SystemZOperands.td 25 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Class definitions
//===----------------------------------------------------------------------===//

class ImmediateAsmOperand<string name>
  : AsmOperandClass {
  let Name = name;
  let RenderMethod = "addImmOperands";
}
class ImmediateTLSAsmOperand<string name>
  : AsmOperandClass {
  let Name = name;
  let RenderMethod = "addImmTLSOperands";
}

class ImmediateOp<ValueType vt, string asmop> : Operand<vt> {
  let PrintMethod = "print"##asmop##"Operand";
  let DecoderMethod = "decode"##asmop##"Operand";
  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
  let OperandType = "OPERAND_IMMEDIATE";
}

class ImmOpWithPattern<ValueType vt, string asmop, code pred, SDNodeXForm xform,
      SDNode ImmNode = imm> :
  ImmediateOp<vt, asmop>, PatLeaf<(vt ImmNode), pred, xform>;

// class ImmediatePatLeaf<ValueType vt, code pred,
//       SDNodeXForm xform, SDNode ImmNode>
//   : PatLeaf<(vt ImmNode), pred, xform>;


// Constructs both a DAG pattern and instruction operand for an immediate
// of type VT.  PRED returns true if a node is acceptable and XFORM returns
// the operand value associated with the node.  ASMOP is the name of the
// associated asm operand, and also forms the basis of the asm print method.
multiclass Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> {
  // def "" : ImmediateOp<vt, asmop>,
  //          PatLeaf<(vt imm), pred, xform>;
  def "" : ImmOpWithPattern<vt, asmop, pred, xform>;

//  def _timm : PatLeaf<(vt timm), pred, xform>;
  def _timm : ImmOpWithPattern<vt, asmop, pred, xform, timm>;
}

// Constructs an asm operand for a PC-relative address.  SIZE says how
// many bits there are.
class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
  let PredicateMethod = "isImm";
  let ParserMethod = "parsePCRel"##size;
}
class PCRelTLSAsmOperand<string size>
  : ImmediateTLSAsmOperand<"PCRelTLS"##size> {
  let PredicateMethod = "isImmTLS";
  let ParserMethod = "parsePCRelTLS"##size;
}

// Constructs an operand for a PC-relative address with address type VT.
// ASMOP is the associated asm operand.
let OperandType = "OPERAND_PCREL" in {
  class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
    let PrintMethod = "printPCRelOperand";
    let ParserMatchClass = asmop;
  }
  class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
    let PrintMethod = "printPCRelTLSOperand";
    let ParserMatchClass = asmop;
  }
}

// Constructs both a DAG pattern and instruction operand for a PC-relative
// address with address size VT.  SELF is the name of the operand and
// ASMOP is the associated asm operand.
class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
  : ComplexPattern<vt, 1, "selectPCRelAddress",
                   [z_pcrel_wrapper, z_pcrel_offset]>,
    PCRelOperand<vt, asmop> {
  let MIOperandInfo = (ops !cast<Operand>(self));
}

// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
// is "".
class AddressAsmOperand<string format, string bitsize, string dispsize,
                        string length = "">
  : AsmOperandClass {
  let Name = format##bitsize##"Disp"##dispsize##length;
  let ParserMethod = "parse"##format##bitsize;
  let RenderMethod = "add"##format##"Operands";
}

// Constructs an instruction operand for an addressing mode.  FORMAT,
// BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
// AddressAsmOperand.  OPERANDS is a list of individual operands
// (base register, displacement, etc.).
class AddressOperand<string bitsize, string dispsize, string length,
                     string format, dag operands>
  : Operand<!cast<ValueType>("i"##bitsize)> {
  let PrintMethod = "print"##format##"Operand";
  let EncoderMethod = "get"##format##dispsize##length##"Encoding";
  let DecoderMethod =
    "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
  let OperandType = "OPERAND_MEMORY";
  let MIOperandInfo = operands;
  let ParserMatchClass =
    !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
}

