finetune.py 16.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
import argparse
import glob
import logging
import os
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple

import numpy as np
import pytorch_lightning as pl
import torch
from torch.utils.data import DataLoader

from train.lightning_base import BaseTransformer, add_generic_args, generic_train
from transformers import MBartTokenizer, T5ForConditionalGeneration
from transformers.modeling_bart import shift_tokens_right

from matorage import DataConfig
from matorage.torch import Dataset


try:
    from .callbacks import (
        Seq2SeqLoggingCallback,
        get_checkpoint_callback,
        get_early_stopping_callback,
    )
    from .utils import (
        ROUGE_KEYS,
        LegacySeq2SeqDataset,
        Seq2SeqDataset,
        assert_all_frozen,
        calculate_bleu,
        calculate_rouge,
        flatten_list,
        freeze_params,
        get_git_info,
        label_smoothed_nll_loss,
        lmap,
        pickle_save,
        save_git_info,
        save_json,
        use_task_specific_params,
    )
except ImportError:
    from callbacks import (
        Seq2SeqLoggingCallback,
        get_checkpoint_callback,
        get_early_stopping_callback,
    )
    from utils import (
        ROUGE_KEYS,
        LegacySeq2SeqDataset,
        Seq2SeqDataset,
        assert_all_frozen,
        calculate_bleu,
        calculate_rouge,
        flatten_list,
        freeze_params,
        get_git_info,
        label_smoothed_nll_loss,
        lmap,
        pickle_save,
        save_git_info,
        save_json,
        use_task_specific_params,
    )

logger = logging.getLogger(__name__)


class SummarizationModule(BaseTransformer):
    mode = "summarization"
    loss_names = ["loss"]
    metric_names = ROUGE_KEYS
    default_val_metric = "rouge2"

    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, num_labels=None, mode=self.mode, **kwargs)
        use_task_specific_params(self.model, "summarization")
        save_git_info(self.hparams.output_dir)
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
        pickle_save(self.hparams, self.hparams_save_path)
        self.step_count = 0
        self.metrics = defaultdict(list)

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert (
            self.target_lens["train"] <= self.target_lens["val"]
        ), f"target_lens: {self.target_lens}"
        assert (
            self.target_lens["train"] <= self.target_lens["test"]
        ), f"target_lens: {self.target_lens}"

        if self.hparams.freeze_embeds:
            self.freeze_embeds()
        if self.hparams.freeze_encoder:
            freeze_params(self.model.get_encoder())
            assert_all_frozen(self.model.get_encoder())

        self.hparams.git_sha = get_git_info()["repo_sha"]
        self.num_workers = hparams.num_workers
        self.decoder_start_token_id = None  # default to config
        if self.model.config.decoder_start_token_id is None and isinstance(
            self.tokenizer, MBartTokenizer
        ):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[
                hparams.tgt_lang
            ]
            self.model.config.decoder_start_token_id = self.decoder_start_token_id

        self.eval_beams = (
            self.model.config.num_beams
            if self.hparams.eval_beams is None
            else self.hparams.eval_beams
        )
        assert (
            self.eval_beams >= 1
        ), f"got self.eval_beams={self.eval_beams}. Need an integer > 1"
        self.val_metric = (
            self.default_val_metric
            if self.hparams.val_metric is None
            else self.hparams.val_metric
        )

    def freeze_embeds(self):
        """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
        try:
            freeze_params(self.model.model.shared)
            for d in [self.model.model.encoder, self.model.model.decoder]:
                freeze_params(d.embed_positions)
                freeze_params(d.embed_tokens)
        except AttributeError:
            freeze_params(self.model.shared)
            for d in [self.model.encoder, self.model.decoder]:
                freeze_params(d.embed_tokens)

    def forward(self, input_ids, patch_ids, **kwargs):
        return self.model(input_ids, patch_ids, **kwargs)

    def ids_to_clean_text(self, generated_ids: List[int]):
        gen_text = self.tokenizer.batch_decode(
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
        )
        return lmap(str.strip, gen_text)

    def _step(self, batch: dict) -> Tuple:
        pad_token_id = self.tokenizer.pad_token_id
        src_ids, src_mask, src_patch = batch[0].long(), batch[1].long(), batch[2].long()
        tgt_ids = batch[3].long()
        if isinstance(self.model, T5ForConditionalGeneration):
            decoder_input_ids = self.model._shift_right(tgt_ids)
        else:
            decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)

