train.py 23.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""

from __future__ import absolute_import
import os
import torch
import json
import random
import logging
import argparse
import numpy as np
from io import open
from tqdm import tqdm
import torch.nn as nn
from itertools import cycle

from torch.utils.data import (DataLoader, SequentialSampler, RandomSampler, TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from transformers import (AdamW, get_linear_schedule_with_warmup, RobertaConfig, RobertaTokenizer)

import bleu
from autocommit.model import Seq2Seq, RobertaModel
from autocommit.utils import (convert_examples_to_features, Example)

MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer)}

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

def read_examples(filename):
    """Read examples from filename."""
    examples=[]
    with open(filename,encoding="utf-8") as f:
        for idx, line in enumerate(f):
            line=line.strip()
            js=json.loads(line)
            if 'idx' not in js:
                js['idx']=idx
            examples.append(
                Example(
                        idx = idx,
                        added=js['added'],
                        deleted=js['deleted'],
                        target=js['msg'],
                        )
            )
    return examples


def set_seed(args):
    """set random seed."""
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
        
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters  
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type: e.g. roberta")
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model: e.g. roberta-base" )   
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument("--load_model_path", default=None, type=str, 
                        help="Path to trained model: Should contain the .bin files" )    
    ## Other parameters
    parser.add_argument("--train_filename", default=None, type=str, 
                        help="The train filename. Should contain the .jsonl files for this task.")
    parser.add_argument("--dev_filename", default=None, type=str, 
                        help="The dev filename. Should contain the .jsonl files for this task.")
    parser.add_argument("--test_filename", default=None, type=str, 
                        help="The test filename. Should contain the .jsonl files for this task.")  
    
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name") 
    parser.add_argument("--max_source_length", default=64, type=int,
                        help="The maximum total source sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--max_target_length", default=32, type=int,
                        help="The maximum total target sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
    
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available") 
    
    parser.add_argument("--train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--beam_size", default=10, type=int,
                        help="beam size for beam search")    
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--eval_steps", default=-1, type=int,
                        help="")
    parser.add_argument("--train_steps", default=-1, type=int,
                        help="")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")   
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")
    # print arguments
    args = parser.parse_args()
    logger.info(args)

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s",
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1))
    args.device = device
    # Set seed
    set_seed(args)
    # make dir if output_dir not exist
    if os.path.exists(args.output_dir) is False:
        os.makedirs(args.output_dir)
        
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,do_lower_case=args.do_lower_case)
    
    #budild model
    encoder = model_class(config=config)
    decoder_layer = nn.TransformerDecoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads)
    decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
    model=Seq2Seq(encoder=encoder,decoder=decoder,config=config,
                  beam_size=args.beam_size,max_length=args.max_target_length,
                  sos_id=tokenizer.cls_token_id,eos_id=tokenizer.sep_token_id)
    if args.load_model_path is not None:
        logger.info("reload model from {}".format(args.load_model_path))
        model.load_state_dict(torch.load(args.load_model_path), strict=False)
        
    model.to(device)
    if args.local_rank != -1:
        # Distributed training
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif args.n_gpu > 1:
        # multi-gpu training
        model = torch.nn.DataParallel(model)




    if args.do_train:
        # Prepare training data loader
        train_examples = read_examples(args.train_filename)
        train_features = convert_examples_to_features(train_examples, tokenizer,args,stage='train')
        all_source_ids = torch.tensor([f.source_ids for f in train_features], dtype=torch.long)
        all_source_mask = torch.tensor([f.source_mask for f in train_features], dtype=torch.long)
        all_target_ids = torch.tensor([f.target_ids for f in train_features], dtype=torch.long)
        all_target_mask = torch.tensor([f.target_mask for f in train_features], dtype=torch.long)    
        all_patch_ids = torch.tensor([f.patch_ids for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask,all_patch_ids)
        
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size//args.gradient_accumulation_steps)

        num_train_optimization_steps =  args.train_steps

        # Prepare optimizer and schedule (linear warmup and decay)
        no_decay = ['bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
             'weight_decay': args.weight_decay},
            {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
        optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
        scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
                                                    num_training_steps=num_train_optimization_steps)
    