// Constructs both a DAG pattern and instruction operand for an addressing mode.
// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
// AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
// (base register, displacement, etc.).  SELTYPE is the type of the memory
// operand for selection purposes; sometimes we want different selection
// choices for the same underlying addressing mode.  SUFFIX is similarly
// a suffix appended to the displacement for selection purposes;
// e.g. we want to reject small 20-bit displacements if a 12-bit form
// also exists, but we want to accept them otherwise.
class AddressingMode<string seltype, string bitsize, string dispsize,
                     string suffix, string length, int numops, string format,
                     dag operands>
  : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
                   "select"##seltype##dispsize##suffix##length,
                   [add, sub, or, frameindex, z_adjdynalloc]>,
    AddressOperand<bitsize, dispsize, length, format, operands>;

// An addressing mode with a base and displacement but no index.
class BDMode<string type, string bitsize, string dispsize, string suffix>
  : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Operand>("disp"##dispsize##"imm"##bitsize))>;

// An addressing mode with a base, displacement and index.
class BDXMode<string type, string bitsize, string dispsize, string suffix>
  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
                        !cast<RegisterOperand>("ADDR"##bitsize))>;

// A BDMode paired with an immediate length operand of LENSIZE bits.
class BDLMode<string type, string bitsize, string dispsize, string suffix,
              string lensize>
  : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
                   "BDLAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
                        !cast<Operand>("imm"##bitsize))>;

// A BDMode paired with a register length operand.
class BDRMode<string type, string bitsize, string dispsize, string suffix>
  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
                        !cast<RegisterOperand>("GR"##bitsize))>;

// An addressing mode with a base, displacement and a vector index.
class BDVMode<string bitsize, string dispsize>
  : AddressOperand<bitsize, dispsize, "", "BDVAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
                        !cast<RegisterOperand>("VR128"))>;

//===----------------------------------------------------------------------===//
// Extracting immediate operands from nodes
// These all create MVT::i64 nodes to ensure the value is not sign-extended
// when converted from an SDNode to a MachineOperand later on.
//===----------------------------------------------------------------------===//

// Bits 0-15 (counting from the lsb).
def LL16 : SDNodeXForm<imm, [{
  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Bits 16-31 (counting from the lsb).
def LH16 : SDNodeXForm<imm, [{
  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Bits 32-47 (counting from the lsb).
def HL16 : SDNodeXForm<imm, [{
  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Bits 48-63 (counting from the lsb).
def HH16 : SDNodeXForm<imm, [{
  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Low 32 bits.
def LF32 : SDNodeXForm<imm, [{
  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// High 32 bits.
def HF32 : SDNodeXForm<imm, [{
  uint64_t Value = N->getZExtValue() >> 32;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Negated variants.
def NEGLH16 : SDNodeXForm<imm, [{
  uint64_t Value = (-N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

def NEGLF32 : SDNodeXForm<imm, [{
  uint64_t Value = -N->getZExtValue() & 0x00000000FFFFFFFFULL;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Truncate an immediate to a 8-bit signed quantity.
def SIMM8 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 8-bit unsigned quantity.
def UIMM8 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
def UIMM8EVEN : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 12-bit unsigned quantity.
def UIMM12 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 16-bit signed quantity.
def SIMM16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Negate and then truncate an immediate to a 16-bit signed quantity.
def NEGSIMM16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int16_t(-N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 16-bit unsigned quantity.
def UIMM16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 32-bit signed quantity.
def SIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Negate and then truncate an immediate to a 32-bit unsigned quantity.
def NEGSIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int32_t(-N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 32-bit unsigned quantity.
def UIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Negate and then truncate an immediate to a 32-bit unsigned quantity.
def NEGUIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 48-bit unsigned quantity.
def UIMM48 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff,
                                   SDLoc(N), MVT::i64);
}]>;

