Instruction.cpp 25.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
//===-- Instruction.cpp - Implement the Instruction class -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Instruction class for the IR library.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
using namespace llvm;

Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
                         Instruction *InsertBefore)
  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {

  // If requested, insert this instruction into a basic block...
  if (InsertBefore) {
    BasicBlock *BB = InsertBefore->getParent();
    assert(BB && "Instruction to insert before is not in a basic block!");
    BB->getInstList().insert(InsertBefore->getIterator(), this);
  }
}

Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
                         BasicBlock *InsertAtEnd)
  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {

  // append this instruction into the basic block
  assert(InsertAtEnd && "Basic block to append to may not be NULL!");
  InsertAtEnd->getInstList().push_back(this);
}

Instruction::~Instruction() {
  assert(!Parent && "Instruction still linked in the program!");
  if (hasMetadataHashEntry())
    clearMetadataHashEntries();
}


void Instruction::setParent(BasicBlock *P) {
  Parent = P;
}

const Module *Instruction::getModule() const {
  return getParent()->getModule();
}

const Function *Instruction::getFunction() const {
  return getParent()->getParent();
}

void Instruction::removeFromParent() {
  getParent()->getInstList().remove(getIterator());
}

iplist<Instruction>::iterator Instruction::eraseFromParent() {
  return getParent()->getInstList().erase(getIterator());
}

/// Insert an unlinked instruction into a basic block immediately before the
/// specified instruction.
void Instruction::insertBefore(Instruction *InsertPos) {
  InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this);
}

/// Insert an unlinked instruction into a basic block immediately after the
/// specified instruction.
void Instruction::insertAfter(Instruction *InsertPos) {
  InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(),
                                                    this);
}

/// Unlink this instruction from its current basic block and insert it into the
/// basic block that MovePos lives in, right before MovePos.
void Instruction::moveBefore(Instruction *MovePos) {
  moveBefore(*MovePos->getParent(), MovePos->getIterator());
}

void Instruction::moveAfter(Instruction *MovePos) {
  moveBefore(*MovePos->getParent(), ++MovePos->getIterator());
}

void Instruction::moveBefore(BasicBlock &BB,
                             SymbolTableList<Instruction>::iterator I) {
  assert(I == BB.end() || I->getParent() == &BB);
  BB.getInstList().splice(I, getParent()->getInstList(), getIterator());
}

void Instruction::setHasNoUnsignedWrap(bool b) {
  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
}

void Instruction::setHasNoSignedWrap(bool b) {
  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
}

void Instruction::setIsExact(bool b) {
  cast<PossiblyExactOperator>(this)->setIsExact(b);
}

bool Instruction::hasNoUnsignedWrap() const {
  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
}

bool Instruction::hasNoSignedWrap() const {
  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
}

void Instruction::dropPoisonGeneratingFlags() {
  switch (getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::Shl:
    cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(false);
    cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(false);
    break;

  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::AShr:
  case Instruction::LShr:
    cast<PossiblyExactOperator>(this)->setIsExact(false);
    break;

  case Instruction::GetElementPtr:
    cast<GetElementPtrInst>(this)->setIsInBounds(false);
    break;
  }
  // TODO: FastMathFlags!
}


bool Instruction::isExact() const {
  return cast<PossiblyExactOperator>(this)->isExact();
}

void Instruction::setFast(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setFast(B);
}

void Instruction::setHasAllowReassoc(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasAllowReassoc(B);
}

void Instruction::setHasNoNaNs(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasNoNaNs(B);
}

void Instruction::setHasNoInfs(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasNoInfs(B);
}

void Instruction::setHasNoSignedZeros(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
}

void Instruction::setHasAllowReciprocal(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
}

void Instruction::setHasApproxFunc(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasApproxFunc(B);
}

void Instruction::setFastMathFlags(FastMathFlags FMF) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setFastMathFlags(FMF);
}

void Instruction::copyFastMathFlags(FastMathFlags FMF) {
  assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
  cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
}

bool Instruction::isFast() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->isFast();
}

bool Instruction::hasAllowReassoc() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasAllowReassoc();
}

bool Instruction::hasNoNaNs() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasNoNaNs();
}

bool Instruction::hasNoInfs() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasNoInfs();
}

bool Instruction::hasNoSignedZeros() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasNoSignedZeros();
}

bool Instruction::hasAllowReciprocal() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasAllowReciprocal();
}

bool Instruction::hasAllowContract() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasAllowContract();
}

bool Instruction::hasApproxFunc() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasApproxFunc();
}

