ELF.cpp 16.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
//===- ELF.cpp - ELF object file implementation ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Object/ELF.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/LEB128.h"

using namespace llvm;
using namespace object;

#define STRINGIFY_ENUM_CASE(ns, name)                                          \
  case ns::name:                                                               \
    return #name;

#define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)

StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
                                                 uint32_t Type) {
  switch (Machine) {
  case ELF::EM_X86_64:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
    default:
      break;
    }
    break;
  case ELF::EM_386:
  case ELF::EM_IAMCU:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/i386.def"
    default:
      break;
    }
    break;
  case ELF::EM_MIPS:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Mips.def"
    default:
      break;
    }
    break;
  case ELF::EM_AARCH64:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
    default:
      break;
    }
    break;
  case ELF::EM_ARM:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/ARM.def"
    default:
      break;
    }
    break;
  case ELF::EM_ARC_COMPACT:
  case ELF::EM_ARC_COMPACT2:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/ARC.def"
    default:
      break;
    }
    break;
  case ELF::EM_AVR:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/AVR.def"
    default:
      break;
    }
    break;
  case ELF::EM_HEXAGON:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
    default:
      break;
    }
    break;
  case ELF::EM_LANAI:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
    default:
      break;
    }
    break;
  case ELF::EM_PPC:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
    default:
      break;
    }
    break;
  case ELF::EM_PPC64:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
    default:
      break;
    }
    break;
  case ELF::EM_RISCV:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
    default:
      break;
    }
    break;
  case ELF::EM_S390:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
    default:
      break;
    }
    break;
  case ELF::EM_SPARC:
  case ELF::EM_SPARC32PLUS:
  case ELF::EM_SPARCV9:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
    default:
      break;
    }
    break;
  case ELF::EM_AMDGPU:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
    default:
      break;
    }
    break;
  case ELF::EM_BPF:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/BPF.def"
    default:
      break;
    }
    break;
  case ELF::EM_MSP430:
    switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
    default:
      break;
    }
    break;
  default:
    break;
  }
  return "Unknown";
}

#undef ELF_RELOC

uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
  switch (Machine) {
  case ELF::EM_X86_64:
    return ELF::R_X86_64_RELATIVE;
  case ELF::EM_386:
  case ELF::EM_IAMCU:
    return ELF::R_386_RELATIVE;
  case ELF::EM_MIPS:
    break;
  case ELF::EM_AARCH64:
    return ELF::R_AARCH64_RELATIVE;
  case ELF::EM_ARM:
    return ELF::R_ARM_RELATIVE;
  case ELF::EM_ARC_COMPACT:
  case ELF::EM_ARC_COMPACT2:
    return ELF::R_ARC_RELATIVE;
  case ELF::EM_AVR:
    break;
  case ELF::EM_HEXAGON:
    return ELF::R_HEX_RELATIVE;
  case ELF::EM_LANAI:
    break;
  case ELF::EM_PPC:
    break;
  case ELF::EM_PPC64:
    return ELF::R_PPC64_RELATIVE;
  case ELF::EM_RISCV:
    return ELF::R_RISCV_RELATIVE;
  case ELF::EM_S390:
    return ELF::R_390_RELATIVE;
  case ELF::EM_SPARC:
  case ELF::EM_SPARC32PLUS:
  case ELF::EM_SPARCV9:
    return ELF::R_SPARC_RELATIVE;
  case ELF::EM_AMDGPU:
    break;
  case ELF::EM_BPF:
    break;
  default:
    break;
  }
  return 0;
}

StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
  switch (Machine) {
  case ELF::EM_ARM:
    switch (Type) {
      STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
      STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
      STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
      STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
      STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
    }
    break;
  case ELF::EM_HEXAGON:
    switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
    break;
  case ELF::EM_X86_64:
    switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
    break;
  case ELF::EM_MIPS:
  case ELF::EM_MIPS_RS3_LE:
    switch (Type) {
      STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
      STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
      STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
      STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
    }
    break;
  default:
    break;
  }

  switch (Type) {
    STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
    STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
    STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
    STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
    STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
    STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
    STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
    STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
    STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
    STRINGIFY_ENUM_CASE(ELF, SHT_REL);
    STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
    STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
    STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
    STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
    STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
    STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
    STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
    STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
    STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
    STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
    STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
    STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
    STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
    STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
    STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
    STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
    STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
  default:
    return "Unknown";
  }
}