//===----------------------------------------------------------------------===//
// Immediate asm operands.
//===----------------------------------------------------------------------===//

def U1Imm  : ImmediateAsmOperand<"U1Imm">;
def U2Imm  : ImmediateAsmOperand<"U2Imm">;
def U3Imm  : ImmediateAsmOperand<"U3Imm">;
def U4Imm  : ImmediateAsmOperand<"U4Imm">;
def U6Imm  : ImmediateAsmOperand<"U6Imm">;
def S8Imm  : ImmediateAsmOperand<"S8Imm">;
def U8Imm  : ImmediateAsmOperand<"U8Imm">;
def U12Imm : ImmediateAsmOperand<"U12Imm">;
def S16Imm : ImmediateAsmOperand<"S16Imm">;
def U16Imm : ImmediateAsmOperand<"U16Imm">;
def S32Imm : ImmediateAsmOperand<"S32Imm">;
def U32Imm : ImmediateAsmOperand<"U32Imm">;
def U48Imm : ImmediateAsmOperand<"U48Imm">;

//===----------------------------------------------------------------------===//
// i32 immediates
//===----------------------------------------------------------------------===//

// Immediates for the lower and upper 16 bits of an i32, with the other
// bits of the i32 being zero.
defm imm32ll16 : Immediate<i32, [{
  return SystemZ::isImmLL(N->getZExtValue());
}], LL16, "U16Imm">;

defm imm32lh16 : Immediate<i32, [{
  return SystemZ::isImmLH(N->getZExtValue());
}], LH16, "U16Imm">;

// Immediates for the lower and upper 16 bits of an i32, with the other
// bits of the i32 being one.
defm imm32ll16c : Immediate<i32, [{
  return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
}], LL16, "U16Imm">;

defm imm32lh16c : Immediate<i32, [{
  return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
}], LH16, "U16Imm">;

// Short immediates
defm imm32zx1 : Immediate<i32, [{
  return isUInt<1>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U1Imm">;

defm imm32zx2 : Immediate<i32, [{
  return isUInt<2>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U2Imm">;

defm imm32zx3 : Immediate<i32, [{
  return isUInt<3>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U3Imm">;

defm imm32zx4 : Immediate<i32, [{
  return isUInt<4>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U4Imm">;

// Note: this enforces an even value during code generation only.
// When used from the assembler, any 4-bit value is allowed.
defm imm32zx4even : Immediate<i32, [{
  return isUInt<4>(N->getZExtValue());
}], UIMM8EVEN, "U4Imm">;

defm imm32zx6 : Immediate<i32, [{
  return isUInt<6>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U6Imm">;

defm imm32sx8 : Immediate<i32, [{
  return isInt<8>(N->getSExtValue());
}], SIMM8, "S8Imm">;

defm imm32zx8 : Immediate<i32, [{
  return isUInt<8>(N->getZExtValue());
}], UIMM8, "U8Imm">;

defm imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;

defm imm32zx12 : Immediate<i32, [{
  return isUInt<12>(N->getZExtValue());
}], UIMM12, "U12Imm">;

defm imm32sx16 : Immediate<i32, [{
  return isInt<16>(N->getSExtValue());
}], SIMM16, "S16Imm">;

defm imm32sx16n : Immediate<i32, [{
  return isInt<16>(-N->getSExtValue());
}], NEGSIMM16, "S16Imm">;

defm imm32zx16 : Immediate<i32, [{
  return isUInt<16>(N->getZExtValue());
}], UIMM16, "U16Imm">;

defm imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
defm imm32zx16trunc : Immediate<i32, [{}], UIMM16, "U16Imm">;

// Full 32-bit immediates.  we need both signed and unsigned versions
// because the assembler is picky.  E.g. AFI requires signed operands
// while NILF requires unsigned ones.
defm simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
defm uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;

defm simm32n : Immediate<i32, [{
  return isInt<32>(-N->getSExtValue());
}], NEGSIMM32, "S32Imm">;

def imm32 : ImmLeaf<i32, [{}]>;

//===----------------------------------------------------------------------===//
// 64-bit immediates
//===----------------------------------------------------------------------===//

