CoverageMappingReader.cpp 31.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
//===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for reading coverage mapping data for
// instrumentation based coverage.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/COFF.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>

using namespace llvm;
using namespace coverage;
using namespace object;

#define DEBUG_TYPE "coverage-mapping"

void CoverageMappingIterator::increment() {
  if (ReadErr != coveragemap_error::success)
    return;

  // Check if all the records were read or if an error occurred while reading
  // the next record.
  if (auto E = Reader->readNextRecord(Record))
    handleAllErrors(std::move(E), [&](const CoverageMapError &CME) {
      if (CME.get() == coveragemap_error::eof)
        *this = CoverageMappingIterator();
      else
        ReadErr = CME.get();
    });
}

Error RawCoverageReader::readULEB128(uint64_t &Result) {
  if (Data.empty())
    return make_error<CoverageMapError>(coveragemap_error::truncated);
  unsigned N = 0;
  Result = decodeULEB128(Data.bytes_begin(), &N);
  if (N > Data.size())
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  Data = Data.substr(N);
  return Error::success();
}

Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) {
  if (auto Err = readULEB128(Result))
    return Err;
  if (Result >= MaxPlus1)
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  return Error::success();
}

Error RawCoverageReader::readSize(uint64_t &Result) {
  if (auto Err = readULEB128(Result))
    return Err;
  // Sanity check the number.
  if (Result > Data.size())
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  return Error::success();
}

Error RawCoverageReader::readString(StringRef &Result) {
  uint64_t Length;
  if (auto Err = readSize(Length))
    return Err;
  Result = Data.substr(0, Length);
  Data = Data.substr(Length);
  return Error::success();
}

Error RawCoverageFilenamesReader::read() {
  uint64_t NumFilenames;
  if (auto Err = readSize(NumFilenames))
    return Err;
  for (size_t I = 0; I < NumFilenames; ++I) {
    StringRef Filename;
    if (auto Err = readString(Filename))
      return Err;
    Filenames.push_back(Filename);
  }
  return Error::success();
}

Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) {
  auto Tag = Value & Counter::EncodingTagMask;
  switch (Tag) {
  case Counter::Zero:
    C = Counter::getZero();
    return Error::success();
  case Counter::CounterValueReference:
    C = Counter::getCounter(Value >> Counter::EncodingTagBits);
    return Error::success();
  default:
    break;
  }
  Tag -= Counter::Expression;
  switch (Tag) {
  case CounterExpression::Subtract:
  case CounterExpression::Add: {
    auto ID = Value >> Counter::EncodingTagBits;
    if (ID >= Expressions.size())
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
    C = Counter::getExpression(ID);
    break;
  }
  default:
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  }
  return Error::success();
}

Error RawCoverageMappingReader::readCounter(Counter &C) {
  uint64_t EncodedCounter;
  if (auto Err =
          readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
    return Err;
  if (auto Err = decodeCounter(EncodedCounter, C))
    return Err;
  return Error::success();
}

static const unsigned EncodingExpansionRegionBit = 1
                                                   << Counter::EncodingTagBits;

/// Read the sub-array of regions for the given inferred file id.
/// \param NumFileIDs the number of file ids that are defined for this
/// function.
Error RawCoverageMappingReader::readMappingRegionsSubArray(
    std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
    size_t NumFileIDs) {
  uint64_t NumRegions;
  if (auto Err = readSize(NumRegions))
    return Err;
  unsigned LineStart = 0;
  for (size_t I = 0; I < NumRegions; ++I) {
    Counter C;
    CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;