template <class ELFT>
Expected<std::vector<typename ELFT::Rela>>
ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
  // This function decodes the contents of an SHT_RELR packed relocation
  // section.
  //
  // Proposal for adding SHT_RELR sections to generic-abi is here:
  //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
  //
  // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
  // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
  //
  // i.e. start with an address, followed by any number of bitmaps. The address
  // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
  // relocations each, at subsequent offsets following the last address entry.
  //
  // The bitmap entries must have 1 in the least significant bit. The assumption
  // here is that an address cannot have 1 in lsb. Odd addresses are not
  // supported.
  //
  // Excluding the least significant bit in the bitmap, each non-zero bit in
  // the bitmap represents a relocation to be applied to a corresponding machine
  // word that follows the base address word. The second least significant bit
  // represents the machine word immediately following the initial address, and
  // each bit that follows represents the next word, in linear order. As such,
  // a single bitmap can encode up to 31 relocations in a 32-bit object, and
  // 63 relocations in a 64-bit object.
  //
  // This encoding has a couple of interesting properties:
  // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
  //    even means address, odd means bitmap.
  // 2. Just a simple list of addresses is a valid encoding.

  Elf_Rela Rela;
  Rela.r_info = 0;
  Rela.r_addend = 0;
  Rela.setType(getRelativeRelocationType(), false);
  std::vector<Elf_Rela> Relocs;

  // Word type: uint32_t for Elf32, and uint64_t for Elf64.
  typedef typename ELFT::uint Word;

  // Word size in number of bytes.
  const size_t WordSize = sizeof(Word);

  // Number of bits used for the relocation offsets bitmap.
  // These many relative relocations can be encoded in a single entry.
  const size_t NBits = 8*WordSize - 1;

  Word Base = 0;
  for (const Elf_Relr &R : relrs) {
    Word Entry = R;
    if ((Entry&1) == 0) {
      // Even entry: encodes the offset for next relocation.
      Rela.r_offset = Entry;
      Relocs.push_back(Rela);
      // Set base offset for subsequent bitmap entries.
      Base = Entry + WordSize;
      continue;
    }

    // Odd entry: encodes bitmap for relocations starting at base.
    Word Offset = Base;
    while (Entry != 0) {
      Entry >>= 1;
      if ((Entry&1) != 0) {
        Rela.r_offset = Offset;
        Relocs.push_back(Rela);
      }
      Offset += WordSize;
    }

    // Advance base offset by NBits words.
    Base += NBits * WordSize;
  }

  return Relocs;
}

template <class ELFT>
Expected<std::vector<typename ELFT::Rela>>
ELFFile<ELFT>::android_relas(const Elf_Shdr *Sec) const {
  // This function reads relocations in Android's packed relocation format,
  // which is based on SLEB128 and delta encoding.
  Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
  if (!ContentsOrErr)
    return ContentsOrErr.takeError();
  const uint8_t *Cur = ContentsOrErr->begin();
  const uint8_t *End = ContentsOrErr->end();
  if (ContentsOrErr->size() < 4 || Cur[0] != 'A' || Cur[1] != 'P' ||
      Cur[2] != 'S' || Cur[3] != '2')
    return createError("invalid packed relocation header");
  Cur += 4;

  const char *ErrStr = nullptr;
  auto ReadSLEB = [&]() -> int64_t {
    if (ErrStr)
      return 0;
    unsigned Len;
    int64_t Result = decodeSLEB128(Cur, &Len, End, &ErrStr);
    Cur += Len;
    return Result;
  };

  uint64_t NumRelocs = ReadSLEB();
  uint64_t Offset = ReadSLEB();
  uint64_t Addend = 0;

  if (ErrStr)
    return createError(ErrStr);

  std::vector<Elf_Rela> Relocs;
  Relocs.reserve(NumRelocs);
  while (NumRelocs) {
    uint64_t NumRelocsInGroup = ReadSLEB();
    if (NumRelocsInGroup > NumRelocs)
      return createError("relocation group unexpectedly large");
    NumRelocs -= NumRelocsInGroup;

    uint64_t GroupFlags = ReadSLEB();
    bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
    bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
    bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
    bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;

    uint64_t GroupOffsetDelta;
    if (GroupedByOffsetDelta)
      GroupOffsetDelta = ReadSLEB();

    uint64_t GroupRInfo;
    if (GroupedByInfo)
      GroupRInfo = ReadSLEB();

    if (GroupedByAddend && GroupHasAddend)
      Addend += ReadSLEB();

    if (!GroupHasAddend)
      Addend = 0;

    for (uint64_t I = 0; I != NumRelocsInGroup; ++I) {
      Elf_Rela R;
      Offset += GroupedByOffsetDelta ? GroupOffsetDelta : ReadSLEB();
      R.r_offset = Offset;
      R.r_info = GroupedByInfo ? GroupRInfo : ReadSLEB();
      if (GroupHasAddend && !GroupedByAddend)
        Addend += ReadSLEB();
      R.r_addend = Addend;
      Relocs.push_back(R);

      if (ErrStr)
        return createError(ErrStr);
    }

    if (ErrStr)
      return createError(ErrStr);
  }

  return Relocs;
}

template <class ELFT>
std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
                                                 uint64_t Type) const {
#define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
  case value:                                                                  \
    return #tag;

