min, this_max * Other_max};
auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
ConstantRange SR = Result_sext.truncate(getBitWidth());
return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
}
ConstantRange
ConstantRange::smax(const ConstantRange &Other) const {
// X smax Y is: range(smax(X_smin, Y_smin),
// smax(X_smax, Y_smax))
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange
ConstantRange::umax(const ConstantRange &Other) const {
// X umax Y is: range(umax(X_umin, Y_umin),
// umax(X_umax, Y_umax))
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange
ConstantRange::smin(const ConstantRange &Other) const {
// X smin Y is: range(smin(X_smin, Y_smin),
// smin(X_smax, Y_smax))
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange
ConstantRange::umin(const ConstantRange &Other) const {
// X umin Y is: range(umin(X_umin, Y_umin),
// umin(X_umax, Y_umax))
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange
ConstantRange::udiv(const ConstantRange &RHS) const {
if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
return getEmpty();
APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
APInt RHS_umin = RHS.getUnsignedMin();
if (RHS_umin.isNullValue()) {
// We want the lowest value in RHS excluding zero. Usually that would be 1
// except for a range in the form of [X, 1) in which case it would be X.
if (RHS.getUpper() == 1)
RHS_umin = RHS.getLower();
else
RHS_umin = 1;
}
APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
return getNonEmpty(std::move(Lower), std::move(Upper));
}
ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
// We split up the LHS and RHS into positive and negative components
// and then also compute the positive and negative components of the result
// separately by combining division results with the appropriate signs.
APInt Zero = APInt::getNullValue(getBitWidth());
APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
ConstantRange NegFilter(SignedMin, Zero);
ConstantRange PosL = intersectWith(PosFilter);
ConstantRange NegL = intersectWith(NegFilter);
ConstantRange PosR = RHS.intersectWith(PosFilter);
ConstantRange NegR = RHS.intersectWith(NegFilter);
ConstantRange PosRes = getEmpty();
if (!PosL.isEmptySet() && !PosR.isEmptySet())
// pos / pos = pos.
PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
(PosL.Upper - 1).sdiv(PosR.Lower) + 1);
if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
// neg / neg = pos.
//
// We need to deal with one tricky case here: SignedMin / -1 is UB on the
// IR level, so we'll want to exclude this case when calculating bounds.
// (For APInts the operation is well-defined and yields SignedMin.) We
// handle this by dropping either SignedMin from the LHS or -1 from the RHS.
APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
// Remove -1 from the LHS. Skip if it's the only element, as this would
// leave us with an empty set.
if (!NegR.Lower.isAllOnesValue()) {
APInt AdjNegRUpper;
if (RHS.Lower.isAllOnesValue())
// Negative part of [-1, X] without -1 is [SignedMin, X].
AdjNegRUpper = RHS.Upper;
else
// [X, -1] without -1 is [X, -2].
AdjNegRUpper = NegR.Upper - 1;
PosRes = PosRes.unionWith(
ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
}
// Remove SignedMin from the RHS. Skip if it's the only element, as this
// would leave us with an empty set.
if (NegL.Upper != SignedMin + 1) {
APInt AdjNegLLower;
if (Upper == SignedMin + 1)
// Negative part of [X, SignedMin] without SignedMin is [X, -1].
AdjNegLLower = Lower;
else
// [SignedMin, X] without SignedMin is [SignedMin + 1, X].
AdjNegLLower = NegL.Lower + 1;
PosRes = PosRes.unionWith(
ConstantRange(std::move(Lo),
AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
}
} else {
PosRes = PosRes.unionWith(
ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
}
}
ConstantRange NegRes = getEmpty();
if (!PosL.isEmptySet() && !NegR.isEmptySet())
// pos / neg = neg.
NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
PosL.Lower.sdiv(NegR.Lower) + 1);
if (!NegL.isEmptySet() && !PosR.isEmptySet())
// neg / pos = neg.
NegRes = NegRes.unionWith(
ConstantRange(NegL.Lower.sdiv(PosR.Lower),
(NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
// Prefer a non-wrapping signed range here.
ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
// Preserve the zero that we dropped when splitting the LHS by sign.
if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
Res = Res.unionWith(ConstantRange(Zero));
return Res;
}
ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
return getEmpty();
// L % R for L < R is L.
if (getUnsignedMax().ult(RHS.getUnsignedMin()))
return *this;
// L % R is <= L and < R.
APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
}
ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
if (isEmptySet() || RHS.isEmptySet())
return getEmpty();
ConstantRange AbsRHS = RHS.abs();
APInt MinAbsRHS = AbsRHS.getUnsignedMin();
APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
// Modulus by zero is UB.
if (MaxAbsRHS.isNullValue())
return getEmpty();
if (MinAbsRHS.isNullValue())
++MinAbsRHS;
APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
if (MinLHS.isNonNegative()) {
// L % R for L < R is L.
if (MaxLHS.ult(MinAbsRHS))
return *this;
// L % R is <= L and < R.
APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
}
// Same basic logic as above, but the result is negative.
if (MaxLHS.isNegative()) {
if (MinLHS.ugt(-MinAbsRHS))
return *this;
APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
}
// LHS range crosses zero.
APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
return ConstantRange(std::move(Lower), std::move(Upper));
}
ConstantRange
ConstantRange::binaryAnd(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
// TODO: replace this with something less conservative
APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
}
ConstantRange
ConstantRange::binaryOr(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
// TODO: replace this with something less conservative
APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
}
ConstantRange
ConstantRange::shl(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt max = getUnsignedMax();
APInt Other_umax = Other.getUnsignedMax();
// If we are shifting by maximum amount of
// zero return return the original range.
if (Other_umax.isNullValue())
return *this;
// there's overflow!
if (Other_umax.ugt(max.countLeadingZeros()))
return getFull();
// FIXME: implement the other tricky cases
APInt min = getUnsignedMin();
min <<= Other.getUnsignedMin();
max <<= Other_umax;
return ConstantRange(std::move(min), std::move(max) + 1);
}
ConstantRange
ConstantRange::lshr(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
return getNonEmpty(std::move(min), std::move(max));
}
ConstantRange
ConstantRange::ashr(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
// May straddle zero, so handle both positive and negative cases.
// 'PosMax' is the upper bound of the result of the ashr
// operation, when Upper of the LHS of ashr is a non-negative.
// number. Since ashr of a non-negative number will result in a
// smaller number, the Upper value of LHS is shifted right with
// the minimum value of 'Other' instead of the maximum value.
APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
// 'PosMin' is the lower bound of the result of the ashr
// operation, when Lower of the LHS is a non-negative number.
// Since ashr of a non-negative number will result in a smaller
// number, the Lower value of LHS is shifted right with the
// maximum value of 'Other'.
APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
// 'NegMax' is the upper bound of the result of the ashr
// operation, when Upper of the LHS of ashr is a negative number.
// Since 'ashr' of a negative number will result in a bigger
// number, the Upper value of LHS is shifted right with the
// maximum value of 'Other'.
APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
// 'NegMin' is the lower bound of the result of the ashr
// operation, when Lower of the LHS of ashr is a negative number.
// Since 'ashr' of a negative number will result in a bigger
// number, the Lower value of LHS is shifted right with the
// minimum value of 'Other'.
APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
APInt max, min;
if (getSignedMin().isNonNegative()) {
// Upper and Lower of LHS are non-negative.
min = PosMin;
max = PosMax;
} else if (getSignedMax().isNegative()) {
// Upper and Lower of LHS are negative.
min = NegMin;
max = NegMax;
} else {
// Upper is non-negative and Lower is negative.
min = NegMin;
max = PosMax;
}
return getNonEmpty(std::move(min), std::move(max));
}
ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
// Because we could be dealing with negative numbers here, the lower bound is
// the smallest of the cartesian product of the lower and upper ranges;
// for example:
// [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
// Similarly for the upper bound, swapping min for max.
APInt this_min = getSignedMin().sext(getBitWidth() * 2);
APInt this_max = getSignedMax().sext(getBitWidth() * 2);
APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min,
this_max * Other_max};
auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
// Note that we wanted to perform signed saturating multiplication,
// so since we performed plain multiplication in twice the bitwidth,
// we need to perform signed saturating truncation.
return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()),
std::max(L, Compare).truncSSat(getBitWidth()) + 1);
}
ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return getEmpty();
APInt Min = getSignedMin(), Max = getSignedMax();
APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
return getNonEmpty(std::move(NewL), std::move(NewU));
}
ConstantRange ConstantRange::inverse() const {
if (isFullSet())
return getEmpty();
if (isEmptySet())
return getFull();
return ConstantRange(Upper, Lower);
}
ConstantRange ConstantRange::abs() const {
if (isEmptySet())
return getEmpty();
if (isSignWrappedSet()) {
APInt Lo;
// Check whether the range crosses zero.
