AVRAsmBackend.cpp 14.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
//===-- AVRAsmBackend.cpp - AVR Asm Backend  ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AVRAsmBackend class.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/AVRAsmBackend.h"
#include "MCTargetDesc/AVRFixupKinds.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"

#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"

// FIXME: we should be doing checks to make sure asm operands
// are not out of bounds.

namespace adjust {

using namespace llvm;

void signed_width(unsigned Width, uint64_t Value, std::string Description,
                  const MCFixup &Fixup, MCContext *Ctx = nullptr) {
  if (!isIntN(Width, Value)) {
    std::string Diagnostic = "out of range " + Description;

    int64_t Min = minIntN(Width);
    int64_t Max = maxIntN(Width);

    Diagnostic += " (expected an integer in the range " + std::to_string(Min) +
      " to " + std::to_string(Max) + ")";

    if (Ctx) {
      Ctx->reportFatalError(Fixup.getLoc(), Diagnostic);
    } else {
      llvm_unreachable(Diagnostic.c_str());
    }
  }
}

void unsigned_width(unsigned Width, uint64_t Value, std::string Description,
                    const MCFixup &Fixup, MCContext *Ctx = nullptr) {
  if (!isUIntN(Width, Value)) {
    std::string Diagnostic = "out of range " + Description;

    int64_t Max = maxUIntN(Width);

    Diagnostic += " (expected an integer in the range 0 to " +
      std::to_string(Max) + ")";

    if (Ctx) {
      Ctx->reportFatalError(Fixup.getLoc(), Diagnostic);
    } else {
      llvm_unreachable(Diagnostic.c_str());
    }
  }
}

/// Adjusts the value of a branch target before fixup application.
void adjustBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
                  MCContext *Ctx = nullptr) {
  // We have one extra bit of precision because the value is rightshifted by
  // one.
  unsigned_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);

  // Rightshifts the value by one.
  AVR::fixups::adjustBranchTarget(Value);
}

/// Adjusts the value of a relative branch target before fixup application.
void adjustRelativeBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
                          MCContext *Ctx = nullptr) {
  // We have one extra bit of precision because the value is rightshifted by
  // one.
  signed_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);

  Value -= 2;

  // Rightshifts the value by one.
  AVR::fixups::adjustBranchTarget(Value);
}

/// 22-bit absolute fixup.
///
/// Resolves to:
/// 1001 kkkk 010k kkkk kkkk kkkk 111k kkkk
///
/// Offset of 0 (so the result is left shifted by 3 bits before application).
void fixup_call(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
                MCContext *Ctx = nullptr) {
  adjustBranch(Size, Fixup, Value, Ctx);

  auto top = Value & (0xf00000 << 6);   // the top four bits
  auto middle = Value & (0x1ffff << 5); // the middle 13 bits
  auto bottom = Value & 0x1f;           // end bottom 5 bits

  Value = (top << 6) | (middle << 3) | (bottom << 0);
}

/// 7-bit PC-relative fixup.
///
/// Resolves to:
/// 0000 00kk kkkk k000
/// Offset of 0 (so the result is left shifted by 3 bits before application).
void fixup_7_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
                   MCContext *Ctx = nullptr) {
  adjustRelativeBranch(Size, Fixup, Value, Ctx);

  // Because the value may be negative, we must mask out the sign bits
  Value &= 0x7f;
}

/// 12-bit PC-relative fixup.
/// Yes, the fixup is 12 bits even though the name says otherwise.
///
/// Resolves to:
/// 0000 kkkk kkkk kkkk
/// Offset of 0 (so the result isn't left-shifted before application).
void fixup_13_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
                    MCContext *Ctx = nullptr) {
  adjustRelativeBranch(Size, Fixup, Value, Ctx);

  // Because the value may be negative, we must mask out the sign bits
  Value &= 0xfff;
}

/// 6-bit fixup for the immediate operand of the ADIW family of
/// instructions.
///
/// Resolves to:
/// 0000 0000 kk00 kkkk
void fixup_6_adiw(const MCFixup &Fixup, uint64_t &Value,
                  MCContext *Ctx = nullptr) {
  unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx);

  Value = ((Value & 0x30) << 2) | (Value & 0x0f);
}

/// 5-bit port number fixup on the SBIC family of instructions.
///
/// Resolves to:
/// 0000 0000 AAAA A000
void fixup_port5(const MCFixup &Fixup, uint64_t &Value,
                 MCContext *Ctx = nullptr) {
  unsigned_width(5, Value, std::string("port number"), Fixup, Ctx);

  Value &= 0x1f;

  Value <<= 3;
}

/// 6-bit port number fixup on the `IN` family of instructions.
///
/// Resolves to:
/// 1011 0AAd dddd AAAA
void fixup_port6(const MCFixup &Fixup, uint64_t &Value,
                 MCContext *Ctx = nullptr) {
  unsigned_width(6, Value, std::string("port number"), Fixup, Ctx);

  Value = ((Value & 0x30) << 5) | (Value & 0x0f);
}

/// Adjusts a program memory address.
/// This is a simple right-shift.
void pm(uint64_t &Value) {
  Value >>= 1;
}