    // Read the combined counter + region kind.
    uint64_t EncodedCounterAndRegion;
    if (auto Err = readIntMax(EncodedCounterAndRegion,
                              std::numeric_limits<unsigned>::max()))
      return Err;
    unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
    uint64_t ExpandedFileID = 0;
    if (Tag != Counter::Zero) {
      if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
        return Err;
    } else {
      // Is it an expansion region?
      if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
        Kind = CounterMappingRegion::ExpansionRegion;
        ExpandedFileID = EncodedCounterAndRegion >>
                         Counter::EncodingCounterTagAndExpansionRegionTagBits;
        if (ExpandedFileID >= NumFileIDs)
          return make_error<CoverageMapError>(coveragemap_error::malformed);
      } else {
        switch (EncodedCounterAndRegion >>
                Counter::EncodingCounterTagAndExpansionRegionTagBits) {
        case CounterMappingRegion::CodeRegion:
          // Don't do anything when we have a code region with a zero counter.
          break;
        case CounterMappingRegion::SkippedRegion:
          Kind = CounterMappingRegion::SkippedRegion;
          break;
        default:
          return make_error<CoverageMapError>(coveragemap_error::malformed);
        }
      }
    }

    // Read the source range.
    uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
    if (auto Err =
            readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
      return Err;
    if (auto Err = readULEB128(ColumnStart))
      return Err;
    if (ColumnStart > std::numeric_limits<unsigned>::max())
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
      return Err;
    if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
      return Err;
    LineStart += LineStartDelta;

    // If the high bit of ColumnEnd is set, this is a gap region.
    if (ColumnEnd & (1U << 31)) {
      Kind = CounterMappingRegion::GapRegion;
      ColumnEnd &= ~(1U << 31);
    }

    // Adjust the column locations for the empty regions that are supposed to
    // cover whole lines. Those regions should be encoded with the
    // column range (1 -> std::numeric_limits<unsigned>::max()), but because
    // the encoded std::numeric_limits<unsigned>::max() is several bytes long,
    // we set the column range to (0 -> 0) to ensure that the column start and
    // column end take up one byte each.
    // The std::numeric_limits<unsigned>::max() is used to represent a column
    // position at the end of the line without knowing the length of that line.
    if (ColumnStart == 0 && ColumnEnd == 0) {
      ColumnStart = 1;
      ColumnEnd = std::numeric_limits<unsigned>::max();
    }

    LLVM_DEBUG({
      dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
             << ColumnStart << " -> " << (LineStart + NumLines) << ":"
             << ColumnEnd << ", ";
      if (Kind == CounterMappingRegion::ExpansionRegion)
        dbgs() << "Expands to file " << ExpandedFileID;
      else
        CounterMappingContext(Expressions).dump(C, dbgs());
      dbgs() << "\n";
    });

    auto CMR = CounterMappingRegion(C, InferredFileID, ExpandedFileID,
                                    LineStart, ColumnStart,
                                    LineStart + NumLines, ColumnEnd, Kind);
    if (CMR.startLoc() > CMR.endLoc())
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    MappingRegions.push_back(CMR);
  }
  return Error::success();
}

Error RawCoverageMappingReader::read() {
  // Read the virtual file mapping.
  SmallVector<unsigned, 8> VirtualFileMapping;
  uint64_t NumFileMappings;
  if (auto Err = readSize(NumFileMappings))
    return Err;
  for (size_t I = 0; I < NumFileMappings; ++I) {
    uint64_t FilenameIndex;
    if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
      return Err;
    VirtualFileMapping.push_back(FilenameIndex);
  }

  // Construct the files using unique filenames and virtual file mapping.
  for (auto I : VirtualFileMapping) {
    Filenames.push_back(TranslationUnitFilenames[I]);
  }

  // Read the expressions.
  uint64_t NumExpressions;
  if (auto Err = readSize(NumExpressions))
    return Err;
  // Create an array of dummy expressions that get the proper counters
  // when the expressions are read, and the proper kinds when the counters
  // are decoded.
  Expressions.resize(
      NumExpressions,
      CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
  for (size_t I = 0; I < NumExpressions; ++I) {
    if (auto Err = readCounter(Expressions[I].LHS))
      return Err;
    if (auto Err = readCounter(Expressions[I].RHS))
      return Err;
  }

  // Read the mapping regions sub-arrays.
  for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
       InferredFileID < S; ++InferredFileID) {
    if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
                                              VirtualFileMapping.size()))
      return Err;
  }