FastMathFlags Instruction::getFastMathFlags() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->getFastMathFlags();
}

void Instruction::copyFastMathFlags(const Instruction *I) {
  copyFastMathFlags(I->getFastMathFlags());
}

void Instruction::copyIRFlags(const Value *V, bool IncludeWrapFlags) {
  // Copy the wrapping flags.
  if (IncludeWrapFlags && isa<OverflowingBinaryOperator>(this)) {
    if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
      setHasNoSignedWrap(OB->hasNoSignedWrap());
      setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
    }
  }

  // Copy the exact flag.
  if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
    if (isa<PossiblyExactOperator>(this))
      setIsExact(PE->isExact());

  // Copy the fast-math flags.
  if (auto *FP = dyn_cast<FPMathOperator>(V))
    if (isa<FPMathOperator>(this))
      copyFastMathFlags(FP->getFastMathFlags());

  if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
    if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
      DestGEP->setIsInBounds(SrcGEP->isInBounds() | DestGEP->isInBounds());
}

void Instruction::andIRFlags(const Value *V) {
  if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
    if (isa<OverflowingBinaryOperator>(this)) {
      setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
      setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
    }
  }

  if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
    if (isa<PossiblyExactOperator>(this))
      setIsExact(isExact() & PE->isExact());

  if (auto *FP = dyn_cast<FPMathOperator>(V)) {
    if (isa<FPMathOperator>(this)) {
      FastMathFlags FM = getFastMathFlags();
      FM &= FP->getFastMathFlags();
      copyFastMathFlags(FM);
    }
  }

  if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
    if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
      DestGEP->setIsInBounds(SrcGEP->isInBounds() & DestGEP->isInBounds());
}

const char *Instruction::getOpcodeName(unsigned OpCode) {
  switch (OpCode) {
  // Terminators
  case Ret:    return "ret";
  case Br:     return "br";
  case Switch: return "switch";
  case IndirectBr: return "indirectbr";
  case Invoke: return "invoke";
  case Resume: return "resume";
  case Unreachable: return "unreachable";
  case CleanupRet: return "cleanupret";
  case CatchRet: return "catchret";
  case CatchPad: return "catchpad";
  case CatchSwitch: return "catchswitch";
  case CallBr: return "callbr";

  // Standard unary operators...
  case FNeg: return "fneg";

  // Standard binary operators...
  case Add: return "add";
  case FAdd: return "fadd";
  case Sub: return "sub";
  case FSub: return "fsub";
  case Mul: return "mul";
  case FMul: return "fmul";
  case UDiv: return "udiv";
  case SDiv: return "sdiv";
  case FDiv: return "fdiv";
  case URem: return "urem";
  case SRem: return "srem";
  case FRem: return "frem";

  // Logical operators...
  case And: return "and";
  case Or : return "or";
  case Xor: return "xor";

  // Memory instructions...
  case Alloca:        return "alloca";
  case Load:          return "load";
  case Store:         return "store";
  case AtomicCmpXchg: return "cmpxchg";
  case AtomicRMW:     return "atomicrmw";
  case Fence:         return "fence";
  case GetElementPtr: return "getelementptr";

  // Convert instructions...
  case Trunc:         return "trunc";
  case ZExt:          return "zext";
  case SExt:          return "sext";
  case FPTrunc:       return "fptrunc";
  case FPExt:         return "fpext";
  case FPToUI:        return "fptoui";
  case FPToSI:        return "fptosi";
  case UIToFP:        return "uitofp";
  case SIToFP:        return "sitofp";
  case IntToPtr:      return "inttoptr";
  case PtrToInt:      return "ptrtoint";
  case BitCast:       return "bitcast";
  case AddrSpaceCast: return "addrspacecast";