// Immediates for 16-bit chunks of an i64, with the other bits of the
// i32 being zero.
defm imm64ll16 : Immediate<i64, [{
  return SystemZ::isImmLL(N->getZExtValue());
}], LL16, "U16Imm">;

defm imm64lh16 : Immediate<i64, [{
  return SystemZ::isImmLH(N->getZExtValue());
}], LH16, "U16Imm">;

defm imm64hl16 : Immediate<i64, [{
  return SystemZ::isImmHL(N->getZExtValue());
}], HL16, "U16Imm">;

defm imm64hh16 : Immediate<i64, [{
  return SystemZ::isImmHH(N->getZExtValue());
}], HH16, "U16Imm">;

// Immediates for 16-bit chunks of an i64, with the other bits of the
// i32 being one.
defm imm64ll16c : Immediate<i64, [{
  return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
}], LL16, "U16Imm">;

defm imm64lh16c : Immediate<i64, [{
  return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
}], LH16, "U16Imm">;

defm imm64hl16c : Immediate<i64, [{
  return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
}], HL16, "U16Imm">;

defm imm64hh16c : Immediate<i64, [{
  return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
}], HH16, "U16Imm">;

// Immediates for the lower and upper 32 bits of an i64, with the other
// bits of the i32 being zero.
defm imm64lf32 : Immediate<i64, [{
  return SystemZ::isImmLF(N->getZExtValue());
}], LF32, "U32Imm">;

defm imm64hf32 : Immediate<i64, [{
  return SystemZ::isImmHF(N->getZExtValue());
}], HF32, "U32Imm">;

// Immediates for the lower and upper 32 bits of an i64, with the other
// bits of the i32 being one.
defm imm64lf32c : Immediate<i64, [{
  return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
}], LF32, "U32Imm">;

defm imm64hf32c : Immediate<i64, [{
  return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
}], HF32, "U32Imm">;

// Negated immediates that fit LF32 or LH16.
defm imm64lh16n : Immediate<i64, [{
  return SystemZ::isImmLH(uint64_t(-N->getZExtValue()));
}], NEGLH16, "U16Imm">;

defm imm64lf32n : Immediate<i64, [{
  return SystemZ::isImmLF(uint64_t(-N->getZExtValue()));
}], NEGLF32, "U32Imm">;

// Short immediates.
defm imm64sx8 : Immediate<i64, [{
  return isInt<8>(N->getSExtValue());
}], SIMM8, "S8Imm">;

defm imm64zx8 : Immediate<i64, [{
  return isUInt<8>(N->getSExtValue());
}], UIMM8, "U8Imm">;

defm imm64sx16 : Immediate<i64, [{
  return isInt<16>(N->getSExtValue());
}], SIMM16, "S16Imm">;

defm imm64sx16n : Immediate<i64, [{
  return isInt<16>(-N->getSExtValue());
}], NEGSIMM16, "S16Imm">;

defm imm64zx16 : Immediate<i64, [{
  return isUInt<16>(N->getZExtValue());
}], UIMM16, "U16Imm">;

defm imm64sx32 : Immediate<i64, [{
  return isInt<32>(N->getSExtValue());
}], SIMM32, "S32Imm">;

defm imm64sx32n : Immediate<i64, [{
  return isInt<32>(-N->getSExtValue());
}], NEGSIMM32, "S32Imm">;

defm imm64zx32 : Immediate<i64, [{
  return isUInt<32>(N->getZExtValue());
}], UIMM32, "U32Imm">;

defm imm64zx32n : Immediate<i64, [{
  return isUInt<32>(-N->getSExtValue());
}], NEGUIMM32, "U32Imm">;

defm imm64zx48 : Immediate<i64, [{
  return isUInt<64>(N->getZExtValue());
}], UIMM48, "U48Imm">;

let OperandType = "OPERAND_IMMEDIATE" in
  def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;

//===----------------------------------------------------------------------===//
// Floating-point immediates
//===----------------------------------------------------------------------===//

// Floating-point zero.
def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;

// Floating point negative zero.
def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;

//===----------------------------------------------------------------------===//
// Symbolic address operands
//===----------------------------------------------------------------------===//

// PC-relative asm operands.
def PCRel12 : PCRelAsmOperand<"12">;
def PCRel16 : PCRelAsmOperand<"16">;
def PCRel24 : PCRelAsmOperand<"24">;
def PCRel32 : PCRelAsmOperand<"32">;
def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
def PCRelTLS32 : PCRelTLSAsmOperand<"32">;