  // Set the counters for the expansion regions.
  // i.e. Counter of expansion region = counter of the first region
  // from the expanded file.
  // Perform multiple passes to correctly propagate the counters through
  // all the nested expansion regions.
  SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
  FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
  for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
    for (auto &R : MappingRegions) {
      if (R.Kind != CounterMappingRegion::ExpansionRegion)
        continue;
      assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
      FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
    }
    for (auto &R : MappingRegions) {
      if (FileIDExpansionRegionMapping[R.FileID]) {
        FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
        FileIDExpansionRegionMapping[R.FileID] = nullptr;
      }
    }
  }

  return Error::success();
}

Expected<bool> RawCoverageMappingDummyChecker::isDummy() {
  // A dummy coverage mapping data consists of just one region with zero count.
  uint64_t NumFileMappings;
  if (Error Err = readSize(NumFileMappings))
    return std::move(Err);
  if (NumFileMappings != 1)
    return false;
  // We don't expect any specific value for the filename index, just skip it.
  uint64_t FilenameIndex;
  if (Error Err =
          readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max()))
    return std::move(Err);
  uint64_t NumExpressions;
  if (Error Err = readSize(NumExpressions))
    return std::move(Err);
  if (NumExpressions != 0)
    return false;
  uint64_t NumRegions;
  if (Error Err = readSize(NumRegions))
    return std::move(Err);
  if (NumRegions != 1)
    return false;
  uint64_t EncodedCounterAndRegion;
  if (Error Err = readIntMax(EncodedCounterAndRegion,
                             std::numeric_limits<unsigned>::max()))
    return std::move(Err);
  unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
  return Tag == Counter::Zero;
}

Error InstrProfSymtab::create(SectionRef &Section) {
  Expected<StringRef> DataOrErr = Section.getContents();
  if (!DataOrErr)
    return DataOrErr.takeError();
  Data = *DataOrErr;
  Address = Section.getAddress();

  // If this is a linked PE/COFF file, then we have to skip over the null byte
  // that is allocated in the .lprfn$A section in the LLVM profiling runtime.
  const ObjectFile *Obj = Section.getObject();
  if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject())
    Data = Data.drop_front(1);

  return Error::success();
}

StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) {
  if (Pointer < Address)
    return StringRef();
  auto Offset = Pointer - Address;
  if (Offset + Size > Data.size())
    return StringRef();
  return Data.substr(Pointer - Address, Size);
}

// Check if the mapping data is a dummy, i.e. is emitted for an unused function.
static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) {
  // The hash value of dummy mapping records is always zero.
  if (Hash)
    return false;
  return RawCoverageMappingDummyChecker(Mapping).isDummy();
}

namespace {

struct CovMapFuncRecordReader {
  virtual ~CovMapFuncRecordReader() = default;

  // The interface to read coverage mapping function records for a module.
  //
  // \p Buf points to the buffer containing the \c CovHeader of the coverage
  // mapping data associated with the module.
  //
  // Returns a pointer to the next \c CovHeader if it exists, or a pointer
  // greater than \p End if not.
  virtual Expected<const char *> readFunctionRecords(const char *Buf,
                                                     const char *End) = 0;

  template <class IntPtrT, support::endianness Endian>
  static Expected<std::unique_ptr<CovMapFuncRecordReader>>
  get(CovMapVersion Version, InstrProfSymtab &P,
      std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
      std::vector<StringRef> &F);
};

// A class for reading coverage mapping function records for a module.
template <CovMapVersion Version, class IntPtrT, support::endianness Endian>
class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader {
  using FuncRecordType =
      typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType;
  using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType;

  // Maps function's name references to the indexes of their records
  // in \c Records.
  DenseMap<NameRefType, size_t> FunctionRecords;
  InstrProfSymtab &ProfileNames;
  std::vector<StringRef> &Filenames;
  std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records;

