Module.cpp 22 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
//===- Module.cpp - Implement the Module class ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Module class for the IR library.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Module.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/RandomNumberGenerator.h"
#include "llvm/Support/VersionTuple.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>

using namespace llvm;

//===----------------------------------------------------------------------===//
// Methods to implement the globals and functions lists.
//

// Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file.
template class llvm::SymbolTableListTraits<Function>;
template class llvm::SymbolTableListTraits<GlobalVariable>;
template class llvm::SymbolTableListTraits<GlobalAlias>;
template class llvm::SymbolTableListTraits<GlobalIFunc>;

//===----------------------------------------------------------------------===//
// Primitive Module methods.
//

Module::Module(StringRef MID, LLVMContext &C)
    : Context(C), Materializer(), ModuleID(MID), SourceFileName(MID), DL("") {
  ValSymTab = new ValueSymbolTable();
  NamedMDSymTab = new StringMap<NamedMDNode *>();
  Context.addModule(this);
}

Module::~Module() {
  Context.removeModule(this);
  dropAllReferences();
  GlobalList.clear();
  FunctionList.clear();
  AliasList.clear();
  IFuncList.clear();
  NamedMDList.clear();
  delete ValSymTab;
  delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab);
}

std::unique_ptr<RandomNumberGenerator> Module::createRNG(const Pass* P) const {
  SmallString<32> Salt(P->getPassName());

  // This RNG is guaranteed to produce the same random stream only
  // when the Module ID and thus the input filename is the same. This
  // might be problematic if the input filename extension changes
  // (e.g. from .c to .bc or .ll).
  //
  // We could store this salt in NamedMetadata, but this would make
  // the parameter non-const. This would unfortunately make this
  // interface unusable by any Machine passes, since they only have a
  // const reference to their IR Module. Alternatively we can always
  // store salt metadata from the Module constructor.
  Salt += sys::path::filename(getModuleIdentifier());

  return std::unique_ptr<RandomNumberGenerator>(new RandomNumberGenerator(Salt));
}

/// getNamedValue - Return the first global value in the module with
/// the specified name, of arbitrary type.  This method returns null
/// if a global with the specified name is not found.
GlobalValue *Module::getNamedValue(StringRef Name) const {
  return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
}

/// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
/// This ID is uniqued across modules in the current LLVMContext.
unsigned Module::getMDKindID(StringRef Name) const {
  return Context.getMDKindID(Name);
}

/// getMDKindNames - Populate client supplied SmallVector with the name for
/// custom metadata IDs registered in this LLVMContext.   ID #0 is not used,
/// so it is filled in as an empty string.
void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const {
  return Context.getMDKindNames(Result);
}

void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const {
  return Context.getOperandBundleTags(Result);
}

//===----------------------------------------------------------------------===//
// Methods for easy access to the functions in the module.
//

// getOrInsertFunction - Look up the specified function in the module symbol
// table.  If it does not exist, add a prototype for the function and return
// it.  This is nice because it allows most passes to get away with not handling
// the symbol table directly for this common task.
//
FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty,
                                           AttributeList AttributeList) {
  // See if we have a definition for the specified function already.
  GlobalValue *F = getNamedValue(Name);
  if (!F) {
    // Nope, add it
    Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage,
                                     DL.getProgramAddressSpace(), Name);
    if (!New->isIntrinsic())       // Intrinsics get attrs set on construction
      New->setAttributes(AttributeList);
    FunctionList.push_back(New);
    return {Ty, New}; // Return the new prototype.
  }

  // If the function exists but has the wrong type, return a bitcast to the
  // right type.
  auto *PTy = PointerType::get(Ty, F->getAddressSpace());
  if (F->getType() != PTy)
    return {Ty, ConstantExpr::getBitCast(F, PTy)};

  // Otherwise, we just found the existing function or a prototype.
  return {Ty, F};
}

FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) {
  return getOrInsertFunction(Name, Ty, AttributeList());
}

// getFunction - Look up the specified function in the module symbol table.
// If it does not exist, return null.
//
Function *Module::getFunction(StringRef Name) const {
  return dyn_cast_or_null<Function>(getNamedValue(Name));
}

//===----------------------------------------------------------------------===//
// Methods for easy access to the global variables in the module.
//