  // Other instructions...
  case ICmp:           return "icmp";
  case FCmp:           return "fcmp";
  case PHI:            return "phi";
  case Select:         return "select";
  case Call:           return "call";
  case Shl:            return "shl";
  case LShr:           return "lshr";
  case AShr:           return "ashr";
  case VAArg:          return "va_arg";
  case ExtractElement: return "extractelement";
  case InsertElement:  return "insertelement";
  case ShuffleVector:  return "shufflevector";
  case ExtractValue:   return "extractvalue";
  case InsertValue:    return "insertvalue";
  case LandingPad:     return "landingpad";
  case CleanupPad:     return "cleanuppad";
  case Freeze:         return "freeze";

  default: return "<Invalid operator> ";
  }
}

/// Return true if both instructions have the same special state. This must be
/// kept in sync with FunctionComparator::cmpOperations in
/// lib/Transforms/IPO/MergeFunctions.cpp.
static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
                                 bool IgnoreAlignment = false) {
  assert(I1->getOpcode() == I2->getOpcode() &&
         "Can not compare special state of different instructions");

  if (const AllocaInst *AI = dyn_cast<AllocaInst>(I1))
    return AI->getAllocatedType() == cast<AllocaInst>(I2)->getAllocatedType() &&
           (AI->getAlignment() == cast<AllocaInst>(I2)->getAlignment() ||
            IgnoreAlignment);
  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
           (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
            IgnoreAlignment) &&
           LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
           LI->getSyncScopeID() == cast<LoadInst>(I2)->getSyncScopeID();
  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
           (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
            IgnoreAlignment) &&
           SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
           SI->getSyncScopeID() == cast<StoreInst>(I2)->getSyncScopeID();
  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
  if (const CallInst *CI = dyn_cast<CallInst>(I1))
    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
           CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
           CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
           CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
           CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
  if (const CallBrInst *CI = dyn_cast<CallBrInst>(I1))
    return CI->getCallingConv() == cast<CallBrInst>(I2)->getCallingConv() &&
           CI->getAttributes() == cast<CallBrInst>(I2)->getAttributes() &&
           CI->hasIdenticalOperandBundleSchema(*cast<CallBrInst>(I2));
  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
    return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
    return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
  if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
    return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
           FI->getSyncScopeID() == cast<FenceInst>(I2)->getSyncScopeID();
  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
           CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
           CXI->getSuccessOrdering() ==
               cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
           CXI->getFailureOrdering() ==
               cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
           CXI->getSyncScopeID() ==
               cast<AtomicCmpXchgInst>(I2)->getSyncScopeID();
  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
    return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
           RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
           RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
           RMWI->getSyncScopeID() == cast<AtomicRMWInst>(I2)->getSyncScopeID();

  return true;
}

bool Instruction::isIdenticalTo(const Instruction *I) const {
  return isIdenticalToWhenDefined(I) &&
         SubclassOptionalData == I->SubclassOptionalData;
}

bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
  if (getOpcode() != I->getOpcode() ||
      getNumOperands() != I->getNumOperands() ||
      getType() != I->getType())
    return false;

  // If both instructions have no operands, they are identical.
  if (getNumOperands() == 0 && I->getNumOperands() == 0)
    return haveSameSpecialState(this, I);