if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
Lo = APInt::getNullValue(getBitWidth());
else
Lo = APIntOps::umin(Lower, -Upper + 1);
// SignedMin is included in the result range.
return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
}
APInt SMin = getSignedMin(), SMax = getSignedMax();
// All non-negative.
if (SMin.isNonNegative())
return *this;
// All negative.
if (SMax.isNegative())
return ConstantRange(-SMax, -SMin + 1);
// Range crosses zero.
return ConstantRange(APInt::getNullValue(getBitWidth()),
APIntOps::umax(-SMin, SMax) + 1);
}
ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return OverflowResult::MayOverflow;
APInt Min = getUnsignedMin(), Max = getUnsignedMax();
APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
// a u+ b overflows high iff a u> ~b.
if (Min.ugt(~OtherMin))
return OverflowResult::AlwaysOverflowsHigh;
if (Max.ugt(~OtherMax))
return OverflowResult::MayOverflow;
return OverflowResult::NeverOverflows;
}
ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return OverflowResult::MayOverflow;
APInt Min = getSignedMin(), Max = getSignedMax();
APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
// a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
// a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
if (Min.isNonNegative() && OtherMin.isNonNegative() &&
Min.sgt(SignedMax - OtherMin))
return OverflowResult::AlwaysOverflowsHigh;
if (Max.isNegative() && OtherMax.isNegative() &&
Max.slt(SignedMin - OtherMax))
return OverflowResult::AlwaysOverflowsLow;
if (Max.isNonNegative() && OtherMax.isNonNegative() &&
Max.sgt(SignedMax - OtherMax))
return OverflowResult::MayOverflow;
if (Min.isNegative() && OtherMin.isNegative() &&
Min.slt(SignedMin - OtherMin))
return OverflowResult::MayOverflow;
return OverflowResult::NeverOverflows;
}
ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return OverflowResult::MayOverflow;
APInt Min = getUnsignedMin(), Max = getUnsignedMax();
APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
// a u- b overflows low iff a u< b.
if (Max.ult(OtherMin))
return OverflowResult::AlwaysOverflowsLow;
if (Min.ult(OtherMax))
return OverflowResult::MayOverflow;
return OverflowResult::NeverOverflows;
}
ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return OverflowResult::MayOverflow;
APInt Min = getSignedMin(), Max = getSignedMax();
APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
// a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
// a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
if (Min.isNonNegative() && OtherMax.isNegative() &&
Min.sgt(SignedMax + OtherMax))
return OverflowResult::AlwaysOverflowsHigh;
if (Max.isNegative() && OtherMin.isNonNegative() &&
Max.slt(SignedMin + OtherMin))
return OverflowResult::AlwaysOverflowsLow;
if (Max.isNonNegative() && OtherMin.isNegative() &&
Max.sgt(SignedMax + OtherMin))
return OverflowResult::MayOverflow;
if (Min.isNegative() && OtherMax.isNonNegative() &&
Min.slt(SignedMin + OtherMax))
return OverflowResult::MayOverflow;
return OverflowResult::NeverOverflows;
}
ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return OverflowResult::MayOverflow;
APInt Min = getUnsignedMin(), Max = getUnsignedMax();
APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
bool Overflow;
(void) Min.umul_ov(OtherMin, Overflow);
if (Overflow)
return OverflowResult::AlwaysOverflowsHigh;
(void) Max.umul_ov(OtherMax, Overflow);
if (Overflow)
return OverflowResult::MayOverflow;
return OverflowResult::NeverOverflows;
}
void ConstantRange::print(raw_ostream &OS) const {
if (isFullSet())
OS << "full-set";
else if (isEmptySet())
OS << "empty-set";
else
OS << "[" << Lower << "," << Upper << ")";
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ConstantRange::dump() const {
print(dbgs());
}
#endif
ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
const unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1 && "Must have at least one range!");
assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
for (unsigned i = 1; i < NumRanges; ++i) {
auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
// Note: unionWith will potentially create a range that contains values not
// contained in any of the original N ranges.
CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
}
return CR;
}