#define DYNAMIC_TAG(n, v)
  switch (Arch) {
  case ELF::EM_AARCH64:
    switch (Type) {
#define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef AARCH64_DYNAMIC_TAG
    }
    break;

  case ELF::EM_HEXAGON:
    switch (Type) {
#define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef HEXAGON_DYNAMIC_TAG
    }
    break;

  case ELF::EM_MIPS:
    switch (Type) {
#define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef MIPS_DYNAMIC_TAG
    }
    break;

  case ELF::EM_PPC64:
    switch (Type) {
#define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef PPC64_DYNAMIC_TAG
    }
    break;
  }
#undef DYNAMIC_TAG
  switch (Type) {
// Now handle all dynamic tags except the architecture specific ones
#define AARCH64_DYNAMIC_TAG(name, value)
#define MIPS_DYNAMIC_TAG(name, value)
#define HEXAGON_DYNAMIC_TAG(name, value)
#define PPC64_DYNAMIC_TAG(name, value)
// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
#define DYNAMIC_TAG_MARKER(name, value)
#define DYNAMIC_TAG(name, value) case value: return #name;
#include "llvm/BinaryFormat/DynamicTags.def"
#undef DYNAMIC_TAG
#undef AARCH64_DYNAMIC_TAG
#undef MIPS_DYNAMIC_TAG
#undef HEXAGON_DYNAMIC_TAG
#undef PPC64_DYNAMIC_TAG
#undef DYNAMIC_TAG_MARKER
#undef DYNAMIC_STRINGIFY_ENUM
  default:
    return "<unknown:>0x" + utohexstr(Type, true);
  }
}

template <class ELFT>
std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
  return getDynamicTagAsString(getHeader()->e_machine, Type);
}

template <class ELFT>
Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
  ArrayRef<Elf_Dyn> Dyn;
  size_t DynSecSize = 0;

  auto ProgramHeadersOrError = program_headers();
  if (!ProgramHeadersOrError)
    return ProgramHeadersOrError.takeError();

  for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
    if (Phdr.p_type == ELF::PT_DYNAMIC) {
      Dyn = makeArrayRef(
          reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
          Phdr.p_filesz / sizeof(Elf_Dyn));
      DynSecSize = Phdr.p_filesz;
      break;
    }
  }

  // If we can't find the dynamic section in the program headers, we just fall
  // back on the sections.
  if (Dyn.empty()) {
    auto SectionsOrError = sections();
    if (!SectionsOrError)
      return SectionsOrError.takeError();

    for (const Elf_Shdr &Sec : *SectionsOrError) {
      if (Sec.sh_type == ELF::SHT_DYNAMIC) {
        Expected<ArrayRef<Elf_Dyn>> DynOrError =
            getSectionContentsAsArray<Elf_Dyn>(&Sec);
        if (!DynOrError)
          return DynOrError.takeError();
        Dyn = *DynOrError;
        DynSecSize = Sec.sh_size;
        break;
      }
    }

    if (!Dyn.data())
      return ArrayRef<Elf_Dyn>();
  }

  if (Dyn.empty())
    // TODO: this error is untested.
    return createError("invalid empty dynamic section");

  if (DynSecSize % sizeof(Elf_Dyn) != 0)
    // TODO: this error is untested.
    return createError("malformed dynamic section");

  if (Dyn.back().d_tag != ELF::DT_NULL)
    // TODO: this error is untested.
    return createError("dynamic sections must be DT_NULL terminated");

  return Dyn;
}

template <class ELFT>
Expected<const uint8_t *> ELFFile<ELFT>::toMappedAddr(uint64_t VAddr) const {
  auto ProgramHeadersOrError = program_headers();
  if (!ProgramHeadersOrError)
    return ProgramHeadersOrError.takeError();

  llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;

  for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
    if (Phdr.p_type == ELF::PT_LOAD)
      LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));

  const Elf_Phdr *const *I =
      std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr,
                       [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
                         return VAddr < Phdr->p_vaddr;
                       });

  if (I == LoadSegments.begin())
    return createError("virtual address is not in any segment: 0x" +
                       Twine::utohexstr(VAddr));
  --I;
  const Elf_Phdr &Phdr = **I;
  uint64_t Delta = VAddr - Phdr.p_vaddr;
  if (Delta >= Phdr.p_filesz)
    return createError("virtual address is not in any segment: 0x" +
                       Twine::utohexstr(VAddr));
  return base() + Phdr.p_offset + Delta;
}

template class llvm::object::ELFFile<ELF32LE>;
template class llvm::object::ELFFile<ELF32BE>;
template class llvm::object::ELFFile<ELF64LE>;
template class llvm::object::ELFFile<ELF64BE>;