Value.cpp 33.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
//===-- Value.cpp - Implement the Value class -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Value, ValueHandle, and User classes.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Value.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DerivedUser.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;

static cl::opt<unsigned> NonGlobalValueMaxNameSize(
    "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
    cl::desc("Maximum size for the name of non-global values."));

//===----------------------------------------------------------------------===//
//                                Value Class
//===----------------------------------------------------------------------===//
static inline Type *checkType(Type *Ty) {
  assert(Ty && "Value defined with a null type: Error!");
  return Ty;
}

Value::Value(Type *ty, unsigned scid)
    : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
      HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
      NumUserOperands(0), IsUsedByMD(false), HasName(false) {
  static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
  // FIXME: Why isn't this in the subclass gunk??
  // Note, we cannot call isa<CallInst> before the CallInst has been
  // constructed.
  if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
      SubclassID == Instruction::CallBr)
    assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
           "invalid CallInst type!");
  else if (SubclassID != BasicBlockVal &&
           (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
    assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
           "Cannot create non-first-class values except for constants!");
  static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
                "Value too big");
}

Value::~Value() {
  // Notify all ValueHandles (if present) that this value is going away.
  if (HasValueHandle)
    ValueHandleBase::ValueIsDeleted(this);
  if (isUsedByMetadata())
    ValueAsMetadata::handleDeletion(this);

#ifndef NDEBUG      // Only in -g mode...
  // Check to make sure that there are no uses of this value that are still
  // around when the value is destroyed.  If there are, then we have a dangling
  // reference and something is wrong.  This code is here to print out where
  // the value is still being referenced.
  //
  if (!use_empty()) {
    dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
    for (auto *U : users())
      dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
  }
#endif
  assert(use_empty() && "Uses remain when a value is destroyed!");

  // If this value is named, destroy the name.  This should not be in a symtab
  // at this point.
  destroyValueName();
}

void Value::deleteValue() {
  switch (getValueID()) {
#define HANDLE_VALUE(Name)                                                     \
  case Value::Name##Val:                                                       \
    delete static_cast<Name *>(this);                                          \
    break;
#define HANDLE_MEMORY_VALUE(Name)                                              \
  case Value::Name##Val:                                                       \
    static_cast<DerivedUser *>(this)->DeleteValue(                             \
        static_cast<DerivedUser *>(this));                                     \
    break;
#define HANDLE_INSTRUCTION(Name)  /* nothing */
#include "llvm/IR/Value.def"

#define HANDLE_INST(N, OPC, CLASS)                                             \
  case Value::InstructionVal + Instruction::OPC:                               \
    delete static_cast<CLASS *>(this);                                         \
    break;
#define HANDLE_USER_INST(N, OPC, CLASS)
#include "llvm/IR/Instruction.def"

  default:
    llvm_unreachable("attempting to delete unknown value kind");
  }
}

void Value::destroyValueName() {
  ValueName *Name = getValueName();
  if (Name)
    Name->Destroy();
  setValueName(nullptr);
}

bool Value::hasNUses(unsigned N) const {
  return hasNItems(use_begin(), use_end(), N);
}

bool Value::hasNUsesOrMore(unsigned N) const {
  return hasNItemsOrMore(use_begin(), use_end(), N);
}

bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
  // This can be computed either by scanning the instructions in BB, or by
  // scanning the use list of this Value. Both lists can be very long, but
  // usually one is quite short.
  //
  // Scan both lists simultaneously until one is exhausted. This limits the
  // search to the shorter list.
  BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
  const_user_iterator UI = user_begin(), UE = user_end();
  for (; BI != BE && UI != UE; ++BI, ++UI) {
    // Scan basic block: Check if this Value is used by the instruction at BI.
    if (is_contained(BI->operands(), this))
      return true;
    // Scan use list: Check if the use at UI is in BB.
    const auto *User = dyn_cast<Instruction>(*UI);
    if (User && User->getParent() == BB)
      return true;
  }
  return false;
}