/// Fixups relating to the LDI instruction.
namespace ldi {

/// Adjusts a value to fix up the immediate of an `LDI Rd, K` instruction.
///
/// Resolves to:
/// 0000 KKKK 0000 KKKK
/// Offset of 0 (so the result isn't left-shifted before application).
void fixup(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
           MCContext *Ctx = nullptr) {
  uint64_t upper = Value & 0xf0;
  uint64_t lower = Value & 0x0f;

  Value = (upper << 4) | lower;
}

void neg(uint64_t &Value) { Value *= -1; }

void lo8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
         MCContext *Ctx = nullptr) {
  Value &= 0xff;
  ldi::fixup(Size, Fixup, Value, Ctx);
}

void hi8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
         MCContext *Ctx = nullptr) {
  Value = (Value & 0xff00) >> 8;
  ldi::fixup(Size, Fixup, Value, Ctx);
}

void hh8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
         MCContext *Ctx = nullptr) {
  Value = (Value & 0xff0000) >> 16;
  ldi::fixup(Size, Fixup, Value, Ctx);
}

void ms8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
         MCContext *Ctx = nullptr) {
  Value = (Value & 0xff000000) >> 24;
  ldi::fixup(Size, Fixup, Value, Ctx);
}

} // end of ldi namespace
} // end of adjust namespace

namespace llvm {

// Prepare value for the target space for it
void AVRAsmBackend::adjustFixupValue(const MCFixup &Fixup,
                                     const MCValue &Target,
                                     uint64_t &Value,
                                     MCContext *Ctx) const {
  // The size of the fixup in bits.
  uint64_t Size = AVRAsmBackend::getFixupKindInfo(Fixup.getKind()).TargetSize;

  unsigned Kind = Fixup.getKind();

  // Parsed LLVM-generated temporary labels are already
  // adjusted for instruction size, but normal labels aren't.
  //
  // To handle both cases, we simply un-adjust the temporary label
  // case so it acts like all other labels.
  if (const MCSymbolRefExpr *A = Target.getSymA()) {
    if (A->getSymbol().isTemporary())
      Value += 2;
  }

  switch (Kind) {
  default:
    llvm_unreachable("unhandled fixup");
  case AVR::fixup_7_pcrel:
    adjust::fixup_7_pcrel(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_13_pcrel:
    adjust::fixup_13_pcrel(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_call:
    adjust::fixup_call(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_ldi:
    adjust::ldi::fixup(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_lo8_ldi:
    adjust::ldi::lo8(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_lo8_ldi_pm:
  case AVR::fixup_lo8_ldi_gs:
    adjust::pm(Value);
    adjust::ldi::lo8(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_hi8_ldi:
    adjust::ldi::hi8(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_hi8_ldi_pm:
  case AVR::fixup_hi8_ldi_gs:
    adjust::pm(Value);
    adjust::ldi::hi8(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_hh8_ldi:
  case AVR::fixup_hh8_ldi_pm:
    if (Kind == AVR::fixup_hh8_ldi_pm) adjust::pm(Value);

    adjust::ldi::hh8(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_ms8_ldi:
    adjust::ldi::ms8(Size, Fixup, Value, Ctx);
    break;

  case AVR::fixup_lo8_ldi_neg:
  case AVR::fixup_lo8_ldi_pm_neg:
    if (Kind == AVR::fixup_lo8_ldi_pm_neg) adjust::pm(Value);

    adjust::ldi::neg(Value);
    adjust::ldi::lo8(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_hi8_ldi_neg:
  case AVR::fixup_hi8_ldi_pm_neg:
    if (Kind == AVR::fixup_hi8_ldi_pm_neg) adjust::pm(Value);

    adjust::ldi::neg(Value);
    adjust::ldi::hi8(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_hh8_ldi_neg:
  case AVR::fixup_hh8_ldi_pm_neg:
    if (Kind == AVR::fixup_hh8_ldi_pm_neg) adjust::pm(Value);

    adjust::ldi::neg(Value);
    adjust::ldi::hh8(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_ms8_ldi_neg:
    adjust::ldi::neg(Value);
    adjust::ldi::ms8(Size, Fixup, Value, Ctx);
    break;
  case AVR::fixup_16:
    adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);

    Value &= 0xffff;
    break;
  case AVR::fixup_16_pm:
    Value >>= 1; // Flash addresses are always shifted.
    adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);

    Value &= 0xffff;
    break;

  case AVR::fixup_6_adiw:
    adjust::fixup_6_adiw(Fixup, Value, Ctx);
    break;

  case AVR::fixup_port5:
    adjust::fixup_port5(Fixup, Value, Ctx);
    break;

  case AVR::fixup_port6:
    adjust::fixup_port6(Fixup, Value, Ctx);
    break;

  // Fixups which do not require adjustments.
  case FK_Data_1:
  case FK_Data_2:
  case FK_Data_4:
  case FK_Data_8:
    break;

  case FK_GPRel_4:
    llvm_unreachable("don't know how to adjust this fixup");
    break;
  }
}

std::unique_ptr<MCObjectTargetWriter>
AVRAsmBackend::createObjectTargetWriter() const {
  return createAVRELFObjectWriter(MCELFObjectTargetWriter::getOSABI(OSType));
}

void AVRAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
                               const MCValue &Target,
                               MutableArrayRef<char> Data, uint64_t Value,
                               bool IsResolved,
                               const MCSubtargetInfo *STI) const {
  adjustFixupValue(Fixup, Target, Value, &Asm.getContext());
  if (Value == 0)
    return; // Doesn't change encoding.

  MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());

  // The number of bits in the fixup mask
  auto NumBits = Info.TargetSize + Info.TargetOffset;
  auto NumBytes = (NumBits / 8) + ((NumBits % 8) == 0 ? 0 : 1);

  // Shift the value into position.
  Value <<= Info.TargetOffset;

  unsigned Offset = Fixup.getOffset();
  assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");

  // For each byte of the fragment that the fixup touches, mask in the
  // bits from the fixup value.
  for (unsigned i = 0; i < NumBytes; ++i) {
    uint8_t mask = (((Value >> (i * 8)) & 0xff));
    Data[Offset + i] |= mask;
  }
}

MCFixupKindInfo const &AVRAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
  // NOTE: Many AVR fixups work on sets of non-contignous bits. We work around
  // this by saying that the fixup is the size of the entire instruction.
  const static MCFixupKindInfo Infos[AVR::NumTargetFixupKinds] = {
      // This table *must* be in same the order of fixup_* kinds in
      // AVRFixupKinds.h.
      //
      // name                    offset  bits  flags
      {"fixup_32", 0, 32, 0},

      {"fixup_7_pcrel", 3, 7, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_13_pcrel", 0, 12, MCFixupKindInfo::FKF_IsPCRel},

      {"fixup_16", 0, 16, 0},
      {"fixup_16_pm", 0, 16, 0},

      {"fixup_ldi", 0, 8, 0},

      {"fixup_lo8_ldi", 0, 8, 0},
      {"fixup_hi8_ldi", 0, 8, 0},
      {"fixup_hh8_ldi", 0, 8, 0},
      {"fixup_ms8_ldi", 0, 8, 0},

      {"fixup_lo8_ldi_neg", 0, 8, 0},
      {"fixup_hi8_ldi_neg", 0, 8, 0},
      {"fixup_hh8_ldi_neg", 0, 8, 0},
      {"fixup_ms8_ldi_neg", 0, 8, 0},

      {"fixup_lo8_ldi_pm", 0, 8, 0},
      {"fixup_hi8_ldi_pm", 0, 8, 0},
      {"fixup_hh8_ldi_pm", 0, 8, 0},

      {"fixup_lo8_ldi_pm_neg", 0, 8, 0},
      {"fixup_hi8_ldi_pm_neg", 0, 8, 0},
      {"fixup_hh8_ldi_pm_neg", 0, 8, 0},

      {"fixup_call", 0, 22, 0},

      {"fixup_6", 0, 16, 0}, // non-contiguous
      {"fixup_6_adiw", 0, 6, 0},

      {"fixup_lo8_ldi_gs", 0, 8, 0},
      {"fixup_hi8_ldi_gs", 0, 8, 0},

      {"fixup_8", 0, 8, 0},
      {"fixup_8_lo8", 0, 8, 0},
      {"fixup_8_hi8", 0, 8, 0},
      {"fixup_8_hlo8", 0, 8, 0},

      {"fixup_diff8", 0, 8, 0},
      {"fixup_diff16", 0, 16, 0},
      {"fixup_diff32", 0, 32, 0},

      {"fixup_lds_sts_16", 0, 16, 0},

      {"fixup_port6", 0, 16, 0}, // non-contiguous
      {"fixup_port5", 3, 5, 0},
  };

  if (Kind < FirstTargetFixupKind)
    return MCAsmBackend::getFixupKindInfo(Kind);

  assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
         "Invalid kind!");

  return Infos[Kind - FirstTargetFixupKind];
}

bool AVRAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
  // If the count is not 2-byte aligned, we must be writing data into the text
  // section (otherwise we have unaligned instructions, and thus have far
  // bigger problems), so just write zeros instead.
  assert((Count % 2) == 0 && "NOP instructions must be 2 bytes");

  OS.write_zeros(Count);
  return true;
}

bool AVRAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
                                          const MCFixup &Fixup,
                                          const MCValue &Target) {
  switch ((unsigned) Fixup.getKind()) {
  default: return false;
  // Fixups which should always be recorded as relocations.
  case AVR::fixup_7_pcrel:
  case AVR::fixup_13_pcrel:
  case AVR::fixup_call:
    return true;
  }
}

MCAsmBackend *createAVRAsmBackend(const Target &T, const MCSubtargetInfo &STI,
                                  const MCRegisterInfo &MRI,
                                  const llvm::MCTargetOptions &TO) {
  return new AVRAsmBackend(STI.getTargetTriple().getOS());
}

} // end of namespace llvm