        
        #Start training
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num epoch = %d", num_train_optimization_steps*args.train_batch_size//len(train_examples))
        

        model.train()
        dev_dataset={}
        nb_tr_examples, nb_tr_steps,tr_loss,global_step,best_bleu,best_loss = 0, 0,0,0,0,1e6 
        bar = tqdm(range(num_train_optimization_steps),total=num_train_optimization_steps)
        train_dataloader=cycle(train_dataloader)
        eval_flag = True
        for step in bar:
            batch = next(train_dataloader)
            batch = tuple(t.to(device) for t in batch)
            source_ids,source_mask,target_ids,target_mask,patch_ids = batch
            loss,_,_ = model(source_ids=source_ids,source_mask=source_mask,
                             target_ids=target_ids,target_mask=target_mask,patch_ids=patch_ids)
            
            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu.
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            tr_loss += loss.item()
            train_loss=round(tr_loss*args.gradient_accumulation_steps/(nb_tr_steps+1),4)
            bar.set_description("loss {}".format(train_loss))
            nb_tr_examples += source_ids.size(0)
            nb_tr_steps += 1
            loss.backward()

            if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0:
                #Update parameters
                optimizer.step()
                optimizer.zero_grad()
                scheduler.step()
                global_step += 1
                eval_flag = True
                
            if args.do_eval and ((global_step + 1) %args.eval_steps == 0) and eval_flag:
                #Eval model with dev dataset
                tr_loss = 0
                nb_tr_examples, nb_tr_steps = 0, 0                     
                eval_flag=False    
                if 'dev_loss' in dev_dataset:
                    eval_examples,eval_data=dev_dataset['dev_loss']
                else:
                    eval_examples = read_examples(args.dev_filename)
                    eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='dev')
                    all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
                    all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)
                    all_target_ids = torch.tensor([f.target_ids for f in eval_features], dtype=torch.long)
                    all_target_mask = torch.tensor([f.target_mask for f in eval_features], dtype=torch.long)      
                    all_patch_ids = torch.tensor([f.patch_ids for f in eval_features], dtype=torch.long)
                    eval_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask,all_patch_ids)
                    dev_dataset['dev_loss']=eval_examples,eval_data
                eval_sampler = SequentialSampler(eval_data)
                eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
                
                logger.info("\n***** Running evaluation *****")
                logger.info("  Num examples = %d", len(eval_examples))
                logger.info("  Batch size = %d", args.eval_batch_size)

                #Start Evaling model
                model.eval()
                eval_loss,tokens_num = 0,0
                for batch in eval_dataloader:
                    batch = tuple(t.to(device) for t in batch)
                    source_ids,source_mask,target_ids,target_mask,patch_ids = batch

                    with torch.no_grad():
                        _,loss,num = model(source_ids=source_ids,source_mask=source_mask,
                                           target_ids=target_ids,target_mask=target_mask,patch_ids=patch_ids)
                    eval_loss += loss.sum().item()
                    tokens_num += num.sum().item()
                #Pring loss of dev dataset    
                model.train()
                eval_loss = eval_loss / tokens_num
                result = {'eval_ppl': round(np.exp(eval_loss),5),
                          'global_step': global_step+1,
                          'train_loss': round(train_loss,5)}
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                logger.info("  "+"*"*20)   
                
                #save last checkpoint
                last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
                if not os.path.exists(last_output_dir):
                    os.makedirs(last_output_dir)
                model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
                output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
                torch.save(model_to_save.state_dict(), output_model_file)                    
                if eval_loss<best_loss:
                    logger.info("  Best ppl:%s",round(np.exp(eval_loss),5))
                    logger.info("  "+"*"*20)
                    best_loss=eval_loss
                    # Save best checkpoint for best ppl
                    output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl')
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
                    output_model_file = os.path.join(output_dir, "pytorch_model.bin")
                    torch.save(model_to_save.state_dict(), output_model_file)  
                            