unsigned Value::getNumUses() const {
  return (unsigned)std::distance(use_begin(), use_end());
}

static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
  ST = nullptr;
  if (Instruction *I = dyn_cast<Instruction>(V)) {
    if (BasicBlock *P = I->getParent())
      if (Function *PP = P->getParent())
        ST = PP->getValueSymbolTable();
  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
    if (Function *P = BB->getParent())
      ST = P->getValueSymbolTable();
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    if (Module *P = GV->getParent())
      ST = &P->getValueSymbolTable();
  } else if (Argument *A = dyn_cast<Argument>(V)) {
    if (Function *P = A->getParent())
      ST = P->getValueSymbolTable();
  } else {
    assert(isa<Constant>(V) && "Unknown value type!");
    return true;  // no name is setable for this.
  }
  return false;
}

ValueName *Value::getValueName() const {
  if (!HasName) return nullptr;

  LLVMContext &Ctx = getContext();
  auto I = Ctx.pImpl->ValueNames.find(this);
  assert(I != Ctx.pImpl->ValueNames.end() &&
         "No name entry found!");

  return I->second;
}

void Value::setValueName(ValueName *VN) {
  LLVMContext &Ctx = getContext();

  assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
         "HasName bit out of sync!");

  if (!VN) {
    if (HasName)
      Ctx.pImpl->ValueNames.erase(this);
    HasName = false;
    return;
  }

  HasName = true;
  Ctx.pImpl->ValueNames[this] = VN;
}

StringRef Value::getName() const {
  // Make sure the empty string is still a C string. For historical reasons,
  // some clients want to call .data() on the result and expect it to be null
  // terminated.
  if (!hasName())
    return StringRef("", 0);
  return getValueName()->getKey();
}

void Value::setNameImpl(const Twine &NewName) {
  // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
  if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
    return;

  // Fast path for common IRBuilder case of setName("") when there is no name.
  if (NewName.isTriviallyEmpty() && !hasName())
    return;

  SmallString<256> NameData;
  StringRef NameRef = NewName.toStringRef(NameData);
  assert(NameRef.find_first_of(0) == StringRef::npos &&
         "Null bytes are not allowed in names");

  // Name isn't changing?
  if (getName() == NameRef)
    return;

  // Cap the size of non-GlobalValue names.
  if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
    NameRef =
        NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));

  assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");

  // Get the symbol table to update for this object.
  ValueSymbolTable *ST;
  if (getSymTab(this, ST))
    return;  // Cannot set a name on this value (e.g. constant).

  if (!ST) { // No symbol table to update?  Just do the change.
    if (NameRef.empty()) {
      // Free the name for this value.
      destroyValueName();
      return;
    }

    // NOTE: Could optimize for the case the name is shrinking to not deallocate
    // then reallocated.
    destroyValueName();

    // Create the new name.
    setValueName(ValueName::Create(NameRef));
    getValueName()->setValue(this);
    return;
  }

  // NOTE: Could optimize for the case the name is shrinking to not deallocate
  // then reallocated.
  if (hasName()) {
    // Remove old name.
    ST->removeValueName(getValueName());
    destroyValueName();

    if (NameRef.empty())
      return;
  }

  // Name is changing to something new.
  setValueName(ST->createValueName(NameRef, this));
}

void Value::setName(const Twine &NewName) {
  setNameImpl(NewName);
  if (Function *F = dyn_cast<Function>(this))
    F->recalculateIntrinsicID();
}

void Value::takeName(Value *V) {
  ValueSymbolTable *ST = nullptr;
  // If this value has a name, drop it.
  if (hasName()) {
    // Get the symtab this is in.
    if (getSymTab(this, ST)) {
      // We can't set a name on this value, but we need to clear V's name if
      // it has one.
      if (V->hasName()) V->setName("");
      return;  // Cannot set a name on this value (e.g. constant).
    }

    // Remove old name.
    if (ST)
      ST->removeValueName(getValueName());
    destroyValueName();
  }

  // Now we know that this has no name.