  // Add the record to the collection if we don't already have a record that
  // points to the same function name. This is useful to ignore the redundant
  // records for the functions with ODR linkage.
  // In addition, prefer records with real coverage mapping data to dummy
  // records, which were emitted for inline functions which were seen but
  // not used in the corresponding translation unit.
  Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR,
                                     StringRef Mapping, size_t FilenamesBegin) {
    uint64_t FuncHash = CFR->template getFuncHash<Endian>();
    NameRefType NameRef = CFR->template getFuncNameRef<Endian>();
    auto InsertResult =
        FunctionRecords.insert(std::make_pair(NameRef, Records.size()));
    if (InsertResult.second) {
      StringRef FuncName;
      if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName))
        return Err;
      if (FuncName.empty())
        return make_error<InstrProfError>(instrprof_error::malformed);
      Records.emplace_back(Version, FuncName, FuncHash, Mapping, FilenamesBegin,
                           Filenames.size() - FilenamesBegin);
      return Error::success();
    }
    // Update the existing record if it's a dummy and the new record is real.
    size_t OldRecordIndex = InsertResult.first->second;
    BinaryCoverageReader::ProfileMappingRecord &OldRecord =
        Records[OldRecordIndex];
    Expected<bool> OldIsDummyExpected = isCoverageMappingDummy(
        OldRecord.FunctionHash, OldRecord.CoverageMapping);
    if (Error Err = OldIsDummyExpected.takeError())
      return Err;
    if (!*OldIsDummyExpected)
      return Error::success();
    Expected<bool> NewIsDummyExpected =
        isCoverageMappingDummy(FuncHash, Mapping);
    if (Error Err = NewIsDummyExpected.takeError())
      return Err;
    if (*NewIsDummyExpected)
      return Error::success();
    OldRecord.FunctionHash = FuncHash;
    OldRecord.CoverageMapping = Mapping;
    OldRecord.FilenamesBegin = FilenamesBegin;
    OldRecord.FilenamesSize = Filenames.size() - FilenamesBegin;
    return Error::success();
  }

public:
  VersionedCovMapFuncRecordReader(
      InstrProfSymtab &P,
      std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
      std::vector<StringRef> &F)
      : ProfileNames(P), Filenames(F), Records(R) {}

  ~VersionedCovMapFuncRecordReader() override = default;

  Expected<const char *> readFunctionRecords(const char *Buf,
                                             const char *End) override {
    using namespace support;

    if (Buf + sizeof(CovMapHeader) > End)
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    auto CovHeader = reinterpret_cast<const CovMapHeader *>(Buf);
    uint32_t NRecords = CovHeader->getNRecords<Endian>();
    uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>();
    uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>();
    assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version);
    Buf = reinterpret_cast<const char *>(CovHeader + 1);

    // Skip past the function records, saving the start and end for later.
    const char *FunBuf = Buf;
    Buf += NRecords * sizeof(FuncRecordType);
    const char *FunEnd = Buf;

    // Get the filenames.
    if (Buf + FilenamesSize > End)
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    size_t FilenamesBegin = Filenames.size();
    RawCoverageFilenamesReader Reader(StringRef(Buf, FilenamesSize), Filenames);
    if (auto Err = Reader.read())
      return std::move(Err);
    Buf += FilenamesSize;

    // We'll read the coverage mapping records in the loop below.
    const char *CovBuf = Buf;
    Buf += CoverageSize;
    const char *CovEnd = Buf;

    if (Buf > End)
      return make_error<CoverageMapError>(coveragemap_error::malformed);
    // Each coverage map has an alignment of 8, so we need to adjust alignment
    // before reading the next map.
    Buf += offsetToAlignedAddr(Buf, Align(8));

    auto CFR = reinterpret_cast<const FuncRecordType *>(FunBuf);
    while ((const char *)CFR < FunEnd) {
      // Read the function information
      uint32_t DataSize = CFR->template getDataSize<Endian>();

