nontrivial-unswitch-cost.ll 12.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
; Specifically exercise the cost modeling for non-trivial loop unswitching.
;
; RUN: opt -passes='loop(unswitch<nontrivial>),verify<loops>' -unswitch-threshold=5 -S < %s | FileCheck %s
; RUN: opt -passes='loop-mssa(unswitch<nontrivial>),verify<loops>' -unswitch-threshold=5 -S < %s | FileCheck %s
; RUN: opt -simple-loop-unswitch -enable-nontrivial-unswitch -unswitch-threshold=5 -S < %s | FileCheck %s
; RUN: opt -simple-loop-unswitch -enable-nontrivial-unswitch -unswitch-threshold=5 -enable-mssa-loop-dependency=true -verify-memoryssa -S < %s | FileCheck %s

declare void @a()
declare void @b()
declare void @x()

; First establish enough code size in the duplicated 'loop_begin' block to
; suppress unswitching.
define void @test_no_unswitch(i1* %ptr, i1 %cond) {
; CHECK-LABEL: @test_no_unswitch(
entry:
  br label %loop_begin
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br label %loop_begin
;
; We shouldn't have unswitched into any other block either.
; CHECK-NOT:     br i1 %cond

loop_begin:
  call void @x()
  call void @x()
  call void @x()
  call void @x()
  br i1 %cond, label %loop_a, label %loop_b
; CHECK:       loop_begin:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br i1 %cond, label %loop_a, label %loop_b

loop_a:
  call void @a()
  br label %loop_latch

loop_b:
  call void @b()
  br label %loop_latch

loop_latch:
  %v = load i1, i1* %ptr
  br i1 %v, label %loop_begin, label %loop_exit

loop_exit:
  ret void
}

; Now check that the smaller formulation of 'loop_begin' does in fact unswitch
; with our low threshold.
define void @test_unswitch(i1* %ptr, i1 %cond) {
; CHECK-LABEL: @test_unswitch(
entry:
  br label %loop_begin
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br i1 %cond, label %entry.split.us, label %entry.split

loop_begin:
  call void @x()
  br i1 %cond, label %loop_a, label %loop_b

loop_a:
  call void @a()
  br label %loop_latch
; The 'loop_a' unswitched loop.
;
; CHECK:       entry.split.us:
; CHECK-NEXT:    br label %loop_begin.us
;
; CHECK:       loop_begin.us:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br label %loop_a.us
;
; CHECK:       loop_a.us:
; CHECK-NEXT:    call void @a()
; CHECK-NEXT:    br label %loop_latch.us
;
; CHECK:       loop_latch.us:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us
;
; CHECK:       loop_exit.split.us:
; CHECK-NEXT:    br label %loop_exit

loop_b:
  call void @b()
  br label %loop_latch
; The 'loop_b' unswitched loop.
;
; CHECK:       entry.split:
; CHECK-NEXT:    br label %loop_begin
;
; CHECK:       loop_begin:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br label %loop_b
;
; CHECK:       loop_b:
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    br label %loop_latch
;
; CHECK:       loop_latch:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_begin, label %loop_exit.split
;
; CHECK:       loop_exit.split:
; CHECK-NEXT:    br label %loop_exit

loop_latch:
  %v = load i1, i1* %ptr
  br i1 %v, label %loop_begin, label %loop_exit

loop_exit:
  ret void
; CHECK:       loop_exit:
; CHECK-NEXT:    ret void
}

; Check that even with large amounts of code on either side of the unswitched
; branch, if that code would be kept in only one of the unswitched clones it
; doesn't contribute to the cost.
define void @test_unswitch_non_dup_code(i1* %ptr, i1 %cond) {
; CHECK-LABEL: @test_unswitch_non_dup_code(
entry:
  br label %loop_begin
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br i1 %cond, label %entry.split.us, label %entry.split

loop_begin:
  call void @x()
  br i1 %cond, label %loop_a, label %loop_b

loop_a:
  call void @a()
  call void @a()
  call void @a()
  call void @a()
  br label %loop_latch
; The 'loop_a' unswitched loop.
;
; CHECK:       entry.split.us:
; CHECK-NEXT:    br label %loop_begin.us
;
; CHECK:       loop_begin.us:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br label %loop_a.us
;
; CHECK:       loop_a.us:
; CHECK-NEXT:    call void @a()
; CHECK-NEXT:    call void @a()
; CHECK-NEXT:    call void @a()
; CHECK-NEXT:    call void @a()
; CHECK-NEXT:    br label %loop_latch.us
;
; CHECK:       loop_latch.us:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us
;
; CHECK:       loop_exit.split.us:
; CHECK-NEXT:    br label %loop_exit