  // If V has no name either, we're done.
  if (!V->hasName()) return;

  // Get this's symtab if we didn't before.
  if (!ST) {
    if (getSymTab(this, ST)) {
      // Clear V's name.
      V->setName("");
      return;  // Cannot set a name on this value (e.g. constant).
    }
  }

  // Get V's ST, this should always succed, because V has a name.
  ValueSymbolTable *VST;
  bool Failure = getSymTab(V, VST);
  assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;

  // If these values are both in the same symtab, we can do this very fast.
  // This works even if both values have no symtab yet.
  if (ST == VST) {
    // Take the name!
    setValueName(V->getValueName());
    V->setValueName(nullptr);
    getValueName()->setValue(this);
    return;
  }

  // Otherwise, things are slightly more complex.  Remove V's name from VST and
  // then reinsert it into ST.

  if (VST)
    VST->removeValueName(V->getValueName());
  setValueName(V->getValueName());
  V->setValueName(nullptr);
  getValueName()->setValue(this);

  if (ST)
    ST->reinsertValue(this);
}

void Value::assertModuleIsMaterializedImpl() const {
#ifndef NDEBUG
  const GlobalValue *GV = dyn_cast<GlobalValue>(this);
  if (!GV)
    return;
  const Module *M = GV->getParent();
  if (!M)
    return;
  assert(M->isMaterialized());
#endif
}

#ifndef NDEBUG
static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
                     Constant *C) {
  if (!Cache.insert(Expr).second)
    return false;

  for (auto &O : Expr->operands()) {
    if (O == C)
      return true;
    auto *CE = dyn_cast<ConstantExpr>(O);
    if (!CE)
      continue;
    if (contains(Cache, CE, C))
      return true;
  }
  return false;
}

static bool contains(Value *Expr, Value *V) {
  if (Expr == V)
    return true;

  auto *C = dyn_cast<Constant>(V);
  if (!C)
    return false;

  auto *CE = dyn_cast<ConstantExpr>(Expr);
  if (!CE)
    return false;

  SmallPtrSet<ConstantExpr *, 4> Cache;
  return contains(Cache, CE, C);
}
#endif // NDEBUG

void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
  assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
  assert(!contains(New, this) &&
         "this->replaceAllUsesWith(expr(this)) is NOT valid!");
  assert(New->getType() == getType() &&
         "replaceAllUses of value with new value of different type!");

  // Notify all ValueHandles (if present) that this value is going away.
  if (HasValueHandle)
    ValueHandleBase::ValueIsRAUWd(this, New);
  if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
    ValueAsMetadata::handleRAUW(this, New);

  while (!materialized_use_empty()) {
    Use &U = *UseList;
    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
    // constant because they are uniqued.
    if (auto *C = dyn_cast<Constant>(U.getUser())) {
      if (!isa<GlobalValue>(C)) {
        C->handleOperandChange(this, New);
        continue;
      }
    }

    U.set(New);
  }

  if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
    BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
}

void Value::replaceAllUsesWith(Value *New) {
  doRAUW(New, ReplaceMetadataUses::Yes);
}

void Value::replaceNonMetadataUsesWith(Value *New) {
  doRAUW(New, ReplaceMetadataUses::No);
}

// Like replaceAllUsesWith except it does not handle constants or basic blocks.
// This routine leaves uses within BB.
void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
  assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
  assert(!contains(New, this) &&
         "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
  assert(New->getType() == getType() &&
         "replaceUses of value with new value of different type!");
  assert(BB && "Basic block that may contain a use of 'New' must be defined\n");

  replaceUsesWithIf(New, [BB](Use &U) {
    auto *I = dyn_cast<Instruction>(U.getUser());
    // Don't replace if it's an instruction in the BB basic block.
    return !I || I->getParent() != BB;
  });
}

namespace {
// Various metrics for how much to strip off of pointers.
enum PointerStripKind {
  PSK_ZeroIndices,
  PSK_ZeroIndicesAndAliases,
  PSK_ZeroIndicesSameRepresentation,
  PSK_ZeroIndicesAndInvariantGroups,
  PSK_InBoundsConstantIndices,
  PSK_InBounds
};

template <PointerStripKind StripKind>
static const Value *stripPointerCastsAndOffsets(const Value *V) {
  if (!V->getType()->isPointerTy())
    return V;