// PC-relative offsets of a basic block.  The offset is sign-extended
// and multiplied by 2.
def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
  let EncoderMethod = "getPC16DBLEncoding";
  let DecoderMethod = "decodePC16DBLBranchOperand";
}
def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
  let EncoderMethod = "getPC32DBLEncoding";
  let DecoderMethod = "decodePC32DBLBranchOperand";
}

// Variants of brtarget for use with branch prediction preload.
def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> {
  let EncoderMethod = "getPC12DBLBPPEncoding";
  let DecoderMethod = "decodePC12DBLBranchOperand";
}
def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> {
  let EncoderMethod = "getPC16DBLBPPEncoding";
  let DecoderMethod = "decodePC16DBLBranchOperand";
}
def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> {
  let EncoderMethod = "getPC24DBLBPPEncoding";
  let DecoderMethod = "decodePC24DBLBranchOperand";
}

// Variants of brtarget16/32 with an optional additional TLS symbol.
// These are used to annotate calls to __tls_get_offset.
def tlssym : Operand<i64> { }
def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
  let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
  let EncoderMethod = "getPC16DBLTLSEncoding";
  let DecoderMethod = "decodePC16DBLBranchOperand";
}
def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
  let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
  let EncoderMethod = "getPC32DBLTLSEncoding";
  let DecoderMethod = "decodePC32DBLBranchOperand";
}

// A PC-relative offset of a global value.  The offset is sign-extended
// and multiplied by 2.
def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
  let EncoderMethod = "getPC32DBLEncoding";
  let DecoderMethod = "decodePC32DBLOperand";
}

//===----------------------------------------------------------------------===//
// Addressing modes
//===----------------------------------------------------------------------===//

// 12-bit displacement operands.
def disp12imm32 : Operand<i32>;
def disp12imm64 : Operand<i64>;

// 20-bit displacement operands.
def disp20imm32 : Operand<i32>;
def disp20imm64 : Operand<i64>;

def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
def BDLAddr64Disp12Len4 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len4">;
def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
def BDRAddr64Disp12     : AddressAsmOperand<"BDRAddr",  "64", "12">;
def BDVAddr64Disp12     : AddressAsmOperand<"BDVAddr",  "64", "12">;

// DAG patterns and operands for addressing modes.  Each mode has
// the form <type><range><group>[<len>] where:
//
// <type> is one of:
//   shift    : base + displacement (32-bit)
//   bdaddr   : base + displacement
//   mviaddr  : like bdaddr, but reject cases with a natural index
//   bdxaddr  : base + displacement + index
//   laaddr   : like bdxaddr, but used for Load Address operations
//   dynalloc : base + displacement + index + ADJDYNALLOC
//   bdladdr  : base + displacement with a length field
//   bdvaddr  : base + displacement with a vector index
//
// <range> is one of:
//   12       : the displacement is an unsigned 12-bit value
//   20       : the displacement is a signed 20-bit value
//
// <group> is one of:
//   pair     : used when there is an equivalent instruction with the opposite
//              range value (12 or 20)
//   only     : used when there is no equivalent instruction with the opposite
//              range value
//
// <len> is one of:
//
//   <empty>  : there is no length field
//   len8     : the length field is 8 bits, with a range of [1, 0x100].
def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
def bdladdr12onlylen4 : BDLMode<"BDLAddr",  "64", "12", "Only", "4">;
def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
def bdraddr12only     : BDRMode<"BDRAddr",  "64", "12", "Only">;
def bdvaddr12only     : BDVMode<            "64", "12">;

//===----------------------------------------------------------------------===//
// Miscellaneous
//===----------------------------------------------------------------------===//

// A 4-bit condition-code mask.
def cond4 : PatLeaf<(i32 timm), [{ return (N->getZExtValue() < 16); }]>,
            Operand<i32> {
  let PrintMethod = "printCond4Operand";
  let OperandType = "OPERAND_IMMEDIATE";
}