/// getGlobalVariable - Look up the specified global variable in the module
/// symbol table.  If it does not exist, return null.  The type argument
/// should be the underlying type of the global, i.e., it should not have
/// the top-level PointerType, which represents the address of the global.
/// If AllowLocal is set to true, this function will return types that
/// have an local. By default, these types are not returned.
///
GlobalVariable *Module::getGlobalVariable(StringRef Name,
                                          bool AllowLocal) const {
  if (GlobalVariable *Result =
      dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
    if (AllowLocal || !Result->hasLocalLinkage())
      return Result;
  return nullptr;
}

/// getOrInsertGlobal - Look up the specified global in the module symbol table.
///   1. If it does not exist, add a declaration of the global and return it.
///   2. Else, the global exists but has the wrong type: return the function
///      with a constantexpr cast to the right type.
///   3. Finally, if the existing global is the correct declaration, return the
///      existing global.
Constant *Module::getOrInsertGlobal(
    StringRef Name, Type *Ty,
    function_ref<GlobalVariable *()> CreateGlobalCallback) {
  // See if we have a definition for the specified global already.
  GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
  if (!GV)
    GV = CreateGlobalCallback();
  assert(GV && "The CreateGlobalCallback is expected to create a global");

  // If the variable exists but has the wrong type, return a bitcast to the
  // right type.
  Type *GVTy = GV->getType();
  PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace());
  if (GVTy != PTy)
    return ConstantExpr::getBitCast(GV, PTy);

  // Otherwise, we just found the existing function or a prototype.
  return GV;
}

// Overload to construct a global variable using its constructor's defaults.
Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) {
  return getOrInsertGlobal(Name, Ty, [&] {
    return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
                              nullptr, Name);
  });
}

//===----------------------------------------------------------------------===//
// Methods for easy access to the global variables in the module.
//

// getNamedAlias - Look up the specified global in the module symbol table.
// If it does not exist, return null.
//
GlobalAlias *Module::getNamedAlias(StringRef Name) const {
  return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
}

GlobalIFunc *Module::getNamedIFunc(StringRef Name) const {
  return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name));
}

/// getNamedMetadata - Return the first NamedMDNode in the module with the
/// specified name. This method returns null if a NamedMDNode with the
/// specified name is not found.
NamedMDNode *Module::getNamedMetadata(const Twine &Name) const {
  SmallString<256> NameData;
  StringRef NameRef = Name.toStringRef(NameData);
  return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef);
}

/// getOrInsertNamedMetadata - Return the first named MDNode in the module
/// with the specified name. This method returns a new NamedMDNode if a
/// NamedMDNode with the specified name is not found.
NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
  NamedMDNode *&NMD =
    (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name];
  if (!NMD) {
    NMD = new NamedMDNode(Name);
    NMD->setParent(this);
    NamedMDList.push_back(NMD);
  }
  return NMD;
}

/// eraseNamedMetadata - Remove the given NamedMDNode from this module and
/// delete it.
void Module::eraseNamedMetadata(NamedMDNode *NMD) {
  static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName());
  NamedMDList.erase(NMD->getIterator());
}

bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) {
  if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) {
    uint64_t Val = Behavior->getLimitedValue();
    if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) {
      MFB = static_cast<ModFlagBehavior>(Val);
      return true;
    }
  }
  return false;
}

/// getModuleFlagsMetadata - Returns the module flags in the provided vector.
void Module::
getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
  const NamedMDNode *ModFlags = getModuleFlagsMetadata();
  if (!ModFlags) return;

  for (const MDNode *Flag : ModFlags->operands()) {
    ModFlagBehavior MFB;
    if (Flag->getNumOperands() >= 3 &&
        isValidModFlagBehavior(Flag->getOperand(0), MFB) &&
        dyn_cast_or_null<MDString>(Flag->getOperand(1))) {
      // Check the operands of the MDNode before accessing the operands.
      // The verifier will actually catch these failures.
      MDString *Key = cast<MDString>(Flag->getOperand(1));
      Metadata *Val = Flag->getOperand(2);
      Flags.push_back(ModuleFlagEntry(MFB, Key, Val));
    }
  }
}

/// Return the corresponding value if Key appears in module flags, otherwise
/// return null.
Metadata *Module::getModuleFlag(StringRef Key) const {
  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
  getModuleFlagsMetadata(ModuleFlags);
  for (const ModuleFlagEntry &MFE : ModuleFlags) {
    if (Key == MFE.Key->getString())
      return MFE.Val;
  }
  return nullptr;
}

/// getModuleFlagsMetadata - Returns the NamedMDNode in the module that
/// represents module-level flags. This method returns null if there are no
/// module-level flags.
NamedMDNode *Module::getModuleFlagsMetadata() const {
  return getNamedMetadata("llvm.module.flags");
}

/// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that
/// represents module-level flags. If module-level flags aren't found, it
/// creates the named metadata that contains them.
NamedMDNode *Module::getOrInsertModuleFlagsMetadata() {
  return getOrInsertNamedMetadata("llvm.module.flags");
}

/// addModuleFlag - Add a module-level flag to the module-level flags
/// metadata. It will create the module-level flags named metadata if it doesn't
/// already exist.
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
                           Metadata *Val) {
  Type *Int32Ty = Type::getInt32Ty(Context);
  Metadata *Ops[3] = {
      ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)),
      MDString::get(Context, Key), Val};
  getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops));
}
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
                           Constant *Val) {
  addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val));
}
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
                           uint32_t Val) {
  Type *Int32Ty = Type::getInt32Ty(Context);
  addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val));
}
void Module::addModuleFlag(MDNode *Node) {
  assert(Node->getNumOperands() == 3 &&
         "Invalid number of operands for module flag!");
  assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) &&
         isa<MDString>(Node->getOperand(1)) &&
         "Invalid operand types for module flag!");
  getOrInsertModuleFlagsMetadata()->addOperand(Node);
}

void Module::setDataLayout(StringRef Desc) {
  DL.reset(Desc);
}

void Module::setDataLayout(const DataLayout &Other) { DL = Other; }

const DataLayout &Module::getDataLayout() const { return DL; }

DICompileUnit *Module::debug_compile_units_iterator::operator*() const {
  return cast<DICompileUnit>(CUs->getOperand(Idx));
}
DICompileUnit *Module::debug_compile_units_iterator::operator->() const {
  return cast<DICompileUnit>(CUs->getOperand(Idx));
}

void Module::debug_compile_units_iterator::SkipNoDebugCUs() {
  while (CUs && (Idx < CUs->getNumOperands()) &&
         ((*this)->getEmissionKind() == DICompileUnit::NoDebug))
    ++Idx;
}

iterator_range<Module::global_object_iterator> Module::global_objects() {
  return concat<GlobalObject>(functions(), globals());
}
iterator_range<Module::const_global_object_iterator>
Module::global_objects() const {
  return concat<const GlobalObject>(functions(), globals());
}

iterator_range<Module::global_value_iterator> Module::global_values() {
  return concat<GlobalValue>(functions(), globals(), aliases(), ifuncs());
}
iterator_range<Module::const_global_value_iterator>
Module::global_values() const {
  return concat<const GlobalValue>(functions(), globals(), aliases(), ifuncs());
}

//===----------------------------------------------------------------------===//
// Methods to control the materialization of GlobalValues in the Module.
//
void Module::setMaterializer(GVMaterializer *GVM) {
  assert(!Materializer &&
         "Module already has a GVMaterializer.  Call materializeAll"
         " to clear it out before setting another one.");
  Materializer.reset(GVM);
}

Error Module::materialize(GlobalValue *GV) {
  if (!Materializer)
    return Error::success();

  return Materializer->materialize(GV);
}

Error Module::materializeAll() {
  if (!Materializer)
    return Error::success();
  std::unique_ptr<GVMaterializer> M = std::move(Materializer);
  return M->materializeModule();
}

Error Module::materializeMetadata() {
  if (!Materializer)
    return Error::success();
  return Materializer->materializeMetadata();
}

//===----------------------------------------------------------------------===//
// Other module related stuff.
//

std::vector<StructType *> Module::getIdentifiedStructTypes() const {
  // If we have a materializer, it is possible that some unread function
  // uses a type that is currently not visible to a TypeFinder, so ask
  // the materializer which types it created.
  if (Materializer)
    return Materializer->getIdentifiedStructTypes();

  std::vector<StructType *> Ret;
  TypeFinder SrcStructTypes;
  SrcStructTypes.run(*this, true);
  Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end());
  return Ret;
}