  // Even though we don't look through PHI nodes, we could be called on an
  // instruction in an unreachable block, which may be on a cycle.
  SmallPtrSet<const Value *, 4> Visited;

  Visited.insert(V);
  do {
    if (auto *GEP = dyn_cast<GEPOperator>(V)) {
      switch (StripKind) {
      case PSK_ZeroIndices:
      case PSK_ZeroIndicesAndAliases:
      case PSK_ZeroIndicesSameRepresentation:
      case PSK_ZeroIndicesAndInvariantGroups:
        if (!GEP->hasAllZeroIndices())
          return V;
        break;
      case PSK_InBoundsConstantIndices:
        if (!GEP->hasAllConstantIndices())
          return V;
        LLVM_FALLTHROUGH;
      case PSK_InBounds:
        if (!GEP->isInBounds())
          return V;
        break;
      }
      V = GEP->getPointerOperand();
    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
      V = cast<Operator>(V)->getOperand(0);
    } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
      // TODO: If we know an address space cast will not change the
      //       representation we could look through it here as well.
      V = cast<Operator>(V)->getOperand(0);
    } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
      V = cast<GlobalAlias>(V)->getAliasee();
    } else {
      if (const auto *Call = dyn_cast<CallBase>(V)) {
        if (const Value *RV = Call->getReturnedArgOperand()) {
          V = RV;
          continue;
        }
        // The result of launder.invariant.group must alias it's argument,
        // but it can't be marked with returned attribute, that's why it needs
        // special case.
        if (StripKind == PSK_ZeroIndicesAndInvariantGroups &&
            (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
             Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
          V = Call->getArgOperand(0);
          continue;
        }
      }
      return V;
    }
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
  } while (Visited.insert(V).second);

  return V;
}
} // end anonymous namespace

const Value *Value::stripPointerCasts() const {
  return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
}

const Value *Value::stripPointerCastsAndAliases() const {
  return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
}

const Value *Value::stripPointerCastsSameRepresentation() const {
  return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
}

const Value *Value::stripInBoundsConstantOffsets() const {
  return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
}

const Value *Value::stripPointerCastsAndInvariantGroups() const {
  return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this);
}

const Value *
Value::stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
                                         bool AllowNonInbounds) const {
  if (!getType()->isPtrOrPtrVectorTy())
    return this;

  unsigned BitWidth = Offset.getBitWidth();
  assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
         "The offset bit width does not match the DL specification.");

  // Even though we don't look through PHI nodes, we could be called on an
  // instruction in an unreachable block, which may be on a cycle.
  SmallPtrSet<const Value *, 4> Visited;
  Visited.insert(this);
  const Value *V = this;
  do {
    if (auto *GEP = dyn_cast<GEPOperator>(V)) {
      // If in-bounds was requested, we do not strip non-in-bounds GEPs.
      if (!AllowNonInbounds && !GEP->isInBounds())
        return V;

      // If one of the values we have visited is an addrspacecast, then
      // the pointer type of this GEP may be different from the type
      // of the Ptr parameter which was passed to this function.  This
      // means when we construct GEPOffset, we need to use the size
      // of GEP's pointer type rather than the size of the original
      // pointer type.
      APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
        return V;

      // Stop traversal if the pointer offset wouldn't fit in the bit-width
      // provided by the Offset argument. This can happen due to AddrSpaceCast
      // stripping.
      if (GEPOffset.getMinSignedBits() > BitWidth)
        return V;

