AVRAsmBackend.cpp
14.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
//===-- AVRAsmBackend.cpp - AVR Asm Backend ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AVRAsmBackend class.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/AVRAsmBackend.h"
#include "MCTargetDesc/AVRFixupKinds.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
// FIXME: we should be doing checks to make sure asm operands
// are not out of bounds.
namespace adjust {
using namespace llvm;
void signed_width(unsigned Width, uint64_t Value, std::string Description,
const MCFixup &Fixup, MCContext *Ctx = nullptr) {
if (!isIntN(Width, Value)) {
std::string Diagnostic = "out of range " + Description;
int64_t Min = minIntN(Width);
int64_t Max = maxIntN(Width);
Diagnostic += " (expected an integer in the range " + std::to_string(Min) +
" to " + std::to_string(Max) + ")";
if (Ctx) {
Ctx->reportFatalError(Fixup.getLoc(), Diagnostic);
} else {
llvm_unreachable(Diagnostic.c_str());
}
}
}
void unsigned_width(unsigned Width, uint64_t Value, std::string Description,
const MCFixup &Fixup, MCContext *Ctx = nullptr) {
if (!isUIntN(Width, Value)) {
std::string Diagnostic = "out of range " + Description;
int64_t Max = maxUIntN(Width);
Diagnostic += " (expected an integer in the range 0 to " +
std::to_string(Max) + ")";
if (Ctx) {
Ctx->reportFatalError(Fixup.getLoc(), Diagnostic);
} else {
llvm_unreachable(Diagnostic.c_str());
}
}
}
/// Adjusts the value of a branch target before fixup application.
void adjustBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
// We have one extra bit of precision because the value is rightshifted by
// one.
unsigned_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
// Rightshifts the value by one.
AVR::fixups::adjustBranchTarget(Value);
}
/// Adjusts the value of a relative branch target before fixup application.
void adjustRelativeBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
// We have one extra bit of precision because the value is rightshifted by
// one.
signed_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
Value -= 2;
// Rightshifts the value by one.
AVR::fixups::adjustBranchTarget(Value);
}
/// 22-bit absolute fixup.
///
/// Resolves to:
/// 1001 kkkk 010k kkkk kkkk kkkk 111k kkkk
///
/// Offset of 0 (so the result is left shifted by 3 bits before application).
void fixup_call(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
adjustBranch(Size, Fixup, Value, Ctx);
auto top = Value & (0xf00000 << 6); // the top four bits
auto middle = Value & (0x1ffff << 5); // the middle 13 bits
auto bottom = Value & 0x1f; // end bottom 5 bits
Value = (top << 6) | (middle << 3) | (bottom << 0);
}
/// 7-bit PC-relative fixup.
///
/// Resolves to:
/// 0000 00kk kkkk k000
/// Offset of 0 (so the result is left shifted by 3 bits before application).
void fixup_7_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
adjustRelativeBranch(Size, Fixup, Value, Ctx);
// Because the value may be negative, we must mask out the sign bits
Value &= 0x7f;
}
/// 12-bit PC-relative fixup.
/// Yes, the fixup is 12 bits even though the name says otherwise.
///
/// Resolves to:
/// 0000 kkkk kkkk kkkk
/// Offset of 0 (so the result isn't left-shifted before application).
void fixup_13_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
adjustRelativeBranch(Size, Fixup, Value, Ctx);
// Because the value may be negative, we must mask out the sign bits
Value &= 0xfff;
}
/// 6-bit fixup for the immediate operand of the ADIW family of
/// instructions.
///
/// Resolves to:
/// 0000 0000 kk00 kkkk
void fixup_6_adiw(const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx);
Value = ((Value & 0x30) << 2) | (Value & 0x0f);
}
/// 5-bit port number fixup on the SBIC family of instructions.
///
/// Resolves to:
/// 0000 0000 AAAA A000
void fixup_port5(const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
unsigned_width(5, Value, std::string("port number"), Fixup, Ctx);
Value &= 0x1f;
Value <<= 3;
}
/// 6-bit port number fixup on the `IN` family of instructions.
///
/// Resolves to:
/// 1011 0AAd dddd AAAA
void fixup_port6(const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
unsigned_width(6, Value, std::string("port number"), Fixup, Ctx);
Value = ((Value & 0x30) << 5) | (Value & 0x0f);
}
/// Adjusts a program memory address.
