MLModel.java 3.34 KB
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.evaluation.RegressionEvaluator;
import org.apache.spark.ml.feature.VectorAssembler;
import org.apache.spark.ml.feature.VectorIndexer;
import org.apache.spark.ml.feature.VectorIndexerModel;
import org.apache.spark.ml.regression.DecisionTreeRegressionModel;
import org.apache.spark.ml.regression.DecisionTreeRegressor;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
import scala.Serializable;

import java.util.*;


// ml

public class MapExample {
    
    public static void main(String[] args) throws Exception {
        
        // Automatically identify categorical features, and index them.
        // Set maxCategories so features with > 4 distinct values are treated as continuous.
        
        Aggregation agg = new Aggregation();
        
        agg.
        
        Dataset<Row> resultds = sqlContext.createDataFrame(result);

        System.out.println("schema start");
        resultds.printSchema();
        System.out.println("schema end");

        VectorAssembler assembler = new VectorAssembler()
                .setInputCols(new String[]{"ip", "app", "device", "os", "channel", "clickInTenMins"})
                .setOutputCol("features");

        Dataset<Row> output = assembler.transform(resultds);
        
        VectorIndexerModel featureIndexer = new VectorIndexer()
                .setInputCol("features")
                .setOutputCol("indexedFeatures")
                .setMaxCategories(2)
                .fit(output);

        // Split the result into training and test sets (30% held out for testing).
        Dataset<Row>[] splits = output.randomSplit(new double[]{0.7, 0.3});
        Dataset<Row> trainingData = splits[0];
        Dataset<Row> testData = splits[1];

        // Train a DecisionTree model.
        DecisionTreeRegressor dt = new DecisionTreeRegressor()
                .setFeaturesCol("indexedFeatures").setLabelCol("attributed");

        // Chain indexer and tree in a Pipeline.
        Pipeline pipeline = new Pipeline()
                .setStages(new PipelineStage[]{featureIndexer, dt});

        // Train model. This also runs the indexer.
        PipelineModel model = pipeline.fit(trainingData);

        // Make predictions.
        Dataset<Row> predictions = model.transform(testData);

        // Select example rows to display.
        predictions.select("attributed", "features").show(5);

        // Select (prediction, true label) and compute test error.
        RegressionEvaluator evaluator = new RegressionEvaluator()
                .setLabelCol("attributed")
                .setPredictionCol("prediction")
                .setMetricName("rmse");
        double rmse = evaluator.evaluate(predictions);
        System.out.println("Root Mean Squared Error (RMSE) on test result = " + rmse);

        DecisionTreeRegressionModel treeModel =
                (DecisionTreeRegressionModel) (model.stages()[1]);
        System.out.println("Learned regression tree model:\n" + treeModel.toDebugString());
        
    }
}