// dropAllReferences() - This function causes all the subelements to "let go"
// of all references that they are maintaining.  This allows one to 'delete' a
// whole module at a time, even though there may be circular references... first
// all references are dropped, and all use counts go to zero.  Then everything
// is deleted for real.  Note that no operations are valid on an object that
// has "dropped all references", except operator delete.
//
void Module::dropAllReferences() {
  for (Function &F : *this)
    F.dropAllReferences();

  for (GlobalVariable &GV : globals())
    GV.dropAllReferences();

  for (GlobalAlias &GA : aliases())
    GA.dropAllReferences();

  for (GlobalIFunc &GIF : ifuncs())
    GIF.dropAllReferences();
}

unsigned Module::getNumberRegisterParameters() const {
  auto *Val =
      cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters"));
  if (!Val)
    return 0;
  return cast<ConstantInt>(Val->getValue())->getZExtValue();
}

unsigned Module::getDwarfVersion() const {
  auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version"));
  if (!Val)
    return 0;
  return cast<ConstantInt>(Val->getValue())->getZExtValue();
}

unsigned Module::getCodeViewFlag() const {
  auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView"));
  if (!Val)
    return 0;
  return cast<ConstantInt>(Val->getValue())->getZExtValue();
}

unsigned Module::getInstructionCount() {
  unsigned NumInstrs = 0;
  for (Function &F : FunctionList)
    NumInstrs += F.getInstructionCount();
  return NumInstrs;
}

Comdat *Module::getOrInsertComdat(StringRef Name) {
  auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first;
  Entry.second.Name = &Entry;
  return &Entry.second;
}

PICLevel::Level Module::getPICLevel() const {
  auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level"));

  if (!Val)
    return PICLevel::NotPIC;

  return static_cast<PICLevel::Level>(
      cast<ConstantInt>(Val->getValue())->getZExtValue());
}

void Module::setPICLevel(PICLevel::Level PL) {
  addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL);
}

PIELevel::Level Module::getPIELevel() const {
  auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level"));

  if (!Val)
    return PIELevel::Default;

  return static_cast<PIELevel::Level>(
      cast<ConstantInt>(Val->getValue())->getZExtValue());
}

void Module::setPIELevel(PIELevel::Level PL) {
  addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL);
}

Optional<CodeModel::Model> Module::getCodeModel() const {
  auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model"));

  if (!Val)
    return None;

  return static_cast<CodeModel::Model>(
      cast<ConstantInt>(Val->getValue())->getZExtValue());
}

void Module::setCodeModel(CodeModel::Model CL) {
  // Linking object files with different code models is undefined behavior
  // because the compiler would have to generate additional code (to span
  // longer jumps) if a larger code model is used with a smaller one.
  // Therefore we will treat attempts to mix code models as an error.
  addModuleFlag(ModFlagBehavior::Error, "Code Model", CL);
}

void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) {
  if (Kind == ProfileSummary::PSK_CSInstr)
    addModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M);
  else
    addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M);
}

Metadata *Module::getProfileSummary(bool IsCS) {
  return (IsCS ? getModuleFlag("CSProfileSummary")
               : getModuleFlag("ProfileSummary"));
}

void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) {
  OwnedMemoryBuffer = std::move(MB);
}

bool Module::getRtLibUseGOT() const {
  auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT"));
  return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0);
}

void Module::setRtLibUseGOT() {
  addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1);
}

void Module::setSDKVersion(const VersionTuple &V) {
  SmallVector<unsigned, 3> Entries;
  Entries.push_back(V.getMajor());
  if (auto Minor = V.getMinor()) {
    Entries.push_back(*Minor);
    if (auto Subminor = V.getSubminor())
      Entries.push_back(*Subminor);
    // Ignore the 'build' component as it can't be represented in the object
    // file.
  }
  addModuleFlag(ModFlagBehavior::Warning, "SDK Version",
                ConstantDataArray::get(Context, Entries));
}

VersionTuple Module::getSDKVersion() const {
  auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version"));
  if (!CM)
    return {};
  auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue());
  if (!Arr)
    return {};
  auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> {
    if (Index >= Arr->getNumElements())
      return None;
    return (unsigned)Arr->getElementAsInteger(Index);
  };
  auto Major = getVersionComponent(0);
  if (!Major)
    return {};
  VersionTuple Result = VersionTuple(*Major);
  if (auto Minor = getVersionComponent(1)) {
    Result = VersionTuple(*Major, *Minor);
    if (auto Subminor = getVersionComponent(2)) {
      Result = VersionTuple(*Major, *Minor, *Subminor);
    }
  }
  return Result;
}

GlobalVariable *llvm::collectUsedGlobalVariables(
    const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) {
  const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used";
  GlobalVariable *GV = M.getGlobalVariable(Name);
  if (!GV || !GV->hasInitializer())
    return GV;

  const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
  for (Value *Op : Init->operands()) {
    GlobalValue *G = cast<GlobalValue>(Op->stripPointerCasts());
    Set.insert(G);
  }
  return GV;
}