      Offset += GEPOffset.sextOrTrunc(BitWidth);
      V = GEP->getPointerOperand();
    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
      V = cast<Operator>(V)->getOperand(0);
    } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
      if (!GA->isInterposable())
        V = GA->getAliasee();
    } else if (const auto *Call = dyn_cast<CallBase>(V)) {
        if (const Value *RV = Call->getReturnedArgOperand())
          V = RV;
    }
    assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
  } while (Visited.insert(V).second);

  return V;
}

const Value *Value::stripInBoundsOffsets() const {
  return stripPointerCastsAndOffsets<PSK_InBounds>(this);
}

uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
                                               bool &CanBeNull) const {
  assert(getType()->isPointerTy() && "must be pointer");

  uint64_t DerefBytes = 0;
  CanBeNull = false;
  if (const Argument *A = dyn_cast<Argument>(this)) {
    DerefBytes = A->getDereferenceableBytes();
    if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
      Type *PT = cast<PointerType>(A->getType())->getElementType();
      if (PT->isSized())
        DerefBytes = DL.getTypeStoreSize(PT);
    }
    if (DerefBytes == 0) {
      DerefBytes = A->getDereferenceableOrNullBytes();
      CanBeNull = true;
    }
  } else if (const auto *Call = dyn_cast<CallBase>(this)) {
    DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
    if (DerefBytes == 0) {
      DerefBytes =
          Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
      CanBeNull = true;
    }
  } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
    if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
      ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
      DerefBytes = CI->getLimitedValue();
    }
    if (DerefBytes == 0) {
      if (MDNode *MD =
              LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
        DerefBytes = CI->getLimitedValue();
      }
      CanBeNull = true;
    }
  } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
    if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
      ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
      DerefBytes = CI->getLimitedValue();
    }
    if (DerefBytes == 0) {
      if (MDNode *MD =
              IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
        DerefBytes = CI->getLimitedValue();
      }
      CanBeNull = true;
    }
  } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
    if (!AI->isArrayAllocation()) {
      DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
      CanBeNull = false;
    }
  } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
    if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
      // TODO: Don't outright reject hasExternalWeakLinkage but set the
      // CanBeNull flag.
      DerefBytes = DL.getTypeStoreSize(GV->getValueType());
      CanBeNull = false;
    }
  }
  return DerefBytes;
}

MaybeAlign Value::getPointerAlignment(const DataLayout &DL) const {
  assert(getType()->isPointerTy() && "must be pointer");
  if (auto *GO = dyn_cast<GlobalObject>(this)) {
    if (isa<Function>(GO)) {
      const MaybeAlign FunctionPtrAlign = DL.getFunctionPtrAlign();
      switch (DL.getFunctionPtrAlignType()) {
      case DataLayout::FunctionPtrAlignType::Independent:
        return FunctionPtrAlign;
      case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
        return std::max(FunctionPtrAlign, MaybeAlign(GO->getAlignment()));
      }
      llvm_unreachable("Unhandled FunctionPtrAlignType");
    }
    const MaybeAlign Alignment(GO->getAlignment());
    if (!Alignment) {
      if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
        Type *ObjectType = GVar->getValueType();
        if (ObjectType->isSized()) {
          // If the object is defined in the current Module, we'll be giving
          // it the preferred alignment. Otherwise, we have to assume that it
          // may only have the minimum ABI alignment.
          if (GVar->isStrongDefinitionForLinker())
            return MaybeAlign(DL.getPreferredAlignment(GVar));
          else
            return Align(DL.getABITypeAlignment(ObjectType));
        }
      }
    }
    return Alignment;
  } else if (const Argument *A = dyn_cast<Argument>(this)) {
    const MaybeAlign Alignment(A->getParamAlignment());
    if (!Alignment && A->hasStructRetAttr()) {
      // An sret parameter has at least the ABI alignment of the return type.
      Type *EltTy = cast<PointerType>(A->getType())->getElementType();
      if (EltTy->isSized())
        return Align(DL.getABITypeAlignment(EltTy));
    }
    return Alignment;
  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
    const MaybeAlign Alignment(AI->getAlignment());
    if (!Alignment) {
      Type *AllocatedType = AI->getAllocatedType();
      if (AllocatedType->isSized())
        return MaybeAlign(DL.getPrefTypeAlignment(AllocatedType));
    }
    return Alignment;
  } else if (const auto *Call = dyn_cast<CallBase>(this)) {
    const MaybeAlign Alignment(Call->getRetAlignment());
    if (!Alignment && Call->getCalledFunction())
      return MaybeAlign(
          Call->getCalledFunction()->getAttributes().getRetAlignment());
    return Alignment;
  } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
    if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
      ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
      return MaybeAlign(CI->getLimitedValue());
    }
  }
  return llvm::None;
}