        outputs = self(
            src_ids,
            src_patch,
            attention_mask=src_mask,
            decoder_input_ids=decoder_input_ids,
            use_cache=False,
        )
        lm_logits = outputs[0]
        if self.hparams.label_smoothing == 0:
            # Same behavior as modeling_bart.py, besides ignoring pad_token_id
            loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)

            assert lm_logits.shape[-1] == self.model.config.vocab_size
            loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
        else:
            lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
            loss, nll_loss = label_smoothed_nll_loss(
                lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
            )
        return (loss,)

    @property
    def pad(self) -> int:
        return self.tokenizer.pad_token_id

    def training_step(self, batch, batch_idx) -> Dict:
        loss_tensors = self._step(batch)

        logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
        # tokens per batch
        logs["tpb"] = (
            batch[0].long().ne(self.pad).sum() + batch[3].long().ne(self.pad).sum()
        )
        return {"loss": loss_tensors[0], "log": logs}

    def validation_step(self, batch, batch_idx) -> Dict:
        return self._generative_step(batch)

    def validation_epoch_end(self, outputs, prefix="val") -> Dict:
        self.step_count += 1
        losses = {
            k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names
        }
        loss = losses["loss"]
        rouges = {
            k: np.array([x[k] for x in outputs]).mean()
            for k in self.metric_names + ["gen_time", "gen_len"]
        }
        rouge_tensor: torch.FloatTensor = torch.tensor(rouges[self.val_metric]).type_as(
            loss
        )
        rouges.update({k: v.item() for k, v in losses.items()})
        losses.update(rouges)
        metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
        metrics["step_count"] = self.step_count
        self.save_metrics(metrics, prefix)  # writes to self.metrics_save_path
        preds = flatten_list([x["preds"] for x in outputs])
        return {
            "log": metrics,
            "preds": preds,
            f"{prefix}_loss": loss,
            f"{prefix}_{self.val_metric}": rouge_tensor,
        }

    def save_metrics(self, latest_metrics, type_path) -> None:
        self.metrics[type_path].append(latest_metrics)
        save_json(self.metrics, self.metrics_save_path)

    def calc_generative_metrics(self, preds, target) -> Dict:
        return calculate_rouge(preds, target)

    def _generative_step(self, batch: dict) -> dict:
        t0 = time.time()
        generated_ids = self.model.generate(
            batch[0].long(),
            patch_ids=batch[2].long(),
            attention_mask=batch[1].long(),
            use_cache=True,
            decoder_start_token_id=self.decoder_start_token_id,
        )
        gen_time = (time.time() - t0) / batch[0].shape[0]
        preds: List[str] = self.ids_to_clean_text(generated_ids)
        target: List[str] = self.ids_to_clean_text(batch[3])
        loss_tensors = self._step(batch)
        base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
        rouge: Dict = self.calc_generative_metrics(preds, target)
        summ_len = np.mean(lmap(len, generated_ids))
        base_metrics.update(
            gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **rouge
        )
        return base_metrics

    def test_step(self, batch, batch_idx):
        return self._generative_step(batch)

    def test_epoch_end(self, outputs):
        return self.validation_epoch_end(outputs, prefix="test")

    def get_dataset(self, type_path) -> Seq2SeqDataset:
        max_target_length = self.target_lens[type_path]
        data_config = DataConfig(
            endpoint=self.hparams.endpoint,
            access_key=os.environ["access_key"],
            secret_key=os.environ["secret_key"],
            region=self.hparams.region,
            dataset_name="commit-autosuggestions",
            additional={
                "mode": ("training" if type_path == "train" else "evaluation"),
                "max_source_length": self.hparams.max_source_length,
                "max_target_length": max_target_length,
                "url": self.hparams.url,
            },
            attributes=[
                ("input_ids", "int32", (self.hparams.max_source_length,)),
                ("attention_masks", "int32", (self.hparams.max_source_length,)),
                ("patch_ids", "int32", (self.hparams.max_source_length,)),
                ("targets", "int32", (max_target_length,)),
            ],
        )
        return Dataset(config=data_config, clear=True)