  // We have two instructions of identical opcode and #operands.  Check to see
  // if all operands are the same.
  if (!std::equal(op_begin(), op_end(), I->op_begin()))
    return false;

  if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
    const PHINode *otherPHI = cast<PHINode>(I);
    return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
                      otherPHI->block_begin());
  }

  return haveSameSpecialState(this, I);
}

// Keep this in sync with FunctionComparator::cmpOperations in
// lib/Transforms/IPO/MergeFunctions.cpp.
bool Instruction::isSameOperationAs(const Instruction *I,
                                    unsigned flags) const {
  bool IgnoreAlignment = flags & CompareIgnoringAlignment;
  bool UseScalarTypes  = flags & CompareUsingScalarTypes;

  if (getOpcode() != I->getOpcode() ||
      getNumOperands() != I->getNumOperands() ||
      (UseScalarTypes ?
       getType()->getScalarType() != I->getType()->getScalarType() :
       getType() != I->getType()))
    return false;

  // We have two instructions of identical opcode and #operands.  Check to see
  // if all operands are the same type
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (UseScalarTypes ?
        getOperand(i)->getType()->getScalarType() !=
          I->getOperand(i)->getType()->getScalarType() :
        getOperand(i)->getType() != I->getOperand(i)->getType())
      return false;

  return haveSameSpecialState(this, I, IgnoreAlignment);
}

bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
  for (const Use &U : uses()) {
    // PHI nodes uses values in the corresponding predecessor block.  For other
    // instructions, just check to see whether the parent of the use matches up.
    const Instruction *I = cast<Instruction>(U.getUser());
    const PHINode *PN = dyn_cast<PHINode>(I);
    if (!PN) {
      if (I->getParent() != BB)
        return true;
      continue;
    }

    if (PN->getIncomingBlock(U) != BB)
      return true;
  }
  return false;
}

bool Instruction::mayReadFromMemory() const {
  switch (getOpcode()) {
  default: return false;
  case Instruction::VAArg:
  case Instruction::Load:
  case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::CatchPad:
  case Instruction::CatchRet:
    return true;
  case Instruction::Call:
  case Instruction::Invoke:
  case Instruction::CallBr:
    return !cast<CallBase>(this)->doesNotReadMemory();
  case Instruction::Store:
    return !cast<StoreInst>(this)->isUnordered();
  }
}

bool Instruction::mayWriteToMemory() const {
  switch (getOpcode()) {
  default: return false;
  case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
  case Instruction::Store:
  case Instruction::VAArg:
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::CatchPad:
  case Instruction::CatchRet:
    return true;
  case Instruction::Call:
  case Instruction::Invoke:
  case Instruction::CallBr:
    return !cast<CallBase>(this)->onlyReadsMemory();
  case Instruction::Load:
    return !cast<LoadInst>(this)->isUnordered();
  }
}

bool Instruction::isAtomic() const {
  switch (getOpcode()) {
  default:
    return false;
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::Fence:
    return true;
  case Instruction::Load:
    return cast<LoadInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
  case Instruction::Store:
    return cast<StoreInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
  }
}

bool Instruction::hasAtomicLoad() const {
  assert(isAtomic());
  switch (getOpcode()) {
  default:
    return false;
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::Load:
    return true;
  }
}

bool Instruction::hasAtomicStore() const {
  assert(isAtomic());
  switch (getOpcode()) {
  default:
    return false;
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::Store:
    return true;
  }
}

bool Instruction::mayThrow() const {
  if (const CallInst *CI = dyn_cast<CallInst>(this))
    return !CI->doesNotThrow();
  if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
    return CRI->unwindsToCaller();
  if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(this))
    return CatchSwitch->unwindsToCaller();
  return isa<ResumeInst>(this);
}

bool Instruction::isSafeToRemove() const {
  return (!isa<CallInst>(this) || !this->mayHaveSideEffects()) &&
         !this->isTerminator();
}

bool Instruction::isLifetimeStartOrEnd() const {
  auto II = dyn_cast<IntrinsicInst>(this);
  if (!II)
    return false;
  Intrinsic::ID ID = II->getIntrinsicID();
  return ID == Intrinsic::lifetime_start || ID == Intrinsic::lifetime_end;
}

const Instruction *Instruction::getNextNonDebugInstruction() const {
  for (const Instruction *I = getNextNode(); I; I = I->getNextNode())
    if (!isa<DbgInfoIntrinsic>(I))
      return I;
  return nullptr;
}