      // Now use that to read the coverage data.
      if (CovBuf + DataSize > CovEnd)
        return make_error<CoverageMapError>(coveragemap_error::malformed);
      auto Mapping = StringRef(CovBuf, DataSize);
      CovBuf += DataSize;

      if (Error Err =
              insertFunctionRecordIfNeeded(CFR, Mapping, FilenamesBegin))
        return std::move(Err);
      CFR++;
    }
    return Buf;
  }
};

} // end anonymous namespace

template <class IntPtrT, support::endianness Endian>
Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get(
    CovMapVersion Version, InstrProfSymtab &P,
    std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
    std::vector<StringRef> &F) {
  using namespace coverage;

  switch (Version) {
  case CovMapVersion::Version1:
    return std::make_unique<VersionedCovMapFuncRecordReader<
        CovMapVersion::Version1, IntPtrT, Endian>>(P, R, F);
  case CovMapVersion::Version2:
  case CovMapVersion::Version3:
    // Decompress the name data.
    if (Error E = P.create(P.getNameData()))
      return std::move(E);
    if (Version == CovMapVersion::Version2)
      return std::make_unique<VersionedCovMapFuncRecordReader<
          CovMapVersion::Version2, IntPtrT, Endian>>(P, R, F);
    else
      return std::make_unique<VersionedCovMapFuncRecordReader<
          CovMapVersion::Version3, IntPtrT, Endian>>(P, R, F);
  }
  llvm_unreachable("Unsupported version");
}

template <typename T, support::endianness Endian>
static Error readCoverageMappingData(
    InstrProfSymtab &ProfileNames, StringRef Data,
    std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
    std::vector<StringRef> &Filenames) {
  using namespace coverage;

  // Read the records in the coverage data section.
  auto CovHeader =
      reinterpret_cast<const CovMapHeader *>(Data.data());
  CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>();
  if (Version > CovMapVersion::CurrentVersion)
    return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
  Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected =
      CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records,
                                             Filenames);
  if (Error E = ReaderExpected.takeError())
    return E;
  auto Reader = std::move(ReaderExpected.get());
  for (const char *Buf = Data.data(), *End = Buf + Data.size(); Buf < End;) {
    auto NextHeaderOrErr = Reader->readFunctionRecords(Buf, End);
    if (auto E = NextHeaderOrErr.takeError())
      return E;
    Buf = NextHeaderOrErr.get();
  }
  return Error::success();
}

static const char *TestingFormatMagic = "llvmcovmtestdata";

Expected<std::unique_ptr<BinaryCoverageReader>>
BinaryCoverageReader::createCoverageReaderFromBuffer(
    StringRef Coverage, InstrProfSymtab &&ProfileNames, uint8_t BytesInAddress,
    support::endianness Endian) {
  std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader());
  Reader->ProfileNames = std::move(ProfileNames);
  if (BytesInAddress == 4 && Endian == support::endianness::little) {
    if (Error E =
            readCoverageMappingData<uint32_t, support::endianness::little>(
                Reader->ProfileNames, Coverage, Reader->MappingRecords,
                Reader->Filenames))
      return std::move(E);
  } else if (BytesInAddress == 4 && Endian == support::endianness::big) {
    if (Error E = readCoverageMappingData<uint32_t, support::endianness::big>(
            Reader->ProfileNames, Coverage, Reader->MappingRecords,
            Reader->Filenames))
      return std::move(E);
  } else if (BytesInAddress == 8 && Endian == support::endianness::little) {
    if (Error E =
            readCoverageMappingData<uint64_t, support::endianness::little>(
                Reader->ProfileNames, Coverage, Reader->MappingRecords,
                Reader->Filenames))
      return std::move(E);
  } else if (BytesInAddress == 8 && Endian == support::endianness::big) {
    if (Error E = readCoverageMappingData<uint64_t, support::endianness::big>(
            Reader->ProfileNames, Coverage, Reader->MappingRecords,
            Reader->Filenames))
      return std::move(E);
  } else
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  return std::move(Reader);
}

static Expected<std::unique_ptr<BinaryCoverageReader>>
loadTestingFormat(StringRef Data) {
  uint8_t BytesInAddress = 8;
  support::endianness Endian = support::endianness::little;