    def get_dataloader(
        self, type_path: str, batch_size: int, shuffle: bool = False
    ) -> DataLoader:
        dataset = self.get_dataset(type_path)
        sampler = None

        dataloader = DataLoader(
            dataset,
            batch_size=batch_size,
            shuffle=shuffle,
            num_workers=self.num_workers,
            sampler=sampler,
        )
        return dataloader

    def train_dataloader(self) -> DataLoader:
        dataloader = self.get_dataloader(
            "train", batch_size=self.hparams.train_batch_size, shuffle=True
        )
        return dataloader

    def val_dataloader(self) -> DataLoader:
        return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)

    def test_dataloader(self) -> DataLoader:
        return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        BaseTransformer.add_model_specific_args(parser, root_dir)
        add_generic_args(parser, root_dir)
        parser.add_argument("--url", type=str, required=True, help="github url")
        parser.add_argument(
            "--endpoint",
            type=str,
            required=True,
            help="matorage endpoint, check document of matorage: https://matorage.readthedocs.io/en/stable/storage.html",
        )
        parser.add_argument(
            "--region",
            type=str,
            default=None,
            help="matorage s3 region, check document of matorage: https://matorage.readthedocs.io/en/stable/storage.html",
        )
        parser.add_argument(
            "--max_source_length",
            default=1024,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--max_target_length",
            default=56,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--val_max_target_length",
            default=142,  # these defaults are optimized for CNNDM. For xsum, see README.md.
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--test_max_target_length",
            default=142,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument("--freeze_encoder", action="store_true")
        parser.add_argument("--freeze_embeds", action="store_true")
        parser.add_argument("--sortish_sampler", action="store_true", default=False)
        parser.add_argument(
            "--logger_name",
            type=str,
            choices=["default", "wandb", "wandb_shared"],
            default="default",
        )
        parser.add_argument(
            "--n_train",
            type=int,
            default=-1,
            required=False,
            help="# examples. -1 means use all.",
        )
        parser.add_argument(
            "--n_val",
            type=int,
            default=500,
            required=False,
            help="# examples. -1 means use all.",
        )
        parser.add_argument(
            "--n_test",
            type=int,
            default=-1,
            required=False,
            help="# examples. -1 means use all.",
        )
        parser.add_argument(
            "--task",
            type=str,
            default="summarization",
            required=False,
            help="# examples. -1 means use all.",
        )
        parser.add_argument(
            "--label_smoothing", type=float, default=0.0, required=False
        )
        parser.add_argument("--src_lang", type=str, default="", required=False)
        parser.add_argument("--tgt_lang", type=str, default="", required=False)
        parser.add_argument("--eval_beams", type=int, default=None, required=False)
        parser.add_argument("--val_metric", type=str, default=None, required=False)
        parser.add_argument(
            "--early_stopping_patience",
            type=int,
            default=-1,
            required=False,
            help="-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So val_check_interval will effect it.",
        )
        return parser


class TranslationModule(SummarizationModule):
    mode = "translation"
    loss_names = ["loss"]
    metric_names = ["bleu"]
    default_val_metric = "bleu"

    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang

    def calc_generative_metrics(self, preds, target) -> dict:
        return calculate_bleu(preds, target)


def main(args, model=None) -> SummarizationModule:
    Path(args.output_dir).mkdir(exist_ok=True)
    if len(os.listdir(args.output_dir)) > 3 and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir
            )
        )
    if model is None:
        if args.task == "summarization":
            model: SummarizationModule = SummarizationModule(args)
        else:
            model: SummarizationModule = TranslationModule(args)

    logger = True
    es_callback = False
    trainer: pl.Trainer = generic_train(
        model,
        args,
        logging_callback=Seq2SeqLoggingCallback(),
        checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric),
        early_stopping_callback=es_callback,
        logger=logger,
        # TODO: early stopping callback seems messed up
    )
    pickle_save(model.hparams, model.output_dir / "hparams.pkl")
    if not args.do_predict:
        return model

    model.hparams.test_checkpoint = ""
    checkpoints = list(
        sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt"), recursive=True))
    )
    if checkpoints:
        model.hparams.test_checkpoint = checkpoints[-1]
        trainer.resume_from_checkpoint = checkpoints[-1]
    trainer.logger.log_hyperparams(model.hparams)

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
    return model