train.py
23.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import
import os
import torch
import json
import random
import logging
import argparse
import numpy as np
from io import open
from tqdm import tqdm
import torch.nn as nn
from itertools import cycle
from torch.utils.data import (DataLoader, SequentialSampler, RandomSampler, TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from transformers import (AdamW, get_linear_schedule_with_warmup, RobertaConfig, RobertaTokenizer)
import bleu
from autocommit.model import Seq2Seq, RobertaModel
from autocommit.utils import (convert_examples_to_features, Example)
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer)}
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def read_examples(filename):
"""Read examples from filename."""
examples=[]
with open(filename,encoding="utf-8") as f:
for idx, line in enumerate(f):
line=line.strip()
js=json.loads(line)
if 'idx' not in js:
js['idx']=idx
examples.append(
Example(
idx = idx,
added=js['added'],
deleted=js['deleted'],
target=js['msg'],
)
)
return examples
def set_seed(args):
"""set random seed."""
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type: e.g. roberta")
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model: e.g. roberta-base" )
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--load_model_path", default=None, type=str,
help="Path to trained model: Should contain the .bin files" )
## Other parameters
parser.add_argument("--train_filename", default=None, type=str,
help="The train filename. Should contain the .jsonl files for this task.")
parser.add_argument("--dev_filename", default=None, type=str,
help="The dev filename. Should contain the .jsonl files for this task.")
parser.add_argument("--test_filename", default=None, type=str,
help="The test filename. Should contain the .jsonl files for this task.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--max_source_length", default=64, type=int,
help="The maximum total source sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--max_target_length", default=32, type=int,
help="The maximum total target sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument("--train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--beam_size", default=10, type=int,
help="beam size for beam search")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--eval_steps", default=-1, type=int,
help="")
parser.add_argument("--train_steps", default=-1, type=int,
help="")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
# print arguments
args = parser.parse_args()
logger.info(args)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1))
args.device = device
# Set seed
set_seed(args)
# make dir if output_dir not exist
if os.path.exists(args.output_dir) is False:
os.makedirs(args.output_dir)
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,do_lower_case=args.do_lower_case)
#budild model
encoder = model_class(config=config)
decoder_layer = nn.TransformerDecoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads)
decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
model=Seq2Seq(encoder=encoder,decoder=decoder,config=config,
beam_size=args.beam_size,max_length=args.max_target_length,
sos_id=tokenizer.cls_token_id,eos_id=tokenizer.sep_token_id)
if args.load_model_path is not None:
logger.info("reload model from {}".format(args.load_model_path))
model.load_state_dict(torch.load(args.load_model_path), strict=False)
model.to(device)
if args.local_rank != -1:
# Distributed training
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif args.n_gpu > 1:
# multi-gpu training
model = torch.nn.DataParallel(model)
if args.do_train:
# Prepare training data loader
train_examples = read_examples(args.train_filename)
train_features = convert_examples_to_features(train_examples, tokenizer,args,stage='train')
all_source_ids = torch.tensor([f.source_ids for f in train_features], dtype=torch.long)
all_source_mask = torch.tensor([f.source_mask for f in train_features], dtype=torch.long)
all_target_ids = torch.tensor([f.target_ids for f in train_features], dtype=torch.long)
all_target_mask = torch.tensor([f.target_mask for f in train_features], dtype=torch.long)
all_patch_ids = torch.tensor([f.patch_ids for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask,all_patch_ids)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size//args.gradient_accumulation_steps)
num_train_optimization_steps = args.train_steps
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
num_training_steps=num_train_optimization_steps)
#Start training
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num epoch = %d", num_train_optimization_steps*args.train_batch_size//len(train_examples))
model.train()
dev_dataset={}
nb_tr_examples, nb_tr_steps,tr_loss,global_step,best_bleu,best_loss = 0, 0,0,0,0,1e6
bar = tqdm(range(num_train_optimization_steps),total=num_train_optimization_steps)
train_dataloader=cycle(train_dataloader)
eval_flag = True
for step in bar:
batch = next(train_dataloader)
batch = tuple(t.to(device) for t in batch)
source_ids,source_mask,target_ids,target_mask,patch_ids = batch
loss,_,_ = model(source_ids=source_ids,source_mask=source_mask,
target_ids=target_ids,target_mask=target_mask,patch_ids=patch_ids)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
train_loss=round(tr_loss*args.gradient_accumulation_steps/(nb_tr_steps+1),4)