  Data = Data.substr(StringRef(TestingFormatMagic).size());
  if (Data.empty())
    return make_error<CoverageMapError>(coveragemap_error::truncated);
  unsigned N = 0;
  uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N);
  if (N > Data.size())
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  Data = Data.substr(N);
  if (Data.empty())
    return make_error<CoverageMapError>(coveragemap_error::truncated);
  N = 0;
  uint64_t Address = decodeULEB128(Data.bytes_begin(), &N);
  if (N > Data.size())
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  Data = Data.substr(N);
  if (Data.size() < ProfileNamesSize)
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  InstrProfSymtab ProfileNames;
  if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address))
    return std::move(E);
  StringRef CoverageMapping = Data.substr(ProfileNamesSize);
  // Skip the padding bytes because coverage map data has an alignment of 8.
  if (CoverageMapping.empty())
    return make_error<CoverageMapError>(coveragemap_error::truncated);
  size_t Pad = offsetToAlignedAddr(CoverageMapping.data(), Align(8));
  if (CoverageMapping.size() < Pad)
    return make_error<CoverageMapError>(coveragemap_error::malformed);
  CoverageMapping = CoverageMapping.substr(Pad);
  return BinaryCoverageReader::createCoverageReaderFromBuffer(
      CoverageMapping, std::move(ProfileNames), BytesInAddress, Endian);
}

static Expected<SectionRef> lookupSection(ObjectFile &OF, StringRef Name) {
  // On COFF, the object file section name may end in "$M". This tells the
  // linker to sort these sections between "$A" and "$Z". The linker removes the
  // dollar and everything after it in the final binary. Do the same to match.
  bool IsCOFF = isa<COFFObjectFile>(OF);
  auto stripSuffix = [IsCOFF](StringRef N) {
    return IsCOFF ? N.split('$').first : N;
  };
  Name = stripSuffix(Name);

  for (const auto &Section : OF.sections()) {
    Expected<StringRef> NameOrErr = Section.getName();
    if (!NameOrErr)
      return NameOrErr.takeError();
    if (stripSuffix(*NameOrErr) == Name)
      return Section;
  }
  return make_error<CoverageMapError>(coveragemap_error::no_data_found);
}

static Expected<std::unique_ptr<BinaryCoverageReader>>
loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch) {
  std::unique_ptr<ObjectFile> OF;
  if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
    // If we have a universal binary, try to look up the object for the
    // appropriate architecture.
    auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch);
    if (!ObjectFileOrErr)
      return ObjectFileOrErr.takeError();
    OF = std::move(ObjectFileOrErr.get());
  } else if (isa<ObjectFile>(Bin.get())) {
    // For any other object file, upcast and take ownership.
    OF.reset(cast<ObjectFile>(Bin.release()));
    // If we've asked for a particular arch, make sure they match.
    if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch())
      return errorCodeToError(object_error::arch_not_found);
  } else
    // We can only handle object files.
    return make_error<CoverageMapError>(coveragemap_error::malformed);

  // The coverage uses native pointer sizes for the object it's written in.
  uint8_t BytesInAddress = OF->getBytesInAddress();
  support::endianness Endian = OF->isLittleEndian()
                                   ? support::endianness::little
                                   : support::endianness::big;

  // Look for the sections that we are interested in.
  auto ObjFormat = OF->getTripleObjectFormat();
  auto NamesSection =
      lookupSection(*OF, getInstrProfSectionName(IPSK_name, ObjFormat,
                                                 /*AddSegmentInfo=*/false));
  if (auto E = NamesSection.takeError())
    return std::move(E);
  auto CoverageSection =
      lookupSection(*OF, getInstrProfSectionName(IPSK_covmap, ObjFormat,
                                                 /*AddSegmentInfo=*/false));
  if (auto E = CoverageSection.takeError())
    return std::move(E);