/// This is a simple right-shift.
void pm(uint64_t &Value) {
Value >>= 1;
}
/// Fixups relating to the LDI instruction.
namespace ldi {
/// Adjusts a value to fix up the immediate of an `LDI Rd, K` instruction.
///
/// Resolves to:
/// 0000 KKKK 0000 KKKK
/// Offset of 0 (so the result isn't left-shifted before application).
void fixup(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
uint64_t upper = Value & 0xf0;
uint64_t lower = Value & 0x0f;
Value = (upper << 4) | lower;
}
void neg(uint64_t &Value) { Value *= -1; }
void lo8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
Value &= 0xff;
ldi::fixup(Size, Fixup, Value, Ctx);
}
void hi8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
Value = (Value & 0xff00) >> 8;
ldi::fixup(Size, Fixup, Value, Ctx);
}
void hh8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
Value = (Value & 0xff0000) >> 16;
ldi::fixup(Size, Fixup, Value, Ctx);
}
void ms8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
MCContext *Ctx = nullptr) {
Value = (Value & 0xff000000) >> 24;
ldi::fixup(Size, Fixup, Value, Ctx);
}
} // end of ldi namespace
} // end of adjust namespace
namespace llvm {
// Prepare value for the target space for it
void AVRAsmBackend::adjustFixupValue(const MCFixup &Fixup,
const MCValue &Target,
uint64_t &Value,
MCContext *Ctx) const {
// The size of the fixup in bits.
uint64_t Size = AVRAsmBackend::getFixupKindInfo(Fixup.getKind()).TargetSize;
unsigned Kind = Fixup.getKind();
// Parsed LLVM-generated temporary labels are already
// adjusted for instruction size, but normal labels aren't.
//
// To handle both cases, we simply un-adjust the temporary label
// case so it acts like all other labels.
if (const MCSymbolRefExpr *A = Target.getSymA()) {
if (A->getSymbol().isTemporary())
Value += 2;
}
switch (Kind) {
default:
llvm_unreachable("unhandled fixup");
case AVR::fixup_7_pcrel:
adjust::fixup_7_pcrel(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_13_pcrel:
adjust::fixup_13_pcrel(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_call:
adjust::fixup_call(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_ldi:
adjust::ldi::fixup(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_lo8_ldi:
adjust::ldi::lo8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_lo8_ldi_pm:
case AVR::fixup_lo8_ldi_gs:
adjust::pm(Value);
adjust::ldi::lo8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_hi8_ldi:
adjust::ldi::hi8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_hi8_ldi_pm:
case AVR::fixup_hi8_ldi_gs:
adjust::pm(Value);
adjust::ldi::hi8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_hh8_ldi:
case AVR::fixup_hh8_ldi_pm:
if (Kind == AVR::fixup_hh8_ldi_pm) adjust::pm(Value);
adjust::ldi::hh8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_ms8_ldi:
adjust::ldi::ms8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_lo8_ldi_neg:
case AVR::fixup_lo8_ldi_pm_neg:
if (Kind == AVR::fixup_lo8_ldi_pm_neg) adjust::pm(Value);
adjust::ldi::neg(Value);
adjust::ldi::lo8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_hi8_ldi_neg:
case AVR::fixup_hi8_ldi_pm_neg:
if (Kind == AVR::fixup_hi8_ldi_pm_neg) adjust::pm(Value);
adjust::ldi::neg(Value);
adjust::ldi::hi8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_hh8_ldi_neg:
case AVR::fixup_hh8_ldi_pm_neg:
if (Kind == AVR::fixup_hh8_ldi_pm_neg) adjust::pm(Value);
adjust::ldi::neg(Value);
adjust::ldi::hh8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_ms8_ldi_neg:
adjust::ldi::neg(Value);
adjust::ldi::ms8(Size, Fixup, Value, Ctx);
break;
case AVR::fixup_16:
adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
Value &= 0xffff;
break;
case AVR::fixup_16_pm:
Value >>= 1; // Flash addresses are always shifted.
adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
Value &= 0xffff;
break;
case AVR::fixup_6_adiw:
adjust::fixup_6_adiw(Fixup, Value, Ctx);
break;
case AVR::fixup_port5:
adjust::fixup_port5(Fixup, Value, Ctx);
break;
case AVR::fixup_port6:
adjust::fixup_port6(Fixup, Value, Ctx);
break;
// Fixups which do not require adjustments.
case FK_Data_1:
case FK_Data_2:
case FK_Data_4:
case FK_Data_8:
break;
case FK_GPRel_4:
llvm_unreachable("don't know how to adjust this fixup");
break;
}
}
std::unique_ptr<MCObjectTargetWriter>
AVRAsmBackend::createObjectTargetWriter() const {
return createAVRELFObjectWriter(MCELFObjectTargetWriter::getOSABI(OSType));
}
void AVRAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
const MCValue &Target,
MutableArrayRef<char> Data, uint64_t Value,
bool IsResolved,
const MCSubtargetInfo *STI) const {
adjustFixupValue(Fixup, Target, Value, &Asm.getContext());
if (Value == 0)
return; // Doesn't change encoding.
MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
// The number of bits in the fixup mask
auto NumBits = Info.TargetSize + Info.TargetOffset;
auto NumBytes = (NumBits / 8) + ((NumBits % 8) == 0 ? 0 : 1);
// Shift the value into position.
Value <<= Info.TargetOffset;
unsigned Offset = Fixup.getOffset();
assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
// For each byte of the fragment that the fixup touches, mask in the
// bits from the fixup value.
for (unsigned i = 0; i < NumBytes; ++i) {
uint8_t mask = (((Value >> (i * 8)) & 0xff));
Data[Offset + i] |= mask;
}
}
MCFixupKindInfo const &AVRAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
// NOTE: Many AVR fixups work on sets of non-contignous bits. We work around
// this by saying that the fixup is the size of the entire instruction.
const static MCFixupKindInfo Infos[AVR::NumTargetFixupKinds] = {
// This table *must* be in same the order of fixup_* kinds in
// AVRFixupKinds.h.
//
// name offset bits flags
{"fixup_32", 0, 32, 0},
{"fixup_7_pcrel", 3, 7, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_13_pcrel", 0, 12, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_16", 0, 16, 0},
{"fixup_16_pm", 0, 16, 0},
{"fixup_ldi", 0, 8, 0},
{"fixup_lo8_ldi", 0, 8, 0},
{"fixup_hi8_ldi", 0, 8, 0},
{"fixup_hh8_ldi", 0, 8, 0},
{"fixup_ms8_ldi", 0, 8, 0},
{"fixup_lo8_ldi_neg", 0, 8, 0},
{"fixup_hi8_ldi_neg", 0, 8, 0},
{"fixup_hh8_ldi_neg", 0, 8, 0},
{"fixup_ms8_ldi_neg", 0, 8, 0},
{"fixup_lo8_ldi_pm", 0, 8, 0},
{"fixup_hi8_ldi_pm", 0, 8, 0},
{"fixup_hh8_ldi_pm", 0, 8, 0},
{"fixup_lo8_ldi_pm_neg", 0, 8, 0},
{"fixup_hi8_ldi_pm_neg", 0, 8, 0},
{"fixup_hh8_ldi_pm_neg", 0, 8, 0},
{"fixup_call", 0, 22, 0},
{"fixup_6", 0, 16, 0}, // non-contiguous
{"fixup_6_adiw", 0, 6, 0},
{"fixup_lo8_ldi_gs", 0, 8, 0},
{"fixup_hi8_ldi_gs", 0, 8, 0},
{"fixup_8", 0, 8, 0},
{"fixup_8_lo8", 0, 8, 0},
{"fixup_8_hi8", 0, 8, 0},
{"fixup_8_hlo8", 0, 8, 0},
{"fixup_diff8", 0, 8, 0},
{"fixup_diff16", 0, 16, 0},
{"fixup_diff32", 0, 32, 0},
{"fixup_lds_sts_16", 0, 16, 0},
{"fixup_port6", 0, 16, 0}, // non-contiguous
{"fixup_port5", 3, 5, 0},
};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
bool AVRAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
// If the count is not 2-byte aligned, we must be writing data into the text
// section (otherwise we have unaligned instructions, and thus have far
// bigger problems), so just write zeros instead.
assert((Count % 2) == 0 && "NOP instructions must be 2 bytes");
OS.write_zeros(Count);
return true;
}
bool AVRAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
const MCFixup &Fixup,
const MCValue &Target) {
switch ((unsigned) Fixup.getKind()) {
default: return false;
// Fixups which should always be recorded as relocations.
case AVR::fixup_7_pcrel:
case AVR::fixup_13_pcrel:
case AVR::fixup_call:
return true;
}
}
MCAsmBackend *createAVRAsmBackend(const Target &T, const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
const llvm::MCTargetOptions &TO) {
return new AVRAsmBackend(STI.getTargetTriple().getOS());
}
} // end of namespace llvm