bar.set_description("loss {}".format(train_loss))
nb_tr_examples += source_ids.size(0)
nb_tr_steps += 1
loss.backward()
if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0:
#Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
eval_flag = True
if args.do_eval and ((global_step + 1) %args.eval_steps == 0) and eval_flag:
#Eval model with dev dataset
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
eval_flag=False
if 'dev_loss' in dev_dataset:
eval_examples,eval_data=dev_dataset['dev_loss']
else:
eval_examples = read_examples(args.dev_filename)
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='dev')
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
all_target_ids = torch.tensor([f.target_ids for f in eval_features], dtype=torch.long)
all_target_mask = torch.tensor([f.target_mask for f in eval_features], dtype=torch.long)
all_patch_ids = torch.tensor([f.patch_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask,all_patch_ids)
dev_dataset['dev_loss']=eval_examples,eval_data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
logger.info("\n***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
#Start Evaling model
model.eval()
eval_loss,tokens_num = 0,0
for batch in eval_dataloader:
batch = tuple(t.to(device) for t in batch)
source_ids,source_mask,target_ids,target_mask,patch_ids = batch
with torch.no_grad():
_,loss,num = model(source_ids=source_ids,source_mask=source_mask,
target_ids=target_ids,target_mask=target_mask,patch_ids=patch_ids)
eval_loss += loss.sum().item()
tokens_num += num.sum().item()
#Pring loss of dev dataset
model.train()
eval_loss = eval_loss / tokens_num
result = {'eval_ppl': round(np.exp(eval_loss),5),
'global_step': global_step+1,
'train_loss': round(train_loss,5)}
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
logger.info(" "+"*"*20)
#save last checkpoint
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
if eval_loss<best_loss:
logger.info(" Best ppl:%s",round(np.exp(eval_loss),5))
logger.info(" "+"*"*20)
best_loss=eval_loss
# Save best checkpoint for best ppl
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
#Calculate bleu
if 'dev_bleu' in dev_dataset:
eval_examples,eval_data=dev_dataset['dev_bleu']
else:
eval_examples = read_examples(args.dev_filename)
eval_examples = random.sample(eval_examples,min(1000,len(eval_examples)))
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
all_patch_ids = torch.tensor([f.patch_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids,all_source_mask,all_patch_ids)
dev_dataset['dev_bleu']=eval_examples,eval_data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
p=[]
for batch in eval_dataloader:
batch = tuple(t.to(device) for t in batch)
source_ids,source_mask,patch_ids= batch
with torch.no_grad():
preds = model(source_ids=source_ids,source_mask=source_mask,patch_ids=patch_ids)
for pred in preds:
t=pred[0].cpu().numpy()
t=list(t)
if 0 in t:
t=t[:t.index(0)]
text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
p.append(text)
model.train()
predictions=[]
with open(os.path.join(args.output_dir,"dev.output"),'w') as f, open(os.path.join(args.output_dir,"dev.gold"),'w') as f1:
for ref,gold in zip(p,eval_examples):
predictions.append(str(gold.idx)+'\t'+ref)
f.write(str(gold.idx)+'\t'+ref+'\n')
f1.write(str(gold.idx)+'\t'+' '.join(gold.target)+'\n')
(goldMap, predictionMap) = bleu.computeMaps(predictions, os.path.join(args.output_dir, "dev.gold"))
dev_bleu=round(bleu.bleuFromMaps(goldMap, predictionMap)[0], 2)
logger.info(" %s = %s "%("bleu-4",str(dev_bleu)))
logger.info(" "+"*"*20)
if dev_bleu>best_bleu:
logger.info(" Best bleu:%s",dev_bleu)
logger.info(" "+"*"*20)
best_bleu=dev_bleu
# Save best checkpoint for best bleu
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
if args.do_test:
files=[]
if args.dev_filename is not None:
files.append(args.dev_filename)
if args.test_filename is not None:
files.append(args.test_filename)
for idx,file in enumerate(files):
logger.info("Test file: {}".format(file))
eval_examples = read_examples(file)
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
all_patch_ids = torch.tensor([f.patch_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids,all_source_mask,all_patch_ids)
# Calculate bleu
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
p=[]
for batch in tqdm(eval_dataloader,total=len(eval_dataloader)):
batch = tuple(t.to(device) for t in batch)
source_ids,source_mask,patch_ids= batch
with torch.no_grad():
preds = model(source_ids=source_ids,source_mask=source_mask,patch_ids=patch_ids)
for pred in preds:
t=pred[0].cpu().numpy()
t=list(t)
if 0 in t:
t=t[:t.index(0)]
text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
p.append(text)
model.train()
predictions=[]
with open(os.path.join(args.output_dir,"test_{}.output".format(str(idx))),'w') as f, open(os.path.join(args.output_dir,"test_{}.gold".format(str(idx))),'w') as f1:
for ref,gold in zip(p,eval_examples):
predictions.append(str(gold.idx)+'\t'+ref)
f.write(str(gold.idx)+'\t'+ref+'\n')
f1.write(str(gold.idx)+'\t'+' '.join(gold.target)+'\n')
(goldMap, predictionMap) = bleu.computeMaps(predictions, os.path.join(args.output_dir, "test_{}.gold".format(idx)))
dev_bleu=round(bleu.bleuFromMaps(goldMap, predictionMap)[0], 2)
logger.info(" %s = %s "%("bleu-4",str(dev_bleu)))
logger.info(" "+"*"*20)
if __name__ == "__main__":
main()