  // Get the contents of the given sections.
  auto CoverageMappingOrErr = CoverageSection->getContents();
  if (!CoverageMappingOrErr)
    return CoverageMappingOrErr.takeError();

  InstrProfSymtab ProfileNames;
  if (Error E = ProfileNames.create(*NamesSection))
    return std::move(E);

  return BinaryCoverageReader::createCoverageReaderFromBuffer(
      CoverageMappingOrErr.get(), std::move(ProfileNames), BytesInAddress,
      Endian);
}

Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>>
BinaryCoverageReader::create(
    MemoryBufferRef ObjectBuffer, StringRef Arch,
    SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers) {
  std::vector<std::unique_ptr<BinaryCoverageReader>> Readers;

  if (ObjectBuffer.getBuffer().startswith(TestingFormatMagic)) {
    // This is a special format used for testing.
    auto ReaderOrErr = loadTestingFormat(ObjectBuffer.getBuffer());
    if (!ReaderOrErr)
      return ReaderOrErr.takeError();
    Readers.push_back(std::move(ReaderOrErr.get()));
    return std::move(Readers);
  }

  auto BinOrErr = createBinary(ObjectBuffer);
  if (!BinOrErr)
    return BinOrErr.takeError();
  std::unique_ptr<Binary> Bin = std::move(BinOrErr.get());

  // MachO universal binaries which contain archives need to be treated as
  // archives, not as regular binaries.
  if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
    for (auto &ObjForArch : Universal->objects()) {
      // Skip slices within the universal binary which target the wrong arch.
      std::string ObjArch = ObjForArch.getArchFlagName();
      if (Arch != ObjArch)
        continue;

      auto ArchiveOrErr = ObjForArch.getAsArchive();
      if (!ArchiveOrErr) {
        // If this is not an archive, try treating it as a regular object.
        consumeError(ArchiveOrErr.takeError());
        break;
      }

      return BinaryCoverageReader::create(
          ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers);
    }
  }

  // Load coverage out of archive members.
  if (auto *Ar = dyn_cast<Archive>(Bin.get())) {
    Error Err = Error::success();
    for (auto &Child : Ar->children(Err)) {
      Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef();
      if (!ChildBufOrErr)
        return ChildBufOrErr.takeError();

      auto ChildReadersOrErr = BinaryCoverageReader::create(
          ChildBufOrErr.get(), Arch, ObjectFileBuffers);
      if (!ChildReadersOrErr)
        return ChildReadersOrErr.takeError();
      for (auto &Reader : ChildReadersOrErr.get())
        Readers.push_back(std::move(Reader));
    }
    if (Err)
      return std::move(Err);

    // Thin archives reference object files outside of the archive file, i.e.
    // files which reside in memory not owned by the caller. Transfer ownership
    // to the caller.
    if (Ar->isThin())
      for (auto &Buffer : Ar->takeThinBuffers())
        ObjectFileBuffers.push_back(std::move(Buffer));

    return std::move(Readers);
  }

  auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch);
  if (!ReaderOrErr)
    return ReaderOrErr.takeError();
  Readers.push_back(std::move(ReaderOrErr.get()));
  return std::move(Readers);
}

Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
  if (CurrentRecord >= MappingRecords.size())
    return make_error<CoverageMapError>(coveragemap_error::eof);

  FunctionsFilenames.clear();
  Expressions.clear();
  MappingRegions.clear();
  auto &R = MappingRecords[CurrentRecord];
  RawCoverageMappingReader Reader(
      R.CoverageMapping,
      makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize),
      FunctionsFilenames, Expressions, MappingRegions);
  if (auto Err = Reader.read())
    return Err;

  Record.FunctionName = R.FunctionName;
  Record.FunctionHash = R.FunctionHash;
  Record.Filenames = FunctionsFilenames;
  Record.Expressions = Expressions;
  Record.MappingRegions = MappingRegions;

  ++CurrentRecord;
  return Error::success();
}