loop_b:
  call void @b()
  call void @b()
  call void @b()
  call void @b()
  br label %loop_latch
; The 'loop_b' unswitched loop.
;
; CHECK:       entry.split:
; CHECK-NEXT:    br label %loop_begin
;
; CHECK:       loop_begin:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br label %loop_b
;
; CHECK:       loop_b:
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    br label %loop_latch
;
; CHECK:       loop_latch:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_begin, label %loop_exit.split
;
; CHECK:       loop_exit.split:
; CHECK-NEXT:    br label %loop_exit

loop_latch:
  %v = load i1, i1* %ptr
  br i1 %v, label %loop_begin, label %loop_exit

loop_exit:
  ret void
; CHECK:       loop_exit:
; CHECK-NEXT:    ret void
}

; Much like with non-duplicated code directly in the successor, we also won't
; duplicate even interesting CFGs.
define void @test_unswitch_non_dup_code_in_cfg(i1* %ptr, i1 %cond) {
; CHECK-LABEL: @test_unswitch_non_dup_code_in_cfg(
entry:
  br label %loop_begin
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br i1 %cond, label %entry.split.us, label %entry.split

loop_begin:
  call void @x()
  br i1 %cond, label %loop_a, label %loop_b

loop_a:
  %v1 = load i1, i1* %ptr
  br i1 %v1, label %loop_a_a, label %loop_a_b

loop_a_a:
  call void @a()
  br label %loop_latch

loop_a_b:
  call void @a()
  br label %loop_latch
; The 'loop_a' unswitched loop.
;
; CHECK:       entry.split.us:
; CHECK-NEXT:    br label %loop_begin.us
;
; CHECK:       loop_begin.us:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br label %loop_a.us
;
; CHECK:       loop_a.us:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_a_a.us, label %loop_a_b.us
;
; CHECK:       loop_a_b.us:
; CHECK-NEXT:    call void @a()
; CHECK-NEXT:    br label %loop_latch.us
;
; CHECK:       loop_a_a.us:
; CHECK-NEXT:    call void @a()
; CHECK-NEXT:    br label %loop_latch.us
;
; CHECK:       loop_latch.us:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us
;
; CHECK:       loop_exit.split.us:
; CHECK-NEXT:    br label %loop_exit

loop_b:
  %v2 = load i1, i1* %ptr
  br i1 %v2, label %loop_b_a, label %loop_b_b

loop_b_a:
  call void @b()
  br label %loop_latch

loop_b_b:
  call void @b()
  br label %loop_latch
; The 'loop_b' unswitched loop.
;
; CHECK:       entry.split:
; CHECK-NEXT:    br label %loop_begin
;
; CHECK:       loop_begin:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br label %loop_b
;
; CHECK:       loop_b:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_b_a, label %loop_b_b
;
; CHECK:       loop_b_a:
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    br label %loop_latch
;
; CHECK:       loop_b_b:
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    br label %loop_latch
;
; CHECK:       loop_latch:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_begin, label %loop_exit.split
;
; CHECK:       loop_exit.split:
; CHECK-NEXT:    br label %loop_exit

loop_latch:
  %v3 = load i1, i1* %ptr
  br i1 %v3, label %loop_begin, label %loop_exit

loop_exit:
  ret void
; CHECK:       loop_exit:
; CHECK-NEXT:    ret void
}

; Check that even if there is *some* non-duplicated code on one side of an
; unswitch, we don't count any other code in the loop that will in fact have to
; be duplicated.
define void @test_no_unswitch_non_dup_code(i1* %ptr, i1 %cond) {
; CHECK-LABEL: @test_no_unswitch_non_dup_code(
entry:
  br label %loop_begin
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br label %loop_begin
;
; We shouldn't have unswitched into any other block either.
; CHECK-NOT:     br i1 %cond

loop_begin:
  call void @x()
  br i1 %cond, label %loop_a, label %loop_b
; CHECK:       loop_begin:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br i1 %cond, label %loop_a, label %loop_b