const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
                                     const BasicBlock *PredBB) const {
  auto *PN = dyn_cast<PHINode>(this);
  if (PN && PN->getParent() == CurBB)
    return PN->getIncomingValueForBlock(PredBB);
  return this;
}

LLVMContext &Value::getContext() const { return VTy->getContext(); }

void Value::reverseUseList() {
  if (!UseList || !UseList->Next)
    // No need to reverse 0 or 1 uses.
    return;

  Use *Head = UseList;
  Use *Current = UseList->Next;
  Head->Next = nullptr;
  while (Current) {
    Use *Next = Current->Next;
    Current->Next = Head;
    Head->setPrev(&Current->Next);
    Head = Current;
    Current = Next;
  }
  UseList = Head;
  Head->setPrev(&UseList);
}

bool Value::isSwiftError() const {
  auto *Arg = dyn_cast<Argument>(this);
  if (Arg)
    return Arg->hasSwiftErrorAttr();
  auto *Alloca = dyn_cast<AllocaInst>(this);
  if (!Alloca)
    return false;
  return Alloca->isSwiftError();
}

//===----------------------------------------------------------------------===//
//                             ValueHandleBase Class
//===----------------------------------------------------------------------===//

void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
  assert(List && "Handle list is null?");

  // Splice ourselves into the list.
  Next = *List;
  *List = this;
  setPrevPtr(List);
  if (Next) {
    Next->setPrevPtr(&Next);
    assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
  }
}

void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
  assert(List && "Must insert after existing node");

  Next = List->Next;
  setPrevPtr(&List->Next);
  List->Next = this;
  if (Next)
    Next->setPrevPtr(&Next);
}

void ValueHandleBase::AddToUseList() {
  assert(getValPtr() && "Null pointer doesn't have a use list!");

  LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;

  if (getValPtr()->HasValueHandle) {
    // If this value already has a ValueHandle, then it must be in the
    // ValueHandles map already.
    ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
    assert(Entry && "Value doesn't have any handles?");
    AddToExistingUseList(&Entry);
    return;
  }

  // Ok, it doesn't have any handles yet, so we must insert it into the
  // DenseMap.  However, doing this insertion could cause the DenseMap to
  // reallocate itself, which would invalidate all of the PrevP pointers that
  // point into the old table.  Handle this by checking for reallocation and
  // updating the stale pointers only if needed.
  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
  const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();

  ValueHandleBase *&Entry = Handles[getValPtr()];
  assert(!Entry && "Value really did already have handles?");
  AddToExistingUseList(&Entry);
  getValPtr()->HasValueHandle = true;

  // If reallocation didn't happen or if this was the first insertion, don't
  // walk the table.
  if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
      Handles.size() == 1) {
    return;
  }

  // Okay, reallocation did happen.  Fix the Prev Pointers.
  for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
       E = Handles.end(); I != E; ++I) {
    assert(I->second && I->first == I->second->getValPtr() &&
           "List invariant broken!");
    I->second->setPrevPtr(&I->second);
  }
}

void ValueHandleBase::RemoveFromUseList() {
  assert(getValPtr() && getValPtr()->HasValueHandle &&
         "Pointer doesn't have a use list!");

  // Unlink this from its use list.
  ValueHandleBase **PrevPtr = getPrevPtr();
  assert(*PrevPtr == this && "List invariant broken");

  *PrevPtr = Next;
  if (Next) {
    assert(Next->getPrevPtr() == &Next && "List invariant broken");
    Next->setPrevPtr(PrevPtr);
    return;
  }