                            
                #Calculate bleu  
                if 'dev_bleu' in dev_dataset:
                    eval_examples,eval_data=dev_dataset['dev_bleu']
                else:
                    eval_examples = read_examples(args.dev_filename)
                    eval_examples = random.sample(eval_examples,min(1000,len(eval_examples)))
                    eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
                    all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
                    all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)    
                    all_patch_ids = torch.tensor([f.patch_ids for f in eval_features], dtype=torch.long)
                    eval_data = TensorDataset(all_source_ids,all_source_mask,all_patch_ids)
                    dev_dataset['dev_bleu']=eval_examples,eval_data


                
                eval_sampler = SequentialSampler(eval_data)
                eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

                model.eval() 
                p=[]
                for batch in eval_dataloader:
                    batch = tuple(t.to(device) for t in batch)
                    source_ids,source_mask,patch_ids= batch
                    with torch.no_grad():
                        preds = model(source_ids=source_ids,source_mask=source_mask,patch_ids=patch_ids)
                        for pred in preds:
                            t=pred[0].cpu().numpy()
                            t=list(t)
                            if 0 in t:
                                t=t[:t.index(0)]
                            text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
                            p.append(text)
                model.train()
                predictions=[]
                with open(os.path.join(args.output_dir,"dev.output"),'w') as f, open(os.path.join(args.output_dir,"dev.gold"),'w') as f1:
                    for ref,gold in zip(p,eval_examples):
                        predictions.append(str(gold.idx)+'\t'+ref)
                        f.write(str(gold.idx)+'\t'+ref+'\n')
                        f1.write(str(gold.idx)+'\t'+' '.join(gold.target)+'\n')

                (goldMap, predictionMap) = bleu.computeMaps(predictions, os.path.join(args.output_dir, "dev.gold")) 
                dev_bleu=round(bleu.bleuFromMaps(goldMap, predictionMap)[0], 2)
                logger.info("  %s = %s "%("bleu-4",str(dev_bleu)))
                logger.info("  "+"*"*20)    
                if dev_bleu>best_bleu:
                    logger.info("  Best bleu:%s",dev_bleu)
                    logger.info("  "+"*"*20)
                    best_bleu=dev_bleu
                    # Save best checkpoint for best bleu
                    output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu')
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
                    output_model_file = os.path.join(output_dir, "pytorch_model.bin")
                    torch.save(model_to_save.state_dict(), output_model_file)
               
    if args.do_test:
        files=[]
        if args.dev_filename is not None:
            files.append(args.dev_filename)
        if args.test_filename is not None:
            files.append(args.test_filename)
        for idx,file in enumerate(files):   
            logger.info("Test file: {}".format(file))
            eval_examples = read_examples(file)
            eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
            all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
            all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long)    
            all_patch_ids = torch.tensor([f.patch_ids for f in eval_features], dtype=torch.long)
            eval_data = TensorDataset(all_source_ids,all_source_mask,all_patch_ids)

            # Calculate bleu
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

            model.eval() 
            p=[]
            for batch in tqdm(eval_dataloader,total=len(eval_dataloader)):
                batch = tuple(t.to(device) for t in batch)
                source_ids,source_mask,patch_ids= batch
                with torch.no_grad():
                    preds = model(source_ids=source_ids,source_mask=source_mask,patch_ids=patch_ids)
                    for pred in preds:
                        t=pred[0].cpu().numpy()
                        t=list(t)
                        if 0 in t:
                            t=t[:t.index(0)]
                        text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
                        p.append(text)
            model.train()
            predictions=[]
            with open(os.path.join(args.output_dir,"test_{}.output".format(str(idx))),'w') as f, open(os.path.join(args.output_dir,"test_{}.gold".format(str(idx))),'w') as f1:
                for ref,gold in zip(p,eval_examples):
                    predictions.append(str(gold.idx)+'\t'+ref)
                    f.write(str(gold.idx)+'\t'+ref+'\n')
                    f1.write(str(gold.idx)+'\t'+' '.join(gold.target)+'\n')

            (goldMap, predictionMap) = bleu.computeMaps(predictions, os.path.join(args.output_dir, "test_{}.gold".format(idx))) 
            dev_bleu=round(bleu.bleuFromMaps(goldMap, predictionMap)[0], 2)
            logger.info("  %s = %s "%("bleu-4",str(dev_bleu)))
            logger.info("  "+"*"*20)    



                            

                
                
if __name__ == "__main__":
    main()