loop_a:
  %v1 = load i1, i1* %ptr
  br i1 %v1, label %loop_a_a, label %loop_a_b

loop_a_a:
  call void @a()
  br label %loop_latch

loop_a_b:
  call void @a()
  br label %loop_latch

loop_b:
  %v2 = load i1, i1* %ptr
  br i1 %v2, label %loop_b_a, label %loop_b_b

loop_b_a:
  call void @b()
  br label %loop_latch

loop_b_b:
  call void @b()
  br label %loop_latch

loop_latch:
  call void @x()
  call void @x()
  %v = load i1, i1* %ptr
  br i1 %v, label %loop_begin, label %loop_exit

loop_exit:
  ret void
}

; Check that we still unswitch when the exit block contains lots of code, even
; though we do clone the exit block as part of unswitching. This should work
; because we should split the exit block before anything inside it.
define void @test_unswitch_large_exit(i1* %ptr, i1 %cond) {
; CHECK-LABEL: @test_unswitch_large_exit(
entry:
  br label %loop_begin
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br i1 %cond, label %entry.split.us, label %entry.split

loop_begin:
  call void @x()
  br i1 %cond, label %loop_a, label %loop_b

loop_a:
  call void @a()
  br label %loop_latch
; The 'loop_a' unswitched loop.
;
; CHECK:       entry.split.us:
; CHECK-NEXT:    br label %loop_begin.us
;
; CHECK:       loop_begin.us:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br label %loop_a.us
;
; CHECK:       loop_a.us:
; CHECK-NEXT:    call void @a()
; CHECK-NEXT:    br label %loop_latch.us
;
; CHECK:       loop_latch.us:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us
;
; CHECK:       loop_exit.split.us:
; CHECK-NEXT:    br label %loop_exit

loop_b:
  call void @b()
  br label %loop_latch
; The 'loop_b' unswitched loop.
;
; CHECK:       entry.split:
; CHECK-NEXT:    br label %loop_begin
;
; CHECK:       loop_begin:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br label %loop_b
;
; CHECK:       loop_b:
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    br label %loop_latch
;
; CHECK:       loop_latch:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_begin, label %loop_exit.split
;
; CHECK:       loop_exit.split:
; CHECK-NEXT:    br label %loop_exit

loop_latch:
  %v = load i1, i1* %ptr
  br i1 %v, label %loop_begin, label %loop_exit

loop_exit:
  call void @x()
  call void @x()
  call void @x()
  call void @x()
  ret void
; CHECK:       loop_exit:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    ret void
}

; Check that we handle a dedicated exit edge unswitch which is still
; non-trivial and has lots of code in the exit.
define void @test_unswitch_dedicated_exiting(i1* %ptr, i1 %cond) {
; CHECK-LABEL: @test_unswitch_dedicated_exiting(
entry:
  br label %loop_begin
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br i1 %cond, label %entry.split.us, label %entry.split

loop_begin:
  call void @x()
  br i1 %cond, label %loop_a, label %loop_b_exit

loop_a:
  call void @a()
  br label %loop_latch
; The 'loop_a' unswitched loop.
;
; CHECK:       entry.split.us:
; CHECK-NEXT:    br label %loop_begin.us
;
; CHECK:       loop_begin.us:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br label %loop_a.us
;
; CHECK:       loop_a.us:
; CHECK-NEXT:    call void @a()
; CHECK-NEXT:    br label %loop_latch.us
;
; CHECK:       loop_latch.us:
; CHECK-NEXT:    %[[V:.*]] = load i1, i1* %ptr
; CHECK-NEXT:    br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us
;
; CHECK:       loop_exit.split.us:
; CHECK-NEXT:    br label %loop_exit

loop_b_exit:
  call void @b()
  call void @b()
  call void @b()
  call void @b()
  ret void
; The 'loop_b_exit' unswitched exit path.
;
; CHECK:       entry.split:
; CHECK-NEXT:    br label %loop_begin
;
; CHECK:       loop_begin:
; CHECK-NEXT:    call void @x()
; CHECK-NEXT:    br label %loop_b_exit
;
; CHECK:       loop_b_exit:
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    call void @b()
; CHECK-NEXT:    ret void

loop_latch:
  %v = load i1, i1* %ptr
  br i1 %v, label %loop_begin, label %loop_exit

loop_exit:
  ret void
; CHECK:       loop_exit:
; CHECK-NEXT:    ret void
}