  // If the Next pointer was null, then it is possible that this was the last
  // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
  // map.
  LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
  if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
    Handles.erase(getValPtr());
    getValPtr()->HasValueHandle = false;
  }
}

void ValueHandleBase::ValueIsDeleted(Value *V) {
  assert(V->HasValueHandle && "Should only be called if ValueHandles present");

  // Get the linked list base, which is guaranteed to exist since the
  // HasValueHandle flag is set.
  LLVMContextImpl *pImpl = V->getContext().pImpl;
  ValueHandleBase *Entry = pImpl->ValueHandles[V];
  assert(Entry && "Value bit set but no entries exist");

  // We use a local ValueHandleBase as an iterator so that ValueHandles can add
  // and remove themselves from the list without breaking our iteration.  This
  // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
  // Note that we deliberately do not the support the case when dropping a value
  // handle results in a new value handle being permanently added to the list
  // (as might occur in theory for CallbackVH's): the new value handle will not
  // be processed and the checking code will mete out righteous punishment if
  // the handle is still present once we have finished processing all the other
  // value handles (it is fine to momentarily add then remove a value handle).
  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    Iterator.RemoveFromUseList();
    Iterator.AddToExistingUseListAfter(Entry);
    assert(Entry->Next == &Iterator && "Loop invariant broken.");

    switch (Entry->getKind()) {
    case Assert:
      break;
    case Weak:
    case WeakTracking:
      // WeakTracking and Weak just go to null, which unlinks them
      // from the list.
      Entry->operator=(nullptr);
      break;
    case Callback:
      // Forward to the subclass's implementation.
      static_cast<CallbackVH*>(Entry)->deleted();
      break;
    }
  }

  // All callbacks, weak references, and assertingVHs should be dropped by now.
  if (V->HasValueHandle) {
#ifndef NDEBUG      // Only in +Asserts mode...
    dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
           << "\n";
    if (pImpl->ValueHandles[V]->getKind() == Assert)
      llvm_unreachable("An asserting value handle still pointed to this"
                       " value!");

#endif
    llvm_unreachable("All references to V were not removed?");
  }
}

void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
  assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
  assert(Old != New && "Changing value into itself!");
  assert(Old->getType() == New->getType() &&
         "replaceAllUses of value with new value of different type!");

  // Get the linked list base, which is guaranteed to exist since the
  // HasValueHandle flag is set.
  LLVMContextImpl *pImpl = Old->getContext().pImpl;
  ValueHandleBase *Entry = pImpl->ValueHandles[Old];

  assert(Entry && "Value bit set but no entries exist");

  // We use a local ValueHandleBase as an iterator so that
  // ValueHandles can add and remove themselves from the list without
  // breaking our iteration.  This is not really an AssertingVH; we
  // just have to give ValueHandleBase some kind.
  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    Iterator.RemoveFromUseList();
    Iterator.AddToExistingUseListAfter(Entry);
    assert(Entry->Next == &Iterator && "Loop invariant broken.");

    switch (Entry->getKind()) {
    case Assert:
    case Weak:
      // Asserting and Weak handles do not follow RAUW implicitly.
      break;
    case WeakTracking:
      // Weak goes to the new value, which will unlink it from Old's list.
      Entry->operator=(New);
      break;
    case Callback:
      // Forward to the subclass's implementation.
      static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
      break;
    }
  }

#ifndef NDEBUG
  // If any new weak value handles were added while processing the
  // list, then complain about it now.
  if (Old->HasValueHandle)
    for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
      switch (Entry->getKind()) {
      case WeakTracking:
        dbgs() << "After RAUW from " << *Old->getType() << " %"
               << Old->getName() << " to " << *New->getType() << " %"
               << New->getName() << "\n";
        llvm_unreachable(
            "A weak tracking value handle still pointed to the old value!\n");
      default:
        break;
      }
#endif
}

// Pin the vtable to this file.
void CallbackVH::anchor() {}