const Instruction *Instruction::getPrevNonDebugInstruction() const {
  for (const Instruction *I = getPrevNode(); I; I = I->getPrevNode())
    if (!isa<DbgInfoIntrinsic>(I))
      return I;
  return nullptr;
}

bool Instruction::isAssociative() const {
  unsigned Opcode = getOpcode();
  if (isAssociative(Opcode))
    return true;

  switch (Opcode) {
  case FMul:
  case FAdd:
    return cast<FPMathOperator>(this)->hasAllowReassoc() &&
           cast<FPMathOperator>(this)->hasNoSignedZeros();
  default:
    return false;
  }
}

unsigned Instruction::getNumSuccessors() const {
  switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
  case Instruction::OPC:                                                       \
    return static_cast<const CLASS *>(this)->getNumSuccessors();
#include "llvm/IR/Instruction.def"
  default:
    break;
  }
  llvm_unreachable("not a terminator");
}

BasicBlock *Instruction::getSuccessor(unsigned idx) const {
  switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
  case Instruction::OPC:                                                       \
    return static_cast<const CLASS *>(this)->getSuccessor(idx);
#include "llvm/IR/Instruction.def"
  default:
    break;
  }
  llvm_unreachable("not a terminator");
}

void Instruction::setSuccessor(unsigned idx, BasicBlock *B) {
  switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
  case Instruction::OPC:                                                       \
    return static_cast<CLASS *>(this)->setSuccessor(idx, B);
#include "llvm/IR/Instruction.def"
  default:
    break;
  }
  llvm_unreachable("not a terminator");
}

void Instruction::replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB) {
  for (unsigned Idx = 0, NumSuccessors = Instruction::getNumSuccessors();
       Idx != NumSuccessors; ++Idx)
    if (getSuccessor(Idx) == OldBB)
      setSuccessor(Idx, NewBB);
}

Instruction *Instruction::cloneImpl() const {
  llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
}

void Instruction::swapProfMetadata() {
  MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
  if (!ProfileData || ProfileData->getNumOperands() != 3 ||
      !isa<MDString>(ProfileData->getOperand(0)))
    return;

  MDString *MDName = cast<MDString>(ProfileData->getOperand(0));
  if (MDName->getString() != "branch_weights")
    return;

  // The first operand is the name. Fetch them backwards and build a new one.
  Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
                     ProfileData->getOperand(1)};
  setMetadata(LLVMContext::MD_prof,
              MDNode::get(ProfileData->getContext(), Ops));
}

void Instruction::copyMetadata(const Instruction &SrcInst,
                               ArrayRef<unsigned> WL) {
  if (!SrcInst.hasMetadata())
    return;

  DenseSet<unsigned> WLS;
  for (unsigned M : WL)
    WLS.insert(M);

  // Otherwise, enumerate and copy over metadata from the old instruction to the
  // new one.
  SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
  SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs);
  for (const auto &MD : TheMDs) {
    if (WL.empty() || WLS.count(MD.first))
      setMetadata(MD.first, MD.second);
  }
  if (WL.empty() || WLS.count(LLVMContext::MD_dbg))
    setDebugLoc(SrcInst.getDebugLoc());
}

Instruction *Instruction::clone() const {
  Instruction *New = nullptr;
  switch (getOpcode()) {
  default:
    llvm_unreachable("Unhandled Opcode.");
#define HANDLE_INST(num, opc, clas)                                            \
  case Instruction::opc:                                                       \
    New = cast<clas>(this)->cloneImpl();                                       \
    break;
#include "llvm/IR/Instruction.def"
#undef HANDLE_INST
  }

  New->SubclassOptionalData = SubclassOptionalData;
  New->copyMetadata(*this);
  return New;
}

void Instruction::setProfWeight(uint64_t W) {
  assert(isa<CallBase>(this) &&
         "Can only set weights for call like instructions");
  SmallVector<uint32_t, 1> Weights;
  Weights.push_back(W);
  MDBuilder MDB